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Feature structures are used to convey linguistic information in a variety of linguistic formalisms.
Various definitions of feature structures exist; one dimension of variation is typing: unlike untyped
feature structures, typed ones associate a type with every structure and impose appropriateness
constraints on the occurrences of features and on the values that they take. This work demon-
strates the benefits that typing can carry even for linguistic formalisms that use untyped feature
structures. We present a method for validating the consistency of (untyped) feature structure
specifications by imposing a type discipline. This method facilitates a great number of compile-
time checks: many possible errors can be detected before the grammar is used for parsing. We have
constructed a type signature for an existing broad-coverage grammar of English and implemented
a type inference algorithm that operates on the feature structure specifications in the grammar
and reports incompatibilities with the signature. We have detected a large number of errors in the
grammar, some of which are described in the article.

1. Introduction

Feature structures are used by a variety of linguistic formalisms as a means for rep-
resenting different levels of linguistic information. They are usually associated with
more elementary structures (such as phrase structure rules or trees) to provide an addi-
tional dimension for stating linguistic generalizations. A variant of feature structures,
typed feature structures, provide yet another dimension for such generalizations. It
is sometimes assumed that typed feature structures have linguistic advantages over
untyped ones and that they are, in general, more efficient to process. In this article
we show how typing can be useful also for systems that manipulate untyped feature
structures.

We present a method for validating the consistency of feature structure specifica-
tions by imposing a type discipline. This method facilitates a great number of compile-
time checks: many possible errors can be detected before the grammar is used for pars-
ing. Typed systems are used in one linguistic theory, Head-Driven Phrase Structure
Grammar (HPSG) (Pollard and Sag 1994), and we present here a different application
of them for theories that employ untyped feature structures. We constructed a type
signature for the XTAG English grammar (XTAG Research Group 2001), an existing
broad-coverage grammar of English. Then, we implemented a type inference algorithm
that operates on the feature structure specifications in the grammar. The algorithm re-
ports occurrences of incompatibility with the type signature. We have detected a large
number of errors in the grammar; four types of errors are described in the article.

The technique we propose was incorporated into the XTAG grammar development
system, which is based on the tree-adjoining grammar (TAG) formalism (Joshi, Levy,
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and Takahashi 1975), lexicalized (Schabes, Abeill€, and Joshi 1988) and augmented
by unification-based feature structures (Vijay-Shanker and Joshi 1991). Tree-adjoining
languages fall into the class of mildly context-sensitive languages and as such are more
powerful than context-free languages. The TAG formalism in general, and lexicalized
TAGs in particular, are well-suited for linguistic applications. As first shown by Joshi
(1985) and Kroch and Joshi (1987), the properties of TAGs permit one to encapsulate
diverse syntactic phenomena in a very natural way.

The XTAG grammar development system makes limited use of feature structures
that can be attached to nodes in the trees that make up a grammar. Typically, feature
structures in XTAG are flat: nesting of structures is very limited. Furthermore, all fea-
ture structures in XTAG are finitely bounded: the maximum size of a feature structure
can be statically determined. During parsing, feature structures undergo unification as
the trees they are associated with are combined. But unification in XTAG is actually
highly limited: since all feature structures are bounded, unification can be viewed as
an atomic operation. Although the method we propose was tested on an XTAG gram-
mar, it is applicable in principle to any linguistic formalism that uses untyped feature
structures, in particular, to lexical-functional grammar (Kaplan and Bresnan 1982).

2. The Problem

XTAG is organized such that feature structures are specified in three different com-
ponents of the grammar: a Tree database defines feature structures attached to tree
families; a Syn database defines feature structures attached to lexically anchored trees;
and a Morph database defines feature structures attached to (possibly inflected) lexical
entries.

As an example, consider the verb seems. This verb can anchor several trees, among
which are trees of auxiliary verbs, such as the tree 3Vvz, depicted in Figure 1. This
tree, which is common to all auxiliary verbs, is associated with the feature structure
descriptions listed in Figure 1 (independently of the word that happens to anchor it).!
When the tree 3 Vuz is anchored by seems, the lexicon specifies additional constraints
on the feature structures in this tree:
seem betaVvx VP.b:<mode> = inf/nom,

V.b:<mainv> = +
Finally, since “seems” is an inflected form, the morphological database specifies more
constraints on the node that this word instantiates, as shown in Figure 2.

The actual feature structures that are associated with the lexicalized tree anchored
by “seems” are the combination of the three sets of path equations. This organization
leaves room for several kinds of errors, inconsistencies, and typos in feature structure
manipulation. Nothing in the system can eliminate the following possible errors:

Undefined features: Every grammar makes use of a finite set of features in the
feature structure specification. As the features do not have to be declared,
however, certain bogus features can be introduced unintentionally, either
through typos or because of poor maintenance. In a grammar that has
an ASSIGN-CASE feature, the following statement is probably erroneous:
V.b:<asign-case> = acc.

1 We use “handles” such as V.b or NP.t to refer to the feature structures being specified. Each node in a
tree is associated with two feature structures, “top” (.t) and “bottom” (.b) (Vijay-Shanker and Joshi
1991; XTAG Research Group 2001). Angular brackets delimit feature paths, and slashes denote
disjunctive (atomic) values.
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:<agr> = VP_r.b:<agr>

:<assign-case> = VP_r.b:<assign-case>
:<assign-comp> = VP_r.b:<assign-comp>
:<displ-const setl> = VP_r.b:<displ-const setl>
:<mainv> = VP_r.b:<mainv>

:<mode> = VP_r.b:<mode>

:<neg> = VP_r.b:<neg>

:<tense> = VP_r.b:<tense>
:<assign-comp> = ecm

:<compar> = -

VP.t:<displ-const setl> = -
VP_r.b:<compar> = -

VP_r.b:<conditional> = VP.t:<conditional>
VP_r.b:<perfect> = VP.t:<perfect>
VP_r.b:<progressive> = VP.t:<progressive>
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Figure 1
An example tree and its associated feature structure descriptions.

seems seem V <agr pers> = 3,
<agr num> = sing,
<agr 3rdsing> = +,
<mode> = ind,
<tense> = pres,
<assign-comp> = ind_nil/that/rel/if/whether,
<assign-case> = nom

Figure 2
The morphological database entry for seems.

Undefined values: The same problem can be manifested in values, rather than
features. In a grammar where nom is a valid value for the ASSIGN-CASE fea-
ture, the following statement is probably erroneous: V.b:<assign-case> =
non.

Incompatible feature equations: The grammar designer has a notion of what
paths can be equated, but this notion is not formally defined. Thus, it is
possible to find erroneous path equations such as VP.b:<assign-case> =
V.t:<tense>.

Such cases go undetected by XTAG and result in parsing errors. For example, the
statement V.b:<asign-case> = acc was presumably supposed to constrain the gram-
matical derivations to those in which the ASSIGN-CASE feature had the value acc. With
the typo, this statement never causes unification to fail (assuming that the feature
ASIGN-CASE occurs nowhere else in the grammar); the result is overgeneration.

On the other hand, if the statement V.b:<assign-case> = non is part of the lexical
entry of some verb, and some derivations require that certain verbs have nom as their
value of ASSIGN-CASE, then that verb would never be a grammatical candidate for
those derivations. The result here is undergeneration.
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Note that nothing in the above description hinges on the particular linguistic
formalism or its implementation. The same problems are likely to occur in every
system that manipulates untyped feature structures.”

3. Introducing Typing

The problems discussed above are reminiscent of similar problems in programming
languages; in that domain, the solution lies in typing: a stricter type discipline provides
means for more compile-time checks to be performed, thus tracking potential errors
as soon as possible. Fortunately, such a solution is perfectly applicable to the case of
feature structures, as typed feature structures (TFSs) are well understood (Carpenter
1992). We briefly survey this concept below.

TFSs are defined over a signature consisting of a set of of types (T'YPES) and a set
of features (FEATS). Types are partially ordered by subsumption (denoted “C”). The
least upper bound with respect to subsumption of ¢; and ¢, is denoted t; U t,. Each type
is associated with a set of appropriate features through a function Approp: TYPES x
Fears — TyPES. The appropriate values of a feature F in a type ¢ have to be of
specified (appropriate) types. Features are inherited by subtypes: whenever F is ap-
propriate for a type t, it is also appropriate for all the types ¢’ such that ¢ T ¢. Each
feature F has to be introduced by some most general type Intro(F) (and be appropriate
for all its subtypes).

Figure 3 graphically depicts a type signature in which greater (more specific)
types are presented higher and the appropriateness specification is displayed above
the types. For example, for every feature structure of type verb, the feature ASSIGN-
CASE is appropriate, with values that are at least of type cases: Approp(verb, ASSIGN-
CASE) = cases.

A formal introduction to the theory of TFSs is given by Carpenter (1992). In-
formally, a TFS over a signature (TYPES,C, FEATS, Approp) differs from an untyped
feature structure in two aspects: a TFS has a type; and the value of each feature is a
TFS—there is no need for atoms in a typed system. A TFS A whose type is ¢ is well-
typed iff every feature F in A is such that Approp(t, F) is defined; every feature F in
A has value of type t' such that Approp(¢, F) C t’; and all the substructures of A are
well-typed. It is totally well-typed if, in addition, every feature F such that Approp(¢,
F) is defined occurs in A. In other words, a TFS is totally well-typed if it has all and
only the features that are appropriate for its type, with appropriate values, and the
same holds for all its substructures.

Totally well-typed TFSs are informative and efficient to process. It might be prac-
tically difficult, however, for the writer of a grammar to specify the full information
such a structure encodes. To overcome this problem, type inference algorithms have
been devised that enable a system to infer a totally well-typed TFS automatically from
a partial description. Partial descriptions can specify

e the type of a TFS: V.t:verb
e avariable, referring to a TFS: VP.b:assign-case:X

e a path equation: VP.b:assign-case = NP.t:case

2 Some systems could have elaborate mechanisms implemented to deal with each kind of error
mentioned here. But typing provides a single mechanism that handles several different kinds of errors
simultaneously.
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ASSIGN-CASE — cases CASE — cases
verb noun nom acc none
sign cases
1

Figure 3
A simple type signature.

e a feature-value pair: NP.b:case:acc

e a conjunction of descriptions: V.t: (sign,assign-case:none)

The inferred feature structure is the most general TFS that is consistent with the
partial description. The inference fails iff the description is inconsistent (i.e., describes
no feature structure). See Figure 4 for some examples of partial descriptions and the
TFSs they induce, based on the signature of Figure 3.

4. Implementation

To validate feature structure specifications in XTAG we have implemented the type in-
ference algorithm suggested by Carpenter (1992, chapter 6). We manually constructed
a type signature suitable for the current use of feature structures in the XTAG gram-
mar of English (XTAG Research Group 2001). Then, we applied the type inference
algorithm to all the feature structure specifications of the grammar, such that each
feature structure was expanded with respect to the signature.

Type inference is applied off-line, before the grammar is used for parsing. As is the
case with other off-line applications, efficiency is not a critical issue. It is worth noting,
however, that for the grammar we checked (in which, admittedly, feature structures are
flat and relatively small), the validation procedure is highly efficient. As a benchmark,
we checked the consistency of 1,000 trees, each consisting of two to fourteen nodes.
The input file, whose size approached 1MB, contained over 33,000 path equations.
Validating the consistency of the benchmark trees took less than 33 seconds (more
than a thousand path equations per second).

4.1 The Signature

The signature for the XTAG grammar was constructed manually, by observing the
use of feature equations in the grammar and consulting its documentation. As noted
above, most feature structures used in the grammar are flat, but the number of features
in the top level is relatively high. The signature consists of 58 types and 56 features,
and its construction took a few hours. In principle, it should be possible to construct
signatures for untyped feature structures automatically, but such signatures will of
course be less readable than manually constructed ones.

4.2 Results

Applying the type inference algorithm to the XTAG English grammar, we have vali-
dated the consistency of all feature structures specified in the grammar. We have been
able to detect a great number of errors, which we discuss in this section. The errors
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verb
V.t:verb V.t =
ASSIGN-CASE : cases
verb
VP.b:assign-case:X VP.b = 7
ASSIGN-CASE : cases
verb
VP.b=
ASSIGN-CASE : [cases}
VP.b:assign-case = NP.t:case = -
noun
NP.t =
CASE :
noun
NP.b:case:acc NP.b = 7
CASE : acc
verb

V.t:(sign,assign-case:none) V.t =
ASSIGN-CASE : none

Figure 4
Inferred TFSs.

can be classified into four different types: ambiguous names, typos, undocumented
features, and plain errors.

4.2.1 Ambiguous Names. Ambiguous names are an obvious error, but one that is not
easy to track without the typing mechanism that we discuss in this article. As the
XTAG grammar has been developed by as many as a dozen developers, over a period
of more than a decade, such errors are probably unavoidable. Specifically, a single
name is used for two different features or values, with completely different intentions
in mind.> We have found several such errors in the grammar.

The feature GEN was used for two purposes: in nouns, it referred to the GENDER,
and took values such as masc, fem, or neuter; in pronouns, it was a boolean feature
denoting genitive case. We even found a few cases in which the values of these in-
compatible features were equated. As another example, the value nom was used to
denote both nominative case, where it was an appropriate value for the CASE feature,
and to denote a nominal predicate, where it was the appropriate value of the MODE
feature. Of course, these two features have nothing to do with each other and should
never be equated (hence, should never have the same value). Finally, values such as
nil or none were used abundantly for a variety of purposes.

3 Recall that by the feature introduction condition, each feature must be introduced by some most
general type (and be appropriate for all its subtypes).
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4.2.2 Typos. Another type of error that is very difficult to track otherwise are plain
typos. The best example is probably a feature that occurred about 80% of the time as
RELPRON and the rest of the time as REL-PRON:

S_r.t:<relpron> = NP_w.t:<rel-pron>

4.2.3 Undocumented Features. We have found a great number of features and values
that are not mentioned in the technical report documenting the grammar. Some of
them turned out to be remnants of old analyses that were obsolete; others indicated
a need for better documentation. Of course, the fewer features the grammar is using,
the more efficient unification (and, hence, parsing) becomes.

Other cases necessitated updates of the grammar documentation. For example, the
feature DISPL-CONST was documented as taking boolean values but turned out to be
a complex feature, with a substructure under the feature SET1. The feature GEN (in its
gender use) was defined at the top level of nouns, whereas it should have been under
the AGR feature.

4.2.4 Other Errors. Finally, some errors are plain mistakes of the grammar designer.
For example, the specification S_r.t:<assign-case> = NP_w.t:<assign-case> im-
plies that ASSIGN-CASE is appropriate for nouns, which is of course wrong; the spec-
ification S_r.t:<case> = nom implies that sentences have CASEs; and the specifica-
tion V.t:<refl> = V_r.b:<refl> implies that verbs can be REFLexive. Another ex-
ample is the specification D_r.b:<punct bal> = Punct_1.t:<punct>, which handles
the balancing of punctuation marks such as parentheses. This should have been either
D_r.b:<punct> = Punct_1.t:<punct> or D_r.b:<punct bal> = Punct_1.t:<punct
bal>.

4.3 Additional Advantages

Since the feature structure validation procedure practically expands path equations to
(most general) totally well-typed feature structures, we have implemented a mode in
which the system outputs the expanded TFSs. Users can thus have a better idea of
what feature structures are associated with tree nodes, both because all the features
are present, and because typing adds information that was unavailable in the untyped
specification. As an example, consider the following specification:

PP.b:<wh> = NP.b:<wh>

PP.b:<assign-case> = nom

PP.b:<assign-case> = N.t:<case>

NP.b:<agr> = N.t:<agr>

NP.b:<case> = N.t:<case>

N.t:<case> = nom/acc

When it is expanded by the system, the TFS that is output for PP.b is depicted in
Figure 5 (left). Note that the type of this TFS was set to p_or_v_or_comp, indicating
that there is not sufficient information for the type inference procedure to distinguish
among these three types. Many features that are not explicitly mentioned are added
by the inference procedure, with their “default” (most general) values.

The node N.t is associated with a TFS, parts of which are depicted in Figure 5
(right). It is worth noting that the type of this TFS was correctly inferred to be noun,
and that the CASE feature is reentrant with the ASSIGN-CASE feature of the PP.b node
(through the reentrancy tag [304]), thus restricting it to nom, although the specification
listed a disjunctive value, nom/acc.
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PP.b N.t
[62]p_or_v_or_comp( [289]noun(
wh: [184]bool, wh:[290]bool,
assign-comp: [54] comps, agr: [298]agrs(
rel-pron: [65]rel-prons, num: [118]nums,
trace: [56]bot, pers: [119]persons),
equiv: [57]bool, conj: [299]conjs,
compar: [58]bool, control: [300]bot,
super: [69]bool, displ-const: [302] constituents(
neg: [60]bool, set1:[153]bool),
assign-case: [304]nom) case: [304]nom,

definite: [305]bool,
const: [306]bool,
rel-clause: [307]bool,
pron: [308]bool,

quan: [309]bool,
gerund: [312]bool,
refl: [313]bool,

gen: [314] gens,

compl: [316]bool)

Figure 5
Expanded TFSs.

5. Further Research

We have described in this article a method for validating the consistency of feature
structure specifications in grammars that incorporate untyped feature structures. Al-
though the use of feature structures in XTAG is very limited, especially since all fea-
ture structures are finitely bounded, the method we describe is applicable to feature
structure-based grammatical formalisms in general; in particular, it will be interesting
to test it on broad-coverage grammars that are based on unbounded feature structures,
such as lexical functional grammars.

We have applied type inference only statically; feature structures that are created
at parse time are not validated. By modifying the unification algorithm currently used
in XTAG, however, it is possible to use TFSs in the grammar and apply type inference
at run time. This will enable detection of more errors at run time and provide for
better representation of feature structures and possibly for more efficient unifications.
In a new implementation of XTAG (Sarkar 2000), feature structure specifications are
not evaluated as structures are being constructed; rather, they are deferred to the final
stage of processing, when only valid trees remain. We plan to apply type inference to
the resulting feature structures in this implementation, so that run-time errors can be
detected as well.
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