
A Critique and Improvement of an
Evaluation Metric for Text Segmentation

Lev Pevzner∗ Marti A. Hearst†
Harvard University University of California, Berkeley

The Pk evaluation metric, initially proposed by Beeferman, Berger, and Lafferty (1997), is be-
coming the standard measure for assessing text segmentation algorithms. However, a theoretical
analysis of the metric finds several problems: the metric penalizes false negatives more heavily
than false positives, overpenalizes near misses, and is affected by variation in segment size dis-
tribution. We propose a simple modification to the Pk metric that remedies these problems. This
new metric—called WindowDiff—moves a fixed-sized window across the text and penalizes the
algorithm whenever the number of boundaries within the window does not match the true number
of boundaries for that window of text.

1. Introduction

Text segmentation is the task of determining the positions at which topics change in
a stream of text. Interest in automatic text segmentation has blossomed over the last
few years, with applications ranging from information retrieval to text summariza-
tion to story segmentation of video feeds. Early work in multiparagraph discourse
segmentation examined the problem of subdividing texts into multiparagraph units
that represent passages or subtopics. An example, drawn from Hearst (1997), is a 21-
paragraph science news article, called “Stargazers,” whose main topic is the existence
of life on earth and other planets. Its contents can be described as consisting of the
following subtopic discussions (numbers indicate paragraphs):

1–3 Introduction: The search for life in space
4–5 The moon’s chemical composition
6–8 How early earth-moon proximity shaped the moon

9–12 How the moon helped life evolve on earth
13 Improbability of the earth-moon system

14–16 Binary/trinary star systems make life unlikely
17–18 The low probability of nonbinary/trinary systems
19–20 Properties of earth’s sun that facilitate life

21 Summary

The TextTiling algorithm (Hearst 1993, 1994, 1997) attempts to recognize these
subtopic changes by making use of patterns of lexical co-occurrence and distribution;
subtopic boundaries are assumed to occur at the point in the documents at which large
shifts in vocabulary occur. Many others have used this technique, or slight variations

∗ Harvard University, 380 Leverett Mail Center, Cambridge, MA 02138. E-mail:
pevzner@post.harvard.edu
† University of California, Berkeley, 102 South Hall #4600, Berkeley, CA 94720. E-mail:

hearst@sims.berkeley.edu

c© 2002 Association for Computational Linguistics

Computational Linguistics Volume 28, Number 1

of it, for subtopic segmentation (Nomoto and Nitta 1994; Hasnah 1996; Richmond,
Smith, and Amitay 1997; Heinonen 1998; Boguraev and Neff 2000). Other techniques
use clustering and/or similarity matrices based on word co-occurrences (Reynar 1994;
Yaari 1997; Choi 2000), and still others use machine learning techniques to detect cue
words, or hand-selected cue words to detect segment boundaries (Passonneau and
Litman 1993; Beeferman, Berger, and Lafferty 1997; Manning 1998).

Researchers have explored the use of this kind of document segmentation to im-
prove automated summarization (Salton et al. 1994; Barzilay and Elhadad 1997; Kan,
Klavans, and McKeown 1998; Mittal et al. 1999; Boguraev and Neff 2000) and auto-
mated genre detection (Karlgren 1996). Text segmentation issues are also important
for passage retrieval, a subproblem of information retrieval (Hearst and Plaunt 1993;
Salton, Allan, and Buckley 1993; Callan 1994; Kaszkiel and Zobel 1997). More recently,
a great deal of interest has arisen in using automatic segmentation for the detection
of topic and story boundaries in news feeds (Mani et al. 1997; Merlino, Morey, and
Maybury 1997; Ponte and Croft 1997; Hauptmann and Witbrock 1998; Allan et al.
1998; Beeferman, Berger, and Lafferty 1997, 1999). Sometimes segmentation is done
at the clause level, for the purposes of detecting nuances of dialogue structure or for
more sophisticated discourse-processing purposes (Morris and Hirst 1991; Passonneau
and Litman 1993; Litman and Passonneau 1995; Hirschberg and Nakatani 1996; Marcu
2000). Some of these algorithms produce hierarchical dialogue segmentations whose
evaluation is outside the scope of this discussion.

1.1 Evaluating Segmentation Algorithms
There are two major difficulties associated with evaluating algorithms for text seg-
mentation. The first is that since human judges do not always agree where boundaries
should be placed and how fine grained an analysis should be, it is difficult to choose
a reference segmentation for comparison. Some evaluations circumvent this difficulty
by detecting boundaries in sets of concatenated documents, where there can be no dis-
agreements about the fact of the matter (Reynar 1994; Choi 2000); others have several
human judges make ratings to produce a “gold standard.”

The second difficulty with evaluating these algorithms is that for different applica-
tions of text segmentation, different kinds of errors become important. For instance, for
information retrieval, it can be acceptable for boundaries to be off by a few sentences—
a condition called a near miss—but for news boundary detection, accurate placement
is crucial. For this reason, some researchers prefer not to measure the segmentation
algorithm directly, but consider its impact on the end application (Manning 1998; Kan,
Klavans, and McKeown 1998). Our approach to these two difficulties is to evaluate al-
gorithms on real segmentations using a “gold standard” and to develop an evaluation
algorithm that suits all applications reasonably well.

Precision and recall are standard evaluation measures for information retrieval
tasks and are often applied to evaluation of text segmentation algorithms as well.
Precision is the percentage of boundaries identified by an algorithm that are indeed
true boundaries; recall is the percentage of true boundaries that are identified by
the algorithm. However, precision and recall are problematic for two reasons. The
first is that there is an inherent trade-off between precision and recall; improving
one tends to cause the score for the other to decline. In the segmentation example,
positing more boundaries will tend to improve the recall but at the same time reduce
the precision. Some evaluators use a weighted combination of the two known as
the F-measure (Baeza-Yates and Ribeiro-Neto 1999), but this is difficult to interpret
(Beeferman, Berger, and Lafferty 1999). Another approach is to plot a precision-recall
curve, showing the scores for precision at different levels of recall.

20

Pevzner and Hearst An Evaluation Metric for Text Segmentation

Figure 1
Two hypothetical segmentations of the same reference (ground truth) document segmentation.
The boxes indicate sentences or other units of subdivision, and spaces between boxes indicate
potential boundary locations. Algorithm A-0 makes two near misses, while Algorithm A-1
misses both boundaries by a wide margin and introduces three false positives. Both
algorithms would receive scores of 0 for both precision and recall.

Another problem with precision and recall is that they are not sensitive to near
misses. Consider, for example, a reference segmentation and the results obtained by
two different text segmentation algorithms, as depicted in Figure 1. In both cases, the
algorithms fail to match any boundary precisely; both receive scores of 0 for precision
and recall. However, Algorithm A-0 is close to correct in almost all cases, whereas
Algorithm A-1 is entirely off, adding extraneous boundaries and missing important
boundaries entirely. In some circumstances, it would be useful to have an evaluation
metric that penalizes A-0 less harshly than A-1.

1.2 The Pk Evaluation Metric
Beeferman, Berger, and Lafferty (1997) introduce a new evaluation metric that attempts
to resolve the problems with precision and recall, including assigning partial credit to
near misses. They justify their metric as follows (page 43):

Segmentation . . . is about identifying boundaries between successive
units of information in a text corpus. Two such units are either related
or unrelated by the intent of the document author. A natural way
to reason about developing a segmentation algorithm is therefore to
optimize the likelihood that two such units are correctly labeled as
being related or being unrelated. Our error metric Pµ is simply the
probability that two sentences drawn randomly from the corpus are correctly
identified as belonging to the same document or not belonging to the same
document.

The derivation of Pµ is rather involved, and a much simpler version is adopted
in the later work (Beeferman, Berger, and Lafferty 1999) and by others. This version,
referred to as Pk, is calculated by setting k to half of the average true segment size
and then computing penalties via a moving window of length k. At each location, the
algorithm determines whether the two ends of the probe are in the same or differ-
ent segments in the reference segmentation and increases a counter if the algorithm’s
segmentation disagrees. The resulting count is scaled between 0 and 1 by dividing
by the number of measurements taken. An algorithm that assigns all boundaries cor-
rectly receives a score of 0. Beeferman, Berger, and Lafferty (1999) state as part of

21

Computational Linguistics Volume 28, Number 1

Figure 2
An illustration of how the Pk metric handles false negatives. The arrowed lines indicate the
two poles of the probe as it moves from left to right; the boxes indicate sentences or other
units of subdivision; and the width of the window (k) is four, meaning four potential
boundaries fall between the two ends of the probe. Solid lines indicate no penalty is assigned;
dashed lines indicate a penalty is assigned. Total penalty is always k for false negatives.

the justification for this metric that, to discourage “cheating” of the metric, degener-
ate algorithms—those that place boundaries at every position, or place no boundaries
at all—are assigned (approximately) the same score. Additionally, the authors define
a false negative (also referred to as a miss) as a case when a boundary is present in
the reference segmentation but missing in the algorithm’s hypothesized segmentation,
and a false positive as an assignment of a boundary that does not exist in the reference
segmentation.

2. Analysis of the Pk Error Metric

The Pk metric is fast becoming the standard among researchers working in text seg-
mentation (Allan et al. 1998; Dharanipragada et al. 1999; Eichmann et al. 1999; van
Mulbregt et al. 1999; Choi 2000). However, we have reservations about this metric.
We claim that the fundamental premise behind it is flawed; additionally, it has sev-
eral significant drawbacks, which we identify in this section. In the remainder of the
paper, we suggest modifications to resolve these problems, and we report the results
of simulations that validate the analysis and suggest that the modified metric is an
improvement over the original.

2.1 Problem 1: False Negatives Penalized More Than False Positives
Assume a text with segments of average size 2k, where k is the distance between
the two ends of the Pk probe. If the algorithm misses a boundary—produces a false
negative—it receives k penalties. To see why, suppose S1 and S2 are two segments
of length 2k, and the algorithm misses the transition from S1 to S2. When Pk sweeps
across S1, if both ends of the probe point to sentences that are inside S1, the two
sentences are in the same segment in both the reference and the hypothesis, and no
penalty is incurred. When the right end of the probe crosses the reference boundary
between S1 and S2, it will start recording nonmatches, since the algorithm assigns the
two sentences to the same segment, while the reference does not. This circumstance
happens k times, until both ends of the probe point to sentences that are inside S2.
(See Figure 2.) This analysis assumes average size segments; variation in segment size
is discussed below, but does not have a large effect on this result.

22

Pevzner and Hearst An Evaluation Metric for Text Segmentation

Figure 3
An illustration of how the Pk metric handles false positives. Notation is as in Figure 2. Total
penalty depends on the distance between the false positive and the relevant correct
boundaries; on average, it is k

2 , assuming a uniform distribution of boundaries across the
document. This example shows the consequences of two different locations of false positives:
on the left, the penalty is k

2 ; on the right, it is k.

Now, consider false positives. A false positive occurs when the algorithm places
a boundary at some position where there is no boundary in the reference segmenta-
tion. The number of times that this false positive is noted by Pk depends on where
exactly inside S2 the false positive occurs. (See Figure 3.) If it occurs in the middle
of the segment, the false positive is noted k times (as seen on the right-hand side of
Figure 3). If it occurs j < k sentences from the beginning or the end of the segment, the
segmentation is penalized j times. Assuming uniformly distributed false positives, on
average a false positive is noted k

2 times by the metric—half the rate for false negatives.
This average increases with segment size, as we will discuss later, and changes if one
assumes different distributions of false positives throughout the document. However,
this does not change the fact that in most cases, false positives are penalized some
amount less than false negatives.

This is not an entirely undesirable side effect. This metric was devised to take into
account how close an assigned boundary is to the true one, rather than just marking
it as correct or incorrect. This method of penalizing false positives achieves this goal:
the closer the algorithm’s boundary is to the actual boundary, the less it is penalized.
However, overpenalizing false negatives to do this is not desirable.

One way to fix the problem of penalizing false negatives more than false positives
is to double the false positive penalty (or halve the false negative penalty). However,
this would undermine the probabilistic nature of the metric. In addition, doubling the
penalty may not always be the correct solution, since segment size will vary from the
average, and false positives are not necessarily uniformly distributed throughout the
document.

2.2 Problem 2: Number of Boundaries Ignored
Another important problem with the Pk metric is that it allows some errors to go unpe-
nalized. In particular, it does not take into account the number of segment boundaries
between the two ends of the probe. (See Figure 4.) Let ri indicate the number of bound-
aries between the ends of the probe according to the reference segmentation, and let ai

indicate the number of boundaries proposed by some text segmentation algorithm for
the same stretch of text. If ri = 1 (the reference segmentation indicates one boundary)
and ai = 2 (the algorithm marks two boundaries within this range), then the algorithm
makes at least one false positive (spurious boundary) error. However, the evaluation
metric Pk does not assign a penalty in this situation. Similarly, if ri = 2 and ai = 1, the

23

Computational Linguistics Volume 28, Number 1

Figure 4
An illustration of the fact that the Pk metric fails to penalize false positives that fall within k
sentences of a true boundary. Notation is as in Figure 2.

algorithm has made at least one false negative (missing boundary) error, but it is not
penalized for this error under Pk.

2.3 Problem 3: Sensitivity to Variations in Segment Size
The size of the segment plays a role in the amount that a false positive within the
segment or a false negative at its boundary is penalized. Let us consider false negatives
(missing boundaries) first. As seen above, with average size segments, the penalty for
a false negative is k. For larger segments, it remains at k—it cannot be any larger
than that, since for a given position i there can be at most k intervals of length k
that include that position. As segment size gets smaller, however, the false negative
penalty changes. Suppose we have two segments, A and B, and the algorithm misses
the boundary between them. Then the algorithm will be penalized k times if Size(A)+
Size(B) > 2k, that is, as long as each segment is about half the average size or larger.
The penalty will then decrease linearly with Size(A)+Size(B) so long as k < Size(A)+
Size(B) < 2k. To be more exact, the penalty actually decreases linearly as the size of
either segment decreases below k. This is intuitively clear from the simple observation
that in order to incur a penalty at any range ri for a false negative, it has to be
the case that ri > ai. In order for this to be true, both the segment to the left and
the segment to the right of the missed boundary have to be of size greater than
k; otherwise, the penalty can only be equal to the size of the smaller segment. When
Size(A)+Size(B) < k, the penalty disappears completely, since then the probe’s interval
is larger than the combined size of both segments, making it not sensitive enough to
detect the false negative. It should be noted that fixing Problem 2 would at least
partially fix this bias as well.

Now, consider false positives (extraneous boundaries). For average segment size
and a uniform distribution of false positives, the average penalty is k

2 , as described
earlier. In general, in large enough segments, the penalty when the false positive is
a distance d < k from a boundary is d, and the penalty when the false positive is a
distance d > k from a boundary is k. Thus, for larger segments, the average penalty
assuming a uniform distribution becomes larger, because there are more places in the
segment that are at least k positions away from a boundary. The behavior at the edges
of the segments remains the same, though, so the average penalty never reaches k.
Now, consider what happens with smaller segments. Suppose we have a false positive
in Segment A. As Size(A) decreases from 2k to k, the average false positive penalty
decreases linearly with it, because when Size(A) decreases below 2k, the maximum
distance any sentence can be from a boundary becomes less than k. Therefore, the

24

Pevzner and Hearst An Evaluation Metric for Text Segmentation

Figure 5
A reference segmentation and five different hypothesized segmentations with different
properties.

maximum possible penalty for a false positive in A is less than k, and this number
continues to decrease as Size(A) decreases. When Size(A) < k, the false positive penalty
disappears, for the same reason that the false negative penalty disappears for smaller
segments. Again, fixing Problem 2 would go a long way toward eliminating this bias.

Thus, errors in larger-than-average segments increase the penalty slightly (for false
positives) or not at all (for false negatives) as compared to average size segments, while
errors in smaller-than-average segments decrease the penalty significantly for both
types of error. This means that as the variation of segment size increases, the metric
becomes more lenient, since it severely underpenalizes errors in smaller segments,
while not making up for this by overpenalizing errors in larger segments.

2.4 Problem 4: Near-Miss Error Penalized Too Much
Reconsider the segmentation made by Algorithm A-0 in Figure 1. In both cases of
boundary assignment, Algorithm A-0 makes both a false positive and a false negative
error, but places the boundary very close to the actual one. We will call this kind of
error a near-miss error, distinct from a false positive or false negative error. Distinguish-
ing this type of error from “pure” false positives better reflects the goal of creating a
metric different from precision and recall, since it can be penalized less than a false
negative or a false positive.

Now, consider the algorithm segmentations shown in Figure 5. Each of the five
algorithms makes a mistake either on the boundary between the first and second seg-
ment of the reference segmentation, or within the second segment. How should these
various segmentations be penalized? In the analysis below, we assume an application
for which it is important not to introduce spurious boundaries. These comparisons
will most likely vary depending on the goals of the target application.

Algorithm A-4 is arguably the worst of the examples, since it has a false positive
and a false negative simultaneously. Algorithms A-0 and A-2 follow: they contain a
pure false negative and false positive, respectively. Comparing Algorithms A-1 and
A-3, we see that Algorithm A-3 is arguably better, because it recognizes that only one
boundary is present rather than two. Algorithm A-1 does not recognize this, and inserts
an extra segment. Even though Algorithm A-1 actually places a correct boundary, it
also places an erroneous boundary, which, although close to the actual one, is still
a false positive—in fact, a pure false positive. For this reason, Algorithm A-3 can be
considered better than Algorithm A-1.

25

Computational Linguistics Volume 28, Number 1

Now, consider how Pk treats the five types of mistakes above. Again, assume the
first and second segments in the reference segmentation are average size segments.
Algorithm A-4 is penalized the most, as it should be. The penalty is as much as 2k if the
false positive falls in the middle of Segment C, and it is > k as long as the false positive
is a distance > k

2 from the actual boundary between the first and second reference
segments. The penalty is large because the metric catches both the false negative
and the false positive errors. The segmentations assigned by Algorithms A-0 and A-2
are treated as discussed earlier in conjunction with Problem 1: the one assigned by
Algorithm A-0 has a false negative and thus incurs a penalty of k, and the one assigned
by Algorithm A-2 has a false positive, and thus incurs a penalty of≤ k. Finally, consider
the segmentations assigned by Algorithms A-1 and A-3, and suppose that both contain
an incorrect boundary some small distance e from the actual one. Then the penalty for
Algorithm A-1 is e, while the penalty for Algorithm A-3 is 2e. This should not be the
case; Algorithm A-1 should be penalized more than Algorithm A-3, since a near-miss
error is better than a pure false positive, even if it is close to the boundary.

2.5 Problem 5: What Do the Numbers Mean?
Pk is nonintuitive because it measures the probability that two sentences k units apart
are incorrectly labeled as being in different segments, rather than directly reflecting
the competence of the algorithm. Although perfect algorithms score 0, and various de-
generate ones score 0.5, numerical interpretation and comparison are difficult because
it is not clear how the scores are scaled.

3. A Solution

It turns out that a simple change to the error metric algorithm remedies most of the
problems described above, while retaining the desirable characteristic of penalizing
near misses less than pure false positives and pure false negatives. The amended
metric, which we call WindowDiff, works as follows: for each position of the probe,
simply compare the number of reference segmentation boundaries that fall in this
interval (ri) with the number of boundaries that are assigned by the algorithm (ai).
The algorithm is penalized if ri 6= ai (which is computed as |ri − ai| > 0).

More formally,

WindowDiff (ref , hyp) =
1

N − k

N−k∑
i=1

(|b(ref i, ref i+k)− b(hyp i, hyp i+k)| > 0),

where b(i, j) represents the number of boundaries between positions i and j in the text
and N represents the number of sentences in the text.

This approach clearly eliminates the asymmetry between the false positive and
false negative penalties seen in the Pk metric. It also catches false positives and false
negatives within segments of length less than k.

To understand the behavior of WindowDiff with respect to the other problems,
consider again the examples in Figure 5. This metric penalizes Algorithm A-4 (which
contains both a false positive and a false negative) the most, assigning it a penalty
of about 2k. Algorithms A-0, A-1, and A-2 receive the same penalty (about k), and
Algorithm A-3 receives the smallest penalty (2e, where e is the offset from the actual
boundary, presumed to be much smaller than k). Thus, although it makes the mistake
of penalizing Algorithm A-1 as much as Algorithms A-0 and A-2, it correctly recog-
nizes that the error made by Algorithm A-3 is a near miss and assigns it a smaller
penalty than Algorithm A-1 or any of the others. We argue that this kind of error is
less detrimental than the errors made by Pk. WindowDiff successfully distinguishes

26

Pevzner and Hearst An Evaluation Metric for Text Segmentation

the near-miss error as a separate kind of error and penalizes it a different amount,
something that Pk is unable to do.

We explored a weighted version of WindowDiff, in which the penalty is weighted
by the difference |ri− ai|. However, the results of the simulations were nearly identical
with those of the nonweighted version of this metric, so we do not consider the
weighted version further.

4. Validation via Simulations

This section describes a set of simulations that verify the theoretical analysis of the
Pk metric presented above. It also reports the results of simulating two alternatives,
including the proposed solution just described.

For the simulation runs described below, three metrics were implemented:

• the Pk metric;

• the Pk metric modified to double the false positive penalty (henceforth
P′k); and

• our proposed alternative, WindowDiff (henceforth WD), which counts
the number of segment boundaries between the two ends of the probe
and assigns a penalty if this number is different for the experimental and
reference segmentations.

In these studies, a single trial consists of generating a reference segmentation of
1,000 segments with some distribution, generating different experimental segmenta-
tions of a specific type 100 times, computing the metric based on the comparison of
the reference and experimental segmentations, and averaging the 100 results. For ex-
ample, we might generate a reference segmentation R, then generate 100 experimental
segmentations that have false negatives with probability 0.5, and then compute the
average of their Pk penalties. We carried out 10 such trials for each experiment and
averaged the average penalties over these trials.

4.1 Variation in the Segment Sizes
The first set of tests was designed to test the metric’s performance on texts with
different segment size distributions (Problem 3). We generated four sets of reference
segmentations with segment size uniformly distributed between two numbers. Note
that the units of segmentation are deliberately left unspecified. So a segment of size 25
can refer to 25 words, clauses, or sentences—whichever is applicable to the task under
consideration. Also note that the same tests were run using larger segment sizes than
those reported here, with the results remaining nearly identical.

For these tests, the mean segment size was held constant at 25 for each set of
reference segments, in order to produce distributions of segment size with the same
means but different variances. The four ranges of segment sizes were (20, 30), (15, 35),
(10, 40), and (5, 45). The results of these tests are shown in Table 1. The tests used the
following types of experimental segmentations:

• FN: segmentation with false negative probability 0.5 at each boundary;

• FP: segmentation with false positive probability 0.5 in each segment,
with the probability uniformly distributed within each segment; and

• FNP: segmentation with false positive probability 0.5 (uniformly
distributed), and false negative probability 0.5.

27

Computational Linguistics Volume 28, Number 1

Table 1
Average error score for Pk, P′k, and WD over 10 trials of 100
measurements each, shown by segment size distribution range.
(a) False negatives were placed with probability 0.5 at each
boundary; (b) false positives were placed with probability 0.5,
uniformly distributed within each segment; and (c) both false
negatives and false positives were placed with probability 0.5.

(a) False negatives, p = 0.5

(20, 30) (15, 35) (10, 40) (5, 45)

Pk 0.245 0.245 0.240 0.223
P′k 0.245 0.245 0.240 0.223
WD 0.245 0.245 0.242 0.237

(b) False positives, p = 0.5

(20, 30) (15, 35) (10, 40) (5, 45)

Pk 0.128 0.122 0.112 0.107
P′k 0.256 0.245 0.225 0.213
WD 0.240 0.241 0.238 0.236

(c) False positives and false negatives, p = 0.5

(20, 30) (15, 35) (10, 40) (5, 45)

Pk 0.317 0.309 0.290 0.268
P′k 0.446 0.432 0.403 0.375
WD 0.376 0.370 0.357 0.343

The results indicate that variation in segment size does make a difference, but not
a very big one. (As we will show, the differences are similar when we use a smaller
probability of false negative/positive occurrence.) The Pk value for the (20, 30) range
with FN segmentation is on average 0.245, and it decreases to 0.223 for the (5, 45)
range. Similarly, the FP segmentation decreases from 0.128 for the (20, 30) range to
0.107 for the (5, 45) range, and the FNP segmentation decreases from 0.317 for the (20,
30) range to 0.268 for the (5, 45) range. Thus, variation in segment size has an effect
on Pk, as predicted.

Note that for false negatives, the Pk value for the (20, 30) range is not much
different than for the (15, 35) range. This is expected since there are no segments of
size less than k (12.5) in these conditions. For the (10, 40) range, the Pk value is slightly
smaller; and for the (5, 45) range, it is smaller still. These results are to be expected,
since more segments in these ranges will be of length less than k.

For the FP segmentations, on the other hand, the decrease in Pk value is more
pronounced, falling from 0.128 to 0.107 as the segment size range changes from (20,
30) to (5, 45). This is also consistent with our earlier analysis of the behavior of the
metric on false positives as segment size decreases. Notice that the difference in Pk
values between (15, 35) and (10, 40) is slightly larger than the other two differences.
This happens because for segment sizes < k, the false positive penalty disappears
completely. The results for the FNP segmentation are consistent with what one would
expect of a mix of the FN and FP segmentations.

Several other observations can be made from Table 1. We can begin to make some
judgments about how the metric performs on algorithms prone to different kinds of
errors. First, Pk penalizes false negatives about twice as much as false positives, as

28

Pevzner and Hearst An Evaluation Metric for Text Segmentation

predicted by our analysis. The experimental segmentations in Table 1a contain on
average 500 false negatives, while the ones in Table 1b contain on average 500 false
positives, but the penalty for the Table 1b segmentations is consistently about half
that for those in Table 1a. Thus, algorithms prone to false positives are penalized less
harshly than those prone to false negatives.

The table also shows the performance of the two other metrics. P′k simply doubles
the false positive penalty, while WD counts and compares the number of boundaries
between the two ends of the probe, as described earlier. Both P′k and WD appear to
solve the problem of underpenalizing false positives, but WD has the added benefit of
being more stable across variations in segment size distribution. Thus, WD essentially
solves Problems 1, 2, and 3.

Table 1c shows that for the FNP segmentation (in which both false positives and
false negatives occur), there is a disparity between the performances of P′k and WD.
It appears that P′k is harsher in this situation. From the above discussion, we know
that WD is more lenient in situations where a false negative and a false positive occur
near each other (where “near” means within a distance of k

2) than P′k is. However,
P′k is more lenient for pure false positives that occur close to boundaries. Thus, it is
not immediately clear why P′k is harsher in this situation, but a more detailed look
provides the answer.

Let us begin the analysis by trying to explain why Pk scores for the FNP seg-
mentation make sense. The FNP segmentation places both false negatives and false
positives with probability 0.5. Since we are working with reference segmentations of
1,000 segments, this means 500 missed boundaries and 500 incorrect boundaries. Since
the probabilities are uniformly distributed across all segments and all boundaries, on
average one would expect the following distribution of errors:

• 250 false positives with no false negative within k sentences of them
(Type A);

• 250 false negatives with no false positive within k sentences of them
(Type B); and

• 250 “joint” errors, where a false positive and a false negative occur
within k sentences of each other (Type C).

A Type A error is a standard false positive, so the average penalty is k
2 . A Type B

error is a standard false negative, so the average penalty is k. It remains to fig-
ure out what the average penalty is for a Type C error. Modeling the behavior of
the metric, a Type C error occurrence in which a false positive and a false nega-
tive are some distance e < k from each other incurs a penalty of 2e, where e is as-
signed for the false positive and another e is assigned for the false negative. This
may range from 0 to 2k, and since error distribution is uniform, the penalty is k
on average—the same as for a regular false negative. To translate this into actual
values, we assume the metric is linear with respect to the number of errors (a rea-
sonable assumption, supported by our experiments). Thus, if Pk outputs a penalty
of p for 500 false negatives, it would have a penalty of p

2 for 250 false negatives.
Let a be the penalty for 500 Type A errors, b the penalty for 500 Type B errors,
and c the penalty for 500 Type C errors; then the penalty for the FNP segmenta-
tion is p = a

2 + b
2 + c

2 . Assuming the metric is linear, we know that c = b = 2a
(because Pk penalized false negatives twice as much as false positives on average).
We can thus substitute either b or 2a for c. We choose to substitute 2a, because Pk is
strongly affected by segment size variation for Type A and Type C errors, but not for

29

Computational Linguistics Volume 28, Number 1

Type B errors. Thus, replacing c with 2a is more accurate. Performing the substitu-
tion, we have p = 3 · a

2 + b
2 . We have a and b from the FP and FN data, respectively,

so we can compute p. The results, arranged by segment size variation, are as fol-
lows:

(20, 30) (15, 35) (10, 40) (5, 45)

Estimate 0.315 0.306 0.288 0.272
Actual 0.317 0.309 0.290 0.268

As can easily be seen, the estimate produced using this method is very similar to the
actual Pk value.

The same sort of analysis applies for P′k and WD. In P′k, Type A errors are penalized
k on average, since the false positive penalty is doubled. Type B errors have an average
penalty of k, as for Pk. Type C errors have an average penalty of 3e, where 2e is
assigned for the false positive and e is assigned for the false negative. This means that
the average penalty for a Type C error is 3 · k

2 . Since we know that c = 1.5a by the
linear metric assumption, we have p = a

2 + b
2 + 1.5 · a

2 = 5 · a
4 + b

2 (the choice of 1.5a
over 1.5b was made for the same reason as the choice of 2a over b in the calculations
for Pk). The results, arranged by segment size variation, are as follows:

(20, 30) (15, 35) (10, 40) (5, 45)

Estimate 0.443 0.429 0.401 0.378
Actual 0.446 0.432 0.403 0.375

Finally, WD incurs an average penalty of k for both Type A and Type B errors. For
Type C errors, the penalty is 2e, so it is also k on average. Thus, we get p = a

2 + b
2 + a

2 =

a + b
2 . The results, arranged by segment size variation, are as follows:

(20, 30) (15, 35) (10, 40) (5, 45)

Estimate 0.363 0.364 0.359 0.355
Actual 0.376 0.370 0.357 0.343

These estimates do not correspond to the actual results quite as closely as the estimates
for Pk and P′k did, but they are still very close. One reason why these estimates are
a little less accurate is that for WD, Type C errors are more affected by variation in
segment size than either Type A or Type B errors. This is clear from the fact that the
decrease is greater in the actual data than in the estimate.

Table 2 shows data similar to those of Table 1, but using two different probability
values for error occurrence: 0.05 and 0.25. These results have the same tendencies as
those shown above for p = 0.5.

4.2 Variation in the Error Distributions
The second set of tests was designed to assess the performance of the metrics on algo-
rithms prone to different kinds of errors. This would determine whether the metrics
are consistent in applying penalties, or whether they favor certain kinds of errors over
others. For these trials, we generated the reference segmentation using a uniform dis-
tribution of segment sizes in the (15, 35) range. We picked this range because it has
reasonably high segment size variation, but segment size does not dip below k. For the

30

Pevzner and Hearst An Evaluation Metric for Text Segmentation

Table 2
Average error score for Pk, P′k, and WD over 10 trials
of 100 measurements each, shown by segment size
distribution range. (a) False negatives were placed
with probability 0.05 at each boundary; (b) false
positives were placed with probability 0.05,
uniformly distributed within each segment; and (c)
both false negatives and false positives were placed
with probability 0.05. (d) False negatives were placed
with probability 0.25 at each boundary; (e) false
positives were placed with probability 0.25,
uniformly distributed within each segment; and (f)
both false negatives and false positives were placed
with probability 0.25.

(a) False negatives, p = 0.05

(20, 30) (15, 35) (10, 40) (5, 45)

Pk 0.025 0.025 0.024 0.022
P′k 0.025 0.025 0.024 0.022
WD 0.025 0.025 0.024 0.024

(b) False positives, p = 0.05

(20, 30) (15, 35) (10, 40) (5, 45)

Pk 0.013 0.012 0.011 0.011
P′k 0.026 0.025 0.023 0.021
WD 0.024 0.024 0.024 0.024

(c) False positives and false negatives, p = 0.05

(20, 30) (15, 35) (10, 40) (5, 45)

Pk 0.037 0.036 0.035 0.032
P′k 0.050 0.048 0.046 0.042
WD 0.048 0.048 0.048 0.047

(d) False negatives, p = 0.25

(20, 30) (15, 35) (10, 40) (5, 45)

Pk 0.122 0.122 0.121 0.110
P′k 0.122 0.122 0.121 0.110
WD 0.122 0.122 0.122 0.121

(e) False positives, p = 0.25

(20, 30) (15, 35) (10, 40) (5, 45)

Pk 0.064 0.061 0.056 0.053
P′k 0.129 0.123 0.112 0.106
WD 0.121 0.121 0.121 0.120

(f) False positives and false negatives, p = 0.25

(20, 30) (15, 35) (10, 40) (5, 45)

Pk 0.172 0.168 0.161 0.147
P′k 0.236 0.229 0.217 0.200
WD 0.215 0.213 0.211 0.205

31

Computational Linguistics Volume 28, Number 1

Table 3
Average error score for Pk, P′k, and WD over 10 trials of
100 measurements each over the segment distribution
range (15, 35) and with error probabilities of 0.5. The
average penalties computed by the three metrics are
shown for seven different error distributions.

FN FP1 FP2 FP3 FNP1 FNP2 FNP3

Pk .245 .122 .091 .112 .308 .267 .304
P′k .245 .244 .182 .224 .431 .354 .416
WD .245 .240 .236 .211 .370 .341 .363

reasons described above, this means the results will not be skewed by the sensitivity
of Pk and P′k to segment size variations.

The tests analyzed below were performed using the high error occurrence proba-
bilities of 0.5, but similar results were obtained using probabilities of 0.25 and 0.05 as
well. The following error distributions were used:1

• FN: false negatives, probability p = 0.5;

• FP1: false positives uniformly distributed in each segment, probability
p = 0.5;

• FP2: false positives normally distributed around each boundary with
standard deviation equal to 1

4 the segment size, probability p = 0.5;

• FP3: false positives uniformly distributed throughout the document,
occurring at each point with probability p = number of segments

length·2 (this
corresponds to a 0.5 probability value for each individual segment);

• FNP1: FN and FP1 combined;

• FNP2: FN and FP2 combined;

• FNP3: FN and FP3 combined.

The results are shown in Table 3. Pk penalizes FP2 less than FP1 and FP3, and
FNP2 less than FNP1 and FNP3. This result is as expected. FP2 and FNP2 have false
positives normally distributed around each boundary, which means that more of the
false positives are close to the boundaries and thus are penalized less. If we made the
standard deviation smaller, we would expect this difference to be even more apparent.

P′k penalized FP2 and FNP2 the least in their respective categories, and FP1 and
FNP1 the most, with FP3 and FNP3 falling in between. These results are as expected,
for the same reasons as for Pk. The difference in the penalty for FP1 and FP3 (and
FNP1 vs. FNP3)—for both Pk and P′k, but especially apparent for P′k—is interesting. In
FP/FNP1, false positive probability is uniformly distributed throughout each segment,
whereas in FP/FNP3, false positive probability is uniformly distributed throughout the
entire document. Thus, the FP/FNP3 segmentations are more likely to have boundaries
that are very close to each other, since they are not segment dependent, while FP/FNP1

1 Normal distributions were calculated using the gaussrand() function from Box and Muller (1958),
found online at http://www.eskimo.com/∼scs/C-faq/q13.20.html.

32

Pevzner and Hearst An Evaluation Metric for Text Segmentation

are limited to at most one false positive per segment. This results in P′k assigning
smaller penalties for FP/FNP3, since groups of false positives close together (to be
more exact, within k sentences of each other) would be underpenalized. This difference
is also present in the Pk results, but is about half for obvious reasons.

WD penalized FP1 the most and FP3 the least among the FP segmentations. Among
the FNP segmentations, FNP1 was penalized the most and FNP2 the least. To see why,
we examine the results for the FP segmentations. WD penalizes pure false positives
the same amount regardless of how close they are to a boundary; the only way false
positives are underpenalized is if they occur in bunches. As mentioned earlier, this is
most likely to happen in FP3. It is least likely to happen in FP1, since in FP1 there is a
maximum of one false positive per segment, and this false positive is not necessarily
close to a boundary. In FP2, false positives are also limited to one per segment, but
they are also more likely to be close to boundaries. This increases the likelihood that
2 false positives will be within k sentences of each other and thus makes WD give a
slightly lower score to the FP2 segmentation than to the FP1 segmentation.

Now let us look at the FNP segmentations. FNP3 is penalized less than FNP1
for the same reason described above, and FNP2 is penalized even less than FNP3.
The closer a Type C error is to the boundary, the lower the penalty. FNP2 has more
errors distributed near the boundaries than the others: thus, the FNP2 segmentation
is penalized less than either FNP1 or FNP3.

The same tests were run for different error occurrence probabilities (p = 0.05 and
p = 0.25), achieving results similar to those for p = 0.5 just described. There is a slight
difference for the case of p = 0.05 because the error probability is too small for some of
the trends to manifest themselves. In particular, the differences in the way WD treats
the different segmentations disappear when the error probability is this small.

4.3 Variation in the Error Types
We also performed a small set of tests to verify the theoretical finding that Pk and P′k
overpenalize near-miss errors as compared with pure false positives, and that WD does
the opposite, overpenalizing the pure false positives. Space limitations prevent detailed
reporting of these results, but the simulations did indeed verify these expectations.

5. Conclusions

We have found that the Pk error metric for text segmentation algorithms is affected
by the variation of segment size distribution, becoming slightly more lenient as the
variance increases. It penalizes false positives significantly less than false negatives,
particularly if the false positives are uniformly distributed throughout the document. It
penalizes near-miss errors more than pure false positives of equal magnitude. Finally,
it fails to take into account situations in which multiple boundaries occur between
the two sides of the probe, and it often misses or underpenalizes mistakes in small
segments.

We proposed two modifications to tackle these problems. The first, which we call
P′k, simply doubles the false positive penalty. This solves the problem of overpenalizing
false negatives, but it is not effective at dealing with the other problems. The second,
which we call WindowDiff (WD), counts the number of boundaries between the two
ends of a fixed-length probe, and compares this number with the number of boundaries
found in the same window of text for the reference segmentation. This modification
addresses all of the problems listed above. WD is only slightly affected by variation of
segment size distribution, gives equal weight to the false positive penalty and the false
negative penalty, is able to catch mistakes in small segments just as well as mistakes in

33

Computational Linguistics Volume 28, Number 1

large segments, and penalizes near-miss errors less than pure false positives of equal
magnitude. However, it has some problems of its own. WD penalizes all pure false
positives the same amount regardless of how close they are to an actual boundary.
It is not clear whether this is a good thing or not, but it seems to be preferable to
overpenalizing near misses.

The discussion above addresses Problems 1 through 4 but does not address Prob-
lem 5: how does one interpret the values produced by the metric? From the tests we
have run, it appears that the WD metric grows in a roughly linear fashion with the
difference between the reference and the experimental segmentations. In addition, we
feel that WD is a more meaningful metric than Pk. Comparing two stretches of text to
see how many discrepancies occur between the reference and the algorithm’s result
seems more intuitive than determining how often two text units are incorrectly labeled
as being in different segments.

Acknowledgments
This work was completed while the second
author was a visiting professor at Harvard
University. Both authors thank Barbara
Grosz and Stuart Shieber, without whom
this work would not have happened, and
Freddy Choi for some helpful explanations.
They would also like to thank the
anonymous reviewers for their valuable
comments.

Partial support for the research reported
in this paper was provided by National
Science Foundation Grants IRI-9618848 and
CDA-94-01024.

References
Allan, James, Jaime Carbonell, George

Doddington, Jonathan Yamron, and
Yiming Yang. 1998. Topic detection and
tracking pilot study: Final report. In
Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop,
pages 194–218, Lansdowne, VA.

Baeza-Yates, Ricardo and Berthier
Ribeiro-Neto. 1999. Modern Information
Retrieval. Addison-Wesley Longman.

Barzilay, Regina and Michael Elhadad. 1997.
Using lexical chains for text
summarization. In Proceedings of the ACL
Intelligent Scalable Text Summarization
Workshop (ISTS’97), Madrid, Spain.

Beeferman, Douglas, Adam Berger, and
John Lafferty. 1997. Text segmentation
using exponential models. In Proceedings
of the 2nd Conference on Empirical Methods in
Natural Language Processing, pages 35–46,
Providence, RI.

Beeferman, Douglas, Adam Berger, and
John Lafferty. 1999. Statistical models of
text segmentation. Machine Learning,
34(1–3):177–210.

Boguraev, Branimir and Mary Neff. 2000.
Discourse segmentation in aid of

document summarization. In Proceedings
of the 33rd Hawaii International Conference on
System Sciences, Maui, HI.

Box, G. E. P. and M. E. Muller. 1958. A note
on the generation of random normal
deviates. Annals of Mathematical Statistics,
29:610–611.

Callan, James P. 1994. Passage-level
evidence in document retrieval. In
Proceedings of the 17th Annual International
ACM/SIGIR Conference, pages 302–310,
Dublin, Ireland.

Choi, Freddy. 2000. Advances in domain
independent linear text segmentation. In
Proceedings of the 1st Meeting of the North
American Chapter of the Association for
Computational Linguistics, pages 26–33,
Seattle, WA.

Dharanipragada, S., M. Franz, Jeffrey S.
McCarley, S. Roukos, and Todd Ward.
1999. Story segmentation and topic
detection in the broadcast news domain.
In Proceedings of the DARPA Broadcast News
Workshop, Herndon, VA.

Eichmann, David, Miguel Ruiz, Padmini
Srinivasan, Nick Street, Chris Culy, and
Filippo Menczer. 1999. A cluster-based
approach to tracking, detection and
segmentation of broadcast news. In
Proceedings of the DARPA Broadcast News
Workshop, Herndon, VA.

Hasnah, Ahmad. 1996. Full Text Processing
and Retrieval: Weight Ranking, Text
Structuring, and Passage Retrieval for Arabic
Documents. Ph.D. thesis, Illinois Institute
of Technology.

Hauptmann, Alexander G. and Michael J.
Witbrock. 1998. Story segmentation and
detection of commercials in broadcast
news video. In Proceedings of the Advances
in Digital Libraries Conference,
pages 168–179, Santa Barbara, CA.

Hearst, Marti A. 1993. TextTiling: A
quantitative approach to discourse

34

Pevzner and Hearst An Evaluation Metric for Text Segmentation

segmentation. Technical Report Sequoia
93/24, Computer Science Division,
University of California, Berkeley.

Hearst, Marti A. 1994. Multi-paragraph
segmentation of expository text. In
Proceedings of the 32nd Annual Meeting of the
Association for Computational Linguistics,
pages 9–16, Las Cruces, NM.

Hearst, Marti A. 1997. TextTiling:
Segmenting text into multi-paragraph
subtopic passages. Computational
Linguistics, 23(1):33–64.

Hearst, Marti A. and Christian Plaunt. 1993.
Subtopic structuring for full-length
document access. In Proceedings of the 16th
Annual International ACM/SIGIR
Conference, pages 59–68, Pittsburgh, PA.

Heinonen, Oskari. 1998. Optimal
multi-paragraph text segmentation by
dynamic programming. In Proceedings of
the 17th International Conference on
Computational Linguistics and the 36th
Annual Meeting of the Association for
Computational Linguistics (ACL-COLING
’98), pages 1484–1486, Montreal.

Hirschberg, Julia and Christine H. Nakatani.
1996. A prosodic analysis of discourse
segments in direction-giving monologues.
In Proceedings of the 34th Annual Meeting of
the Association for Computational Linguistics,
pages 286–293, Santa Cruz, CA.

Kan, Min-Yen, Judith L. Klavans, and
Kathleen R. McKeown. 1998. Linear
segmentation and segment relevance. In
Proceedings of the Sixth Workshop on Very
Large Corpora (WVLC 6), pages 197–205,
Montreal.

Karlgren, Jussi. 1996. Stylistic variation in
an information retrieval experiment. In
Proceedings of the 2nd International
Conference on New Methods in Language
Processing (NeMLaP 2), Ankara, Turkey.

Kaszkiel, Marcin and Justin Zobel. 1997.
Passage retrieval revisited. In Proceedings
of the 20th International Conference on
Research and Development in Information
Access (ACM SIGIR), pages 178–185,
Philadelphia, PA.

Litman, Diane J. and Rebecca J. Passonneau.
1995. Combining multiple knowledge
sources for discourse segmentation. In
Proceedings of the 33rd Annual Meeting of the
Association for Computational Linguistics,
pages 108–115, Cambridge, MA.

Mani, Inderjeet, David House, Mark
Maybury, and Morgan Green. 1997.
Towards content-based browsing of
broadcast news video. In Mark Maybury,
editor, Intelligent Multimedia Information
Retrieval. AAAI/MIT Press,
pages 241–258.

Manning, Christopher D. 1998. Rethinking
text segmentation models: An information
extraction case study. Technical Report
SULTRY-98-07-01, University of Sydney.

Marcu, Daniel. 2000. The Theory and Practice
of Discourse Parsing and Summarization.
MIT Press.

Merlino, Andy, Daryl Morey, and Mark
Maybury. 1997. Broadcast news
navigation using story segmentation. In
Proceedings of the ACM International
Multimedia Conference, pages 157–164,
Seattle, WA.

Mittal, Vibhu, Mark Kantrowitz, Jade
Goldstein, and Jaime Carbonell. 1999.
Selecting text spans for document
summaries: Heuristics and metrics. In
Proceedings of the 16th Annual Conference on
Artificial Intelligence (AAAI ’99),
pages 467–473, Orlando, FL.

Morris, Jane and Graeme Hirst. 1991.
Lexical cohesion computed by thesaural
relations as an indicator of the structure of
text. Computational Linguistics, 17(1):21–48.

Nomoto, Tadashi and Yoshihiko Nitta. 1994.
A grammatico-statistical approach to
discourse partitioning. In Proceedings of the
15th International Conference on
Computational Linguistics (COLING’94),
pages 1145–1150, Kyoto, Japan.

Passonneau, Rebecca J. and Diane J. Litman.
1993. Intention-based segmentation:
Human reliability and correlation with
linguistic cues. In Proceedings of the 31st
Annual Meeting of the Association for
Computational Linguistics, pages 148–155,
Columbus, OH.

Ponte, Jay and Bruce Croft. 1997. Text
segmentation by topic. In Proceedings of the
1st European Conference on Research and
Advanced Technology for Digital Libraries,
pages 113–125.

Reynar, Jeffrey C. 1994. An automatic
method of finding topic boundaries. In
Proceedings of the Student Session of the 32nd
Annual Meeting of the Association for
Computational Linguistics, pages 331–333,
Las Cruces, NM.

Richmond, Korin, Andrew Smith, and Einat
Amitay. 1997. Detecting subject
boundaries within text: A language
independent statistical approach. In
Proceedings of the Second Conference on
Empirical Methods in Natural Language
Processing, pages 47–54. Association for
Computational Linguistics.

Salton, Gerard, James Allan, and Chris
Buckley. 1993. Approaches to passage
retrieval in full text information systems.
In Proceedings of the 16th Annual
International ACM/SIGIR Conference, pages

35

Computational Linguistics Volume 28, Number 1

49–58, Pittsburgh, PA.
Salton, Gerard, James Allan, Chris Buckley,

and Amit Singhal. 1994. Automatic
analysis, theme generation, and
summarization of machine-readable texts.
Science, 264(5164):1421–1426.

van Mulbregt, P., Ira Carp, Larry Gillick,
Stephen Lowe, and Jonathan Yamron.

1999. Segmentation of automatically
transcribed broadcast news text. In
Proceedings of the DARPA Broadcast News
Workshop, Herndon, VA.

Yaari, Yaakov. 1997. Segmentation of
expository text by hierarchical
agglomerative clustering. In Recent
Advances in NLP (RANLP’97), Bulgaria.

36

