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Automatic acquisition of lexical knowledge is critical to a wide range of natural language pro- 
cessing tasks. Especially important is knowledge about verbs, which are the primary source of 
relational information in a sentence--the predicate-argument structure that relates an action 
or state to its participants (i.e., who did what to whom). In this work, we report on super- 
vised learning experiments to automatically classify three major types of English verbs, based 
on their argument structure--specifically, the thematic roles they assign to participants. We use 
linguistically-motivated statistical indicators extracted from large annotated corpora to train the 
classifier, achieving 69.8% accuracy for a task whose baseline is 34%, and whose expert-based 
upper bound we calculate at 86.5%. A detailed analysis of the performance of the algorithm and 
of its errors con~'rms that the proposed features capture properties related to the argument struc- 
ture of the verbs. Our results validate our hypotheses that knowledge about thematic relations 
is crucial for verb classification, and that it can be gleaned from a corpus by automatic means. 
We thus demonstrate an effective combination of deeper linguistic knowledge with the robustness 
and scalability of statistical techniques. 

1. Introduction 

Automatic acquisition of lexical knowledge is critical to a wide range of natural lan- 
guage processing (NLP) tasks (Boguraev and Pustejovsky 1996). Especially important 
is knowledge about verbs, which are the primary source of relational information in 
a sentence--the predicate-argument structure that relates an action or state to its par- 
ticipants (i.e., who did what to whom). In facing the task of automatic acquisition of 
knowledge about verbs, two basic questions must be addressed: 

What information about verbs and their relational properties needs to be 
learned? 

What information can in practice be learned through automatic means? 

In answering these questions, some approaches to lexical acquisition have focused on 
learning syntactic information about verbs, by automatically extracting subcategoriza- 
tion frames from a corpus or machine-readable dictionary (Brent 1993; Briscoe and 
Carroll 1997; Dorr 1997; Lapata 1999; Manning 1993; McCarthy and Korhonen 1998). 
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Table 1 
Examples of verbs from the three optionally intransitive classes. 

Unergative The horse raced past the barn. 
The jockey raced the horse past the barn. 

Unaccusative The butter melted in the pan. 
The cook melted the butter in the pan. 

Object-Drop The boy played. 
The boy played soccer. 

Other work has attempted to learn deeper semantic properties such as selectional re- 
strictions (Resnik 1996; Riloff and Schmelzenbach 1998), verbal aspect (Klavans and 
Chodorow 1992; Siegel 1999), or lexical-semantic verb classes such as those proposed 
by Levin (1993) (Aone and McKee 1996; McCarthy 2000; Lapata and Brew 1999; Schulte 
im Walde 2000). In this paper, we focus on argument structure--the thematic roles as- 
signed by a verb to its arguments--as the way in which the relational semantics of 
the verb is represented at the syntactic level. 

Specifically, our proposal is to automatically classify verbs based on argument 
structure properties, using statistical corpus-based methods. We address the prob- 
lem of classification because it provides a means for lexical organization which can 
effectively capture generalizations over verbs (Palmer 2000). Within the context of 
classification, the use of argument structure provides a finer discrimination among 
verbs than that induced by subcategorization frames (as we see below in our example 
classes, which allow the same subcategorizations but differ in thematic assigmnent), 
but a coarser classification than that proposed by Levin (in which classes such as 
ours are further subdivided according to more detailed semantic properties). This 
level of classification granularity appears to be appropriate for numerous language 
engineering tasks. Because knowledge of argument structure captures fundamental 
participant/event relations, it is crucial in parsing and generation (e.g., Srinivas and 
Joshi [1999]; Stede [1998]), in machine translation (Dorr 1997), and in information re- 
trieval (Klavans and Kan 1998) and extraction (Riloff and Schmelzenbach 1998). Our 
use of statistical corpus-based methods to achieve this level of classification is moti- 
vated by our hypothesis that class-based differences in argument structure are reflected 
in statistics over the usages of the component verbs, and that those statistics can be 
automatically extracted from a large annotated corpus. 

The particular classification problem within which we investigate this hypothesis 
is the task of learning the three major classes of optionally intransitive verbs in English: 
unergative, unaccusative, and object-drop verbs. (For the unergative/unaccusative dis- 
tinction, see Perlmutter [1978]; Burzio [1986]; Levin and Rappaport Hovav [1995]). 
Table 1 shows an example of a verb from each class in its transitive and intransitive 
usages. These three classes are motivated by theoretical linguistic properties (see dis- 
cussion and references below, and in Stevenson and Merlo [1997b]; Merlo and Steven- 
son [2000b]). Furthermore, it appears that the classes capture typological distinctions 
that are useful for machine translation (for example, causative unergatives are un- 
grammatical in many languages), as well as processing distinctions that are useful for 
generating naturally occurring language (for example, reduced relatives with unerga- 
tive verbs are awkward, but they are acceptable, and in fact often preferred to full 
relatives for unaccusative and object-drop verbs) (Stevenson and Merlo 1997b; Merlo 
and Stevenson 1998). 
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Table 2 
Summary of thematic role assignments by class. 

Transitive Intransitive 

Classes Subject Object Subject 

Unergative Agent (of Causation) Agent Agent 
Unaccusative Agent (of Causation) Theme Theme 
Object-Drop Agent Theme Agent 

The question then is what underlies these distinctions. We identify the property 
that precisely distinguishes among these three classes as that of argument structure-- 
i.e., the thematic roles assigned by the verbs. The thematic roles for each class, and 
their mapping to subject and object positions, are summarized in Table 2. Note that 
verbs across these three classes allow the same subcategorization frames (taking an NP 
object or occurring intransitively); thus, classification based on subcategorization alone 
would not distinguish them. On the other hand, each of the three classes is comprised 
of multiple Levin classes, because the latter reflect more detailed semantic distinctions 
among the verbs (Levin 1993); thus, classification based on Levin's labeling would 
miss generalizations across the three broader classes. By contrast, as shown in Table 2, 
each class has a unique pattern of thematic assignments, which categorize the verbs 
precisely into the three classes of interest. 

Although the granularity of our classification differs from Levin's, we draw on her 
hypothesis that semantic properties of verbs are reflected in their syntactic behavior. 
The behavior that Levin focuses on is the notion of diathesis alternation--an alter- 
nation in the expression of the arguments of a verb, such as the different mappings 
between transitive and intransitive that our verbs undergo. Whether a verb partici- 
pates in a particular diathesis alternation or not is a key factor in Levin's approach to 
classification. We, like others in a computational framework, have extended this idea 
by showing that statistics over the alternants of a verb effectively capture information 
about its class (Lapata 1999; McCarthy 2000; Lapata and Brew 1999). 

In our specific task, we analyze the pattern of thematic assignments given in 
Table 2 to develop statistical indicators that are able to determine the class of an op- 
tionally intransitive verb by capturing information across its transitive and intransitive 
alternants. These indicators serve as input to a machine learning algorithm, under a 
supervised training methodology, which produces an automatic classification system 
for our three verb classes. Since we rely on patterns of behavior across multiple occur- 
rences of a verb, we begin with the problem of assigning a single class to the entire 
set of usages of a verb within the corpus. For example, we measure properties across 
all occurrences of a word, such as raced, in order to assign a single classification to 
the lexical entry for the verb race. This contrasts with work classifying individual oc- 
currences of a verb in each local context, which have typically relied on training that 
includes instances of the verbs to be classified--essentially developing a bias that is 
used in conjunction with the local context to determine the best classification for new 
instances of previously seen verbs. By contrast, our method assigns a classification 
to verbs that have not previously been seen in the training data. Thus, while we do 
not as yet assign different classes to the instances of a verb, we can assign a single 
predominant class to new verbs that have never been encountered. 

To preview our results, we demonstrate that combining just five numerical indi- 
cators, automatically extracted from large text corpora, is sufficient to reduce the error 
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rate in this classification task by more than 50% over chance. Specifically, we achieve 
almost 70% accuracy in a task whose baseline (chance) performance is 34%, and whose 
expert-based upper bound is calculated at 86.5%. 

Beyond the interest for the particular classification task at hand, this work ad- 
dresses more general issues concerning verb class distinctions based in argument 
structure. We evaluate our hypothesis that such distinctions are reflected in statis- 
tics over corpora through a computational experimental methodology in which we 
investigate as indicated each of the subhypotheses below, in the context of the three 
verb classes under study: 

• Lexical features capture argument structure differences between verb 
classes. 1 

• The linguistically distinctive features exhibit distributional differences 
across the verb classes that are apparent within linguistic experience (i.e., 
they can be collected from text). 

• The statistical distributions of (some of) the features contribute to 
learning the classifications of the verbs. 

In the following sections, we show that all three hypotheses above are borne out. In 
Section 2, we describe the argument structure distinctions of our three verb classes 
in more detail. In support of the first hypothesis above, we discuss lexical correlates 
of the underlying differences in thematic assignments that distinguish the three verb 
classes under investigation. In Section 3, we show how to approximate these features 
by simple syntactic counts, and how to perform these counts on available corpora. We 
confirm the second hypothesis above, by showing that the differences in distribution 
predicted by the underlying argument structures are largely found in the data. In 
Section 4, in a series of machine learning experiments and a detailed analysis of errors, 
we confirm the third hypothesis by showing that the differences in the distribution of 
the extracted features are successfully used for verb classification. Section 5 evaluates 
the significance of these results by comparing the program's accuracy to an expert- 
based upper bound. We conclude the paper with a discussion of its contributions, 
comparison to related work, and suggestions for future extensions. 

2. Deriving Classification Features from Argument Structure 

Our task is to automatically build a classifier that can distinguish the three major 
classes of optionally intransitive verbs in English. As described above, these classes 
are differentiated by their argument structures. In the first subsection below, we elab- 
orate on our description of the thematic role assignments for each of the verb classes 
under investigation--unergative, unaccusative, and object-drop. This analysis yields a 
distinctive pattern of thematic assignment for each class. (For more detailed discussion 
concerning the linguistic properties of these classes, and the behavior of their compo- 
nent verbs, please see Stevenson and Merlo [1997b]; Merlo and Stevenson [2000b].) 

Of course, the key to any automatic classification task is to determine a set of useful 
features for discriminating the items to be classified. In the second subsection below, 

1 By lexical we mean features that we think are likely stored in the lexicon, because they are properties 
of words and not of phrases or sentences. Note, however, that some lexical features may not 
necessarily be stored with individual words--indeed, the motivation for classifying verbs to capture 
generalizations within each class suggests otherwise. 
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we show how the analysis of thematic distinctions enables us to determine lexical 
properties that we hypothesize will exhibit useful, detectable frequency differences 
in our corpora, and thus serve as the machine learning features for our classification 
experiments. 

2.1 The Argument Structure Distinctions 
The verb classes are exemplified below, in sentences repeated from Table 1 for ease of 
exposition. 

Unergative: (la) The horse raced past the barn. 

(lb) The jockey raced the horse past the barn. 

Unaccusative: (2a) The butter melted in the pan. 

(2b) The cook melted the butter in the pan. 

Object-Drop: (3a) The boy played. 

(3b) The boy played soccer. 

The example sentences illustrate that all three classes participate in a diathesis alter- 
nation that relates a transitive and intransitive form of the verb. However, according 
to Levin (1993), each class exhibits a different type of diathesis alternation, which is 
determined by the particular semantic relations of the arguments to the verb. We make 
these distinctions explicit by drawing on a standard notion of thematic role, as each 
class has a distinct pattern of thematic assignments (i.e., different argument structures). 

We assume here that a thematic role is a label taken from a fixed inventory of 
grammaticalized semantic relations; for example, an Agent is the doer of an action, 
and a Theme is the entity undergoing an event (Gruber 1965). While admitting that 
such notions as Agent and Theme lack formal definitions (in our work and in the 
literature more widely), the distinctions are clear enough to discriminate our three 
verb classes. For our purposes, these roles can simply be thought of as semantic labels 
which are non-decomposable, but there is nothing in our approach that rests on this 
assumption. Thus, our approach would also be compatible with a feature-based deft- 
nition of participant roles, as long as the features capture such general distinctions as, 
for example, the doer of an action and the entity acted upon (Dowty 1991). 

Note that in our focus on verb class distinctions we have not considered finer- 
grained features that rely on more specific semantic features, such as, for example, 
that the subject of the intransitive melt  must be something that can change from solid 
to liquid. While this type of feature may be important for semantic distinctions among 
individual verbs, it thus far seems irrelevant to the level of verb classification that 
we adopt, which groups verbs more broadly according to syntactic and (somewhat 
coarser-grained) semantic properties. 

Our analysis of thematic assignment--which was summarized in Table 2, repeated 
here as Table 3--is elaborated here for each verb class. The sentences in (1) above 
illustrate the relevant alternants of an unergative verb, race. Unergatives are intransitive 
action verbs whose transitive form, as in (lb), can be the causative counterpart of the 
intransitive form (la). The type of causative alternation that unergatives participate in 
is the "induced action alternation" according to Levin (1993). For our thematic analysis, 
we note that the subject of an intransitive activity verb is specified to be an Agent. 
The subject of the transitive form is indicated by the label Agent of Causation, which 
indicates that the thematic role assigned to the subject is marked as the role which is 
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Table 3 
Summary of thematic assignments. 

Transitive Intransitive 

Classes Subject Object Subject 

Unergative Agent (of Causation) Agent Agent 
Unaccusative Agent (of Causation) Theme Theme 
Object-Drop Agent Theme Agent 

introduced with the causing event. In a causative alternation, the semantic argument 
of the subject of the intransitive surfaces as the object of the transitive (Brousseau and 
Ritter 1991; Hale and Keyser 1993; Levin 1993; Levin and Rappaport Hovav 1995). For 
unergatives, this argument is an Agent and thus the alternation yields an object in 
the transitive form that receives an Agent thematic role (Cruse 1972). These thematic 
assignments are shown in the first row of Table 3. 

The sentences in (2) illustrate the corresponding forms of an unaccusative verb, 
melt. Unaccusatives are intransitive change-of-state verbs, as in (2a); the transitive 
counterpart for these verbs also exhibits a causative alternation, as in (2b). This is 
the "causative/inchoative alternation" (Levin, 1993). Like unergatives, the subject of 
a transitive unaccusative is marked as the Agent of Causation. Unlike unergatives, 
though, the alternating argument of an unaccusative (the subject of the intransitive 
form that becomes the object of the transitive) is an entity undergoing a change of 
state, without active participation, and is therefore a Theme. The resulting pattern of 
thematic assignments is indicated in the second row of Table 3. 

The sentences in (3) use an object-drop verb, play. These are activity verbs that 
exhibit a non-causative diathesis alternation, in which the object is simply optional. 
This is dubbed "the unexpressed object alternation" (Levin 1993), and has several 
subtypes that we do not distinguish here. The thematic assignment for these verbs is 
simply Agent for the subject (in both transitive and intransitive forms), and Theme 
for the optional object; see the last row of Table 3. 

For further details and support of this analysis, please see the discussion in Steven- 
son and Merlo (1997b) and Merlo and Stevenson (2000b). For our purposes here, the 
important fact to note is that each of the three classes can be uniquely identified by 
the pattern of thematic assignments across the two alternants of the verbs. 

2.2 Features for Automatic  Classification 
Our next task then is to derive, from these thematic patterns, useful features for au- 
tomatically classifying the verbs. In what follows, we refer to the columns of Table 3 
to explain how we expect the thematic distinctions to give rise to distributional prop- 
erties, which, when appropriately approximated through corpus counts, will discrim- 
inate across the three classes. 

Transitivity Consider the first two columns of thematic roles in Table 3, which illus- 
trate the role assignment in the transitive construction. The Prague school's notion 
of linguistic markedness (Jakobson 1971; Trubetzkoy 1939) enables us to establish a 
scale of markedness of these thematic assignments and make a principled prediction 
about their frequency of occurrence. Typical tests to determine the unmarked element 
of a pair or scale are simplicity--the unmarked element is simpler, dis tr ibut ion-- the  
unmarked member is more widely attested across languages, and f requency- - the  un- 
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marked member is more frequent (Greenberg 1966; Moravcsik and Wirth 1983). The 
claim of markedness theory is that, once an element has been identified by one test 
as the unmarked element of a scale, then all other tests will be correlated. The three 
thematic assignments appear to be ranked on a scale by the simplicity and distribu- 
tion tests, as we describe below. From this, we can conclude that frequency, as a third 
correlated test, should also be ranked by the same scale, and we can therefore make 
predictions about the expected frequencies of the three thematic assignments. 

First, we note that the specification of an Agent of Causation for transitive unerga- 
tives (such as race) and unaccusatives (such as melt) indicates a causative construction. 
Causative constructions relate two events, the causing event and the core event de- 
scribed by the intransitive verb; the Agent of Causation is the Agent of the causing 
event. This double event structure can be considered as more complex than the sin- 
gle event that is found in a transitive object-drop verb (such as play) (Stevenson and 
Merlo 1997b). The simplicity test thus indicates that the causative unergatives and 
unaccusatives are marked in comparison to the transitive object-drop verbs. 

We further observe that the causative transitive of an unergative verb has an Agent 
thematic role in object position which is subordinated to the Agent of Causation in 
subject position, yielding an unusual "double agentive" thematic structure. This lex- 
ical causativization of unergatives (in contrast to analytic causativization) is a distri- 
butionally rarer phenomenon--found in fewer languages--than lexical causatives of 
unaccusatives. In asking native speakers about our verbs, we have found that lexical 
causatives of unergative verbs are not attested in Italian, French, German, Portuguese, 
Gungbe (Kwa family), and Czech. On the other hand, the lexical causatives are pos- 
sible for unaccusative verbs (i.e., where the object is a Theme) in all these languages. 
Vietnamese appears to allow a very restricted form of causativization of unergatives 
limited to only those cases that have a comitative reading. The typological distribu- 
tion test thus indicates that unergatives are more marked than unaccusatives in the 
transitive form. 

From these observations, we can conclude that unergatives (such as race) have 
the most marked transitive argument structure, unaccusatives (such as melt) have 
an intermediately marked transitive argument structure, and object-drops (such as 
play) have the least marked transitive argument structure of the three. Under the 
assumptions of markedness theory outlined above, we then predict that unergatives 
are the least frequent in the transitive, that unaccusatives have intermediate frequency 
in the transitive, and that object-drop verbs are the most frequent in the transitive. 

Causativity Due to the causative alternation of unergatives and unaccusatives, the 
thematic role of the subject of the intransitive is identical to that of the object of the 
transitive, as shown in the second and third columns of thematic roles in Table 3. 
Given the identity of thematic role mapped to subject and object positions across the 
two alternants, we expect to observe the same noun occurring at times as subject of 
the verb, and at other times as object of the verb. In contrast, for object-drop verbs, 
the thematic role of the subject of the intransitive is identical to that of the subject of 
the transitive, not the object of the transitive. We therefore expect that it will be less 
common for the same noun to occur in subject and object position across instances of 
the same object-drop verb. 

Thus, we hypothesize that this pattern of thematic role assignments will be re- 
flected in a differential amount of usage across the classes of the same nouns as sub- 
jects and objects for a given verb. Generally, we would expect that causative verbs 
(in our case, the unergative and unaccusative verbs) would have a greater degree of 
overlap of nouns in subject and object position than non-causative transitive verbs (in 
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our case, the object-drop verbs). However ,  since the causative is a transitive use, and 
the transitive use of unergatives is expected to be rare (see above), we do not expect 
unergatives to exhibit a high degree of detectable overlap in a corpus. Thus, this over- 
lap of subjects and objects should primari ly distinguish unaccusatives (predicted to 
have high overlap of subjects and objects) from the other two classes (each of which 
is predicted to have low [detectable] overlap of subjects and objects). 

Animacy Finally, considering the roles in the first and last columns of thematic assign- 
ments  in Table 3, we observe that unergat ive and object-drop verbs assign an agentive 
role to their subject in both  the transitive and intransitive, while unaccusatives assign 
an agentive role to their subject only in the transitive. Under  the assumption that the 
intransitive use of unaccusatives is not  rare, we then expect that unaccusatives will 
occur less often overall with an agentive subject than will the other two verb classes. 
(The assumption that unaccusatives are not  rare in the intransitive is based on the 
linguistic complexi ty of the causative transitive alternant, and is borne  out  in our  cor- 
pus  analysis.) On the further  assumption that Agents tend to be animate entities more  
so than Themes are, we expect that unaccusatives will occur less frequently wi th  an 
animate subject compared  to unergat ive and object-drop verbs. Note  the importance 
of our  use of f requency distributions: the claim is not  that only Agents can be animate, 
but  rather that nouns  that receive an Agent  role will more often be animate than nouns  
that receive a Theme role. 

Additional Features The above interactions be tween thematic roles and the syntactic 
expressions of arguments  thus lead to three features whose  distributional propert ies  
appear  promising for dist inguishing unergative,  unaccusat ive and object-drop verbs: 
transitivity, causativity, and animacy of subject. We also investigate two additional syn- 
tactic features: the use of the passive or active voice, and the use of the past  participle or 
simple past  part-of-speech (POS) tag (VBN or VBD, in the Penn Treebank style). These 
features are related to the t ransi t ive/ intransi t ive alternation, since a passive use implies 
a transitive use of the verb, as well as to the use of a past  participle form of the v e r b .  2 

Table 4 summarizes  the features we derive from the thematic properties,  and our  
expectations concerning their f requency of use. We hypothes ize  that these five features 
will exhibit distributional differences in the observed usages of the verbs that can be 
used for classification. In the next  section, we describe the actual corpus counts that we 
develop to approximate  the features we have identified. (Notice that the counts will 
be imperfect  approximations to the thematic knowledge,  beyond  the inevitable errors 
due  to automatic extraction from large automatically annotated corpora. Even w h en  
the counts are precise, they only constitute an approximat ion to the actual thematic 
notions, since the features we are using are not  logically implied by  the knowledge  
we want  to capture, bu t  only statistically correlated.) 

3. Data Collection and Analysis 

Clearly, some of the features we 've  proposed  are difficult (e.g., the passive use) or im- 
possible (e.g., animate subject use) to automatically extract wi th  high accuracy from a 

2 For our sample verbs, the statistical correlation between the transitive and passive features is highly 
significant (N ----- 59, R = .44, p =- .001), as is the correlation between the transitive and past participle 
features (N = 59, R = .36, p = .005). (Since, as explained in the next section, our features are expressed 
as proportions---e.g., percent transitive use out of detected transitive and intransitive use----correlations 
of intransitivity with passive or past participle use have the same magnitude but are negative.) 
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Table 4 
The features and expected behavior. 

Expected Frequency 
Feature Pattern Explanation 

Transitivity Unerg < Unacc < ObjDrop Unaccusatives and unergatives have a causative 
transitive, hence lower transitive use. Further- 
more, unergatives have an agentive object, hence 
very low transitive use. 

Causativity Unerg, ObjDrop < Unacc Object-drop verbs do not have a causal agent, 
hence low "causative" use. Unergatives are rare 
in the transitive, hence low causative use. 

Animacy Unacc < Unerg, ObjDrop Unaccusatives have a Theme subject in the in- 
transitive, hence lower use of animate subjects. 

Passive Voice Unerg K Unacc K ObjDrop Passive implies transitive use, hence correlated 
with transitive feature. 

VBN Tag Unerg < Unacc < ObjDrop Passive implies past participle use (VBN), hence 
correlated with transitive (and passive). 

large corpus, given the current state of annotation. However,  we do assume that cur- 
rently available corpora, such as the Wall Street Journal (WSJ), provide a representative, 
and large enough,  sample of language from which to gather corpus counts that can ap- 
proximate the distributional patterns of the verb class alternations. Our  work  draws on 
two text co rpora - -one  an automatically tagged combined corpus of 65 million words  
(primarily WSJ), the second an automatically parsed corpus of 29 million words  (a sub- 
set of the WSJ text from the first corpus). Using these corpora, we develop counting 
procedures that yield relative frequency distributions for approximations to the five 
linguistic features we have determined, over a sample of verbs from our three classes. 

3.1 Materials and Method 
We chose a set of 20 verbs from each class based primarily on the classification in Levin 
(1993). 3 The complete list of verbs appears in Table 5; the group 1 /g roup  2 designation 
is explained below in the section on counting. As indicated in the table, unergatives 
are manner-of-motion verbs (from the "run"  class in Levin), unaccusatives are change- 
of-state verbs (from several of the classes in Levin's change-of-state super-class), while 
object-drop verbs were taken from a variety of classes in Levin's classification, all of 
which undergo the unexpressed object alternation. The most  frequently used classes 
are verbs of change of possession, image-creation verbs, and verbs of creation and 
transformation. The selection of verbs was based partly on our  intuitive judgment  
that the verbs were likely to be used with sufficient frequency in the WSJ. Also, each 

3 We used an equal number of verbs from each class in order to have a balanced group of items. One 
potential disadvantage of this decision is that each verb class is represented equally, even though they 
may not be equally frequent in the corpora. Although we lose the relative frequency information 
among the classes that could provide a better bias for assigning a default classification (i.e., the most 
frequent one), we have the advantage that our classifier will be equally informed (in terms of number 
of exemplars) about each class. 

Note that there are only 19 unaccusative verbs because ripped, which was initially counted in the 
unaccusatives, was then excluded from the analysis as it occurred mostly in a very different usage in 
the corpus (as verb+particle, in ripped off) from the intended optionally intransitive usage. 
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Table 5 
Verbs used in the experiments. 

Class Name Description Selected Verbs 

Unergative manner of motion jumped, rushed, marched, leaped, floated, raced, hurried, wan- 
dered, vaulted, paraded (group 1); galloped, glided, hiked, 
hopped, jogged, scooted, scurried, skipped, tiptoed, trotted 
(group 2). 

Unaccusative change of state opened, exploded, flooded, dissolved, cracked, hardened, boiled, 
melted, fractured, solidified (group 1); collapsed, cooled, 
folded, widened, changed, cleared, divided, simmered, stabi- 
lized (group 2). 

Object-Drop unexpressed 
object alternation 

played, painted, kicked, carved, reaped, washed, danced, 
yelled, typed, knitted (group 1); borrowed, inherited, orga- 
nized, rented, sketched, cleaned, packed, studied, swallowed, 
called (group 2). 

verb presents the same form in the simple past and in the past  participle (the reg- 
ular "-ed" form). In order to simplify the counting procedure,  we included only the 
"-ed" form of the verb, on the assumpt ion that counts on this single verb form wou ld  
approximate the distribution of the features across all forms of the verb. Additionally, 
as far as we were able given the preceding constraints, we selected verbs that could 
occur in the transitive and in the passive. Finally, we aimed for a frequency cut-off 
of 10 occurrences or more for each verb, a l though for unergatives we had  to use one 
verb (jogged) that only occurred 8 times in order to have 20 verbs that satisfied the 
other criteria above. 

In performing this kind of corpus analysis, one has to recognize the fact that 
current corpus annotations do not distinguish verb senses. In these counts, we did 
not distinguish a core sense of the verb from an extended use of the verb. So, for 
instance, the sentence Consumer spending jumped 1.7% in February after a sharp drop the 
month before (WSJ 1987) is counted as an occurrence of the manner-of-motion verb jump 
in its intransitive form. This particular sense extension has a transitive alternant, but  
not a causative transitive (i.e., Consumer spending jumped the barrier . . . .  but  not Low taxes 
jumped consumer spending... ). Thus, while the possible subcategorizations remain the 
same, rates of transitivity and causativity may  be different than for the literal manner-  
of-motion sense. This is an unavoidable result of using simple, automatic extraction 
methods  given the current state of annotat ion of corpora. 

For each occurrence of each verb, we counted whether  it was in a transitive or 
intransitive use (TRANS), in a passive or active use (PASS), in a past participle or simple 
past use (VBN), in a causative or non-causative use (CAUS), and with an animate subject 
or not (ANIM). 4 Note that, except for the VBN feature, for which we simply extract the 
POS tag from the corpus, all other counts are approximations to the actual linguistic 
behaviour  of the verb, as we describe in detail below. 

4 One additional feature was recorded--the log frequency of the verb in the 65 million word 
corpus--motivated by the conjecture that the frequency of a verb may help in predicting its class. In 
our machine learning experiments, however, this conjecture was not borne out, as the frequency feature 
did not improve performance. This is the case for experiments on all of the verbs, as well as for 
separate experiments on the group 1 verbs (which were matched across the classes for frequency) and 
the group 2 verbs (which were not). We therefore limit discussion here to the thematically-motivated 
features. 
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The first three counts  (TRANS, PASS, VBN) were pe r fo rmed  on the tagged  A C L / D C I  
corpus  available f rom the Linguistic Data Consor t ium,  which  includes the Brown Cor- 
pus  (of one mill ion words)  and  years  1987-1989 of the Wall Street Journal,  a combined  
corpus  in excess of 65 mill ion words.  The counts for these features p roceeded  as fol- 
lows: 

• TRANS: A number ,  a p ronoun,  a determiner,  an adjective, or a noun  were  
considered to be indication of a potential  object of the verb. A verb  
occurrence p receded  by  forms  of the verb be, or immedia te ly  fol lowed by  
a potent ial  object was  counted as transitive; otherwise,  the occurrence 
was  counted as intransit ive (specifically, if the verb  was  fol lowed by  a 
punc tua t ion  s i g n - - c o m m a s ,  colons, full s t o p s - - o r  by  a conjunction, a 
particle, a date, or a preposit ion.)  

* PASS: A main  verb  (i.e., tagged VBD) was  counted as active. A token 
with  tag VBN was  also counted as active if the closest preceding  
auxil iary was  have, while it was  counted as pass ive  if the closest 
preceding  auxil iary was  be. 

• VBN: The counts for VB N/ VB D were s imply  done based on the POS 
label wi thin  the tagged corpus.  

Each of the above three counts was  normal ized  over  all occurrences of the "-ed"  form 
of the verb,  yielding a single relative f requency measure  for each verb  for that  feature; 
i.e., percent  transit ive (versus intransitive) use, percent  active (versus passive) use, and  
percent  VBN (versus VBD) use, respectively. 

The last two counts  (CAUS and ANIM) were per fo rmed  on a parsed  vers ion of the 
1988 year  of the Wall Street Journal,  so that we  could extract subjects and  objects of 
the verbs more  accurately. This corpus  of 29 million words  was  p rov ided  to us by  
Michael Collins, and was  automat ical ly  pa r sed  wi th  the parser  described in Collins 
(1997). 5 The counts, and  their justification, are described here: 

CAUS: As discussed above,  the object of a causat ive transit ive is the same 
semantic  a rgumen t  of the verb  as the subject of the intransitive. The 
causat ive feature was  approx ima ted  by  the following steps, in tended to 
capture the degree to which the subject of a verb can also occur as its 
object. Specifically, for each verb  occurrence, the subject and  object (if 
there was  one) were  extracted f rom the pa r sed  corpus. The observed  
subjects across all occurrences of the verb were  placed into one mult iset  
of nouns,  and  the observed objects into a second mult iset  of nouns.  (A 
multiset,  or bag, was  used  so that  our  representat ion indicated the 
n u m b e r  of t imes each noun  was  used as either subject or object.) Then, 
the propor t ion  of over lap be tween  the two mult isets  was  calculated. We 
define over lap as the largest  mult iset  of e lements  belonging to both  the 

5 Readers might be concerned about the portability of this method to languages for which no large 
parsed corpus is available. It is possible that using a fully parsed corpus is not necessary. Our results 
were replicated in English without the need for a fully parsed corpus (Anoop Sarkar, p.c., citing a 
project report by Wootiporn Tripasai). Our method was applied to 23 million words of the WSJ that 
were automatically tagged with Ratnaparkhi's maximum entropy tagger (Ratnaparkhi 1996) and 
chunked with the partial parser CASS (Abney 1996). The results are very similar to ours (best accuracy 
66.6%), suggesting that a more accurate tagger than the one used on our corpus might in fact be 
sufficient to overcome the fact that no full parse is available. 
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subject and the object multisets; e.g., the overlap between (a, a, a, b} and 
{a} is {a,a,a}. The proportion is the ratio between the cardinality of the 
overlap multiset, and the sum of the cardinality of the subject and object 
multisets. For example, for the simple sets of characters above, the ratio 
would be 3/5, yielding a value of .60 for the CAUS feature. 

ANIM: A problem with a feature like animacy is that it requires either 
manual determination of the animacy of extracted subjects, or reference 
to an on-line resource such as WordNet for determining animacy. To 
approximate animacy with a feature that can be extracted automatically, 
and without reference to a resource external to the corpus, we take 
advantage of the well-attested animacy hierarchy, according to which 
pronouns are the most animate (Silverstein 1976; Dixon 1994). The 
hypothesis is that the words I, we, you, she, he, and they most often refer 
to animate entities. This hypothesis was confirmed by extracting 
100 occurrences of the pronoun they, which can be either animate or 
inanimate, from our 65 million word corpus. The occurrences 
immediately preceded a verb. After eliminating repetitions, 
94 occurrences were left, which were classified by hand, yielding 71 
animate pronouns, 11 inanimate pronouns and 12 unclassified 
occurrences (for lack of sufficient context to recover the antecedent of the 
pronoun with certainty). Thus, at least 76% of usages of they were 
animate; we assume the percentage of animate usages of the other 
pronouns to be even higher. Since the hypothesis was confirmed, we 
count pronouns (other than it) in subject position (Kariaeva [1999]; cf. 
Aone and McKee [1996]). The values for the feature were determined by 
automatically extracting all subject/verb tuples including our 59 example 
verbs from the parsed corpus, and computing the ratio of occurrences of 
pronoun subjects to all subjects for each verb. 

Finally, as indicated in Table 5, the verbs are designated as belonging to "group 1" 
or "group 2". All the verbs are treated equally in our data analysis and in the machine 
learning experiments, but this designation does indicate a difference in details of the 
counting procedures described above. The verbs in group I had been used in an earlier 
study in which it was important to minimize noisy data (Stevenson and Merlo 1997a), 
so they generally underwent greater manual intervention in the counts. In adding 
group 2 for the classification experiment, we chose to minimize the intervention in 
order to demonstrate that the classification process is robust enough to withstand the 
resulting noise in the data. 

For group 2, the transitivity, voice, and VBN counts were done automatically with- 
out any manual intervention. For group 1, these three counts were done automatically 
by regular expression patterns, and then subjected to correction, partly by hand and 
partly automatically, by one of the authors. For transitivity, the adjustments vary for 
the individual verbs. Most of the reassignments from a transitive to an intransitive 
labelling occurred when the following noun was not the direct object but rather a 
measure phrase or a date. Most of the reassignments from intransitive to transitive 
occurred when a particle or a preposition following the verb did not introduce a prepo- 
sitional phrase, but instead indicated a passive form (by) or was part of a phrasal verb. 
Some verbs were mostly used adjectivally, in which case they were excluded from the 
transitivity counts. For voice, the required adjustments included cases of coordination 
of the past participle when the verb was preceded by a conjunction, or a comma. 
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Table 6 
Aggregated relative frequency data for the five features. E = unergatives, A = unaccusatives, 
O = object-drops. 

TRANS PASS VBN CAUS ANIM 

Class N Mean SD Mean SD Mean SD Mean SD Mean SD 

E 20 0.23 0.23 0.07 0.12 0.21 0.26 0.00 0.00 0.25 0.24 
A 19 0.40 0.24 0.33 0.27 0.65 0.27 0.12 0.14 0.07 0.09 
O 20 0.62 0.25 0.31 0.26 0.65 0.23 0.04 0.07 0.15 0.14 

These were  collected and  classified by  hand  as passive or active based  on intuition. 
Similarly, part ial  adjus tments  to the VBN counts were  m a d e  by  hand.  

For the causat ivi ty feature, subjects and  objects were  de te rmined  by  manua l  in- 
spection of the corpus  for verbs  belonging to g roup  1, while they were  extracted 
automat ical ly  f rom the pa r sed  corpus  for g roup  2. The group  1 verbs  were  sampled  
in three ways,  depend ing  on total frequency. For verbs wi th  less than 150 occurrences, 
all instances of the verbs  were  used  for subject /object  extraction. For verbs  whose  
total f requency was  greater  than 150, but  whose  VBD frequency was  in the range 
100-200, we  extracted subjects and  objects of the VBD occurrences only. For higher  
f requency verbs,  we  used only the first 100 VBD occurrences. 6 The same script for 
comput ing  the over lap of the extracted subjects and  objects was  then used  on the 
result ing sub jec t /ve rb  and  ve rb /ob jec t  tuples for both  g roup  1 and  g roup  2 verbs.  

The an imacy  feature was  calculated over  sub jec t /ve rb  tuples extracted automat i -  
cally for both  g roups  of verbs f rom the parsed  corpus. 

3.2 Data Analysis 
The data collection described above yields the fol lowing data points  in total: TRANS: 

27403; PASS: 20481; VBN: 36297; CAt;S: 11307; ANIM: 7542. (Different features yield differ- 
ent totals because they were  sampled  independently,  and  the search pat terns  to extract 
some features are more  imprecise than others.) The aggregate  means  by  class of the 
normal ized  frequencies for all verbs are shown  in Table 6; i tem by  i tem distr ibutions 
are p rov ided  in Append ix  A, and  r aw  counts are available f rom the authors.  Note  
that aggregate  means  are shown  for i l lustration purposes  on ly - -a l l  machine  learning 
exper iments  are pe r fo rmed  on the individual  normal ized  frequencies for each verb,  as 
given in Append ix  A. 

The observed distr ibutions of each feature are indeed roughly  as expected accord- 
ing to the descript ion in Section 2. Unergat ives  show a very  low relative f requency of 
the TRANS feature, fol lowed by  unaccusatives,  then object-drop verbs. Unaccusat ive  
verbs  show a high f requency of the CAUS feature and a low frequency of the ANIM fea- 
ture compared  to the other classes. Somewha t  unexpectedly,  object-drop verbs  exhibit 
a non-zero mean  CAUS value (almost  half the verbs  have  a CAUS value greater  than 
zero), leading to a th ree-way causat ive distinction a m o n g  the verb classes. We suspect  
that  the approx imat ion  that we  used  for causat ive u s e - - t h e  over lap  be tween  subjects 

6 For this last set of high-frequency verbs (exploded, jumped, opened, played, rushed), we used the first 
100 occurrences as the simplest way to collect the sample. In response to an anonymous reviewer's 
concern, we later verified that these counts were not different from counts obtained by random 
sampling of 100 VBD occurrences. A paired t-test of the two sets of counts (first 100 sampling and 
random sampling) indicates that the two sets of counts are not statistically different (t = 1.283, DF = 4, 
p = 0.2687). 
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Table 7 
Manually (Man) and automatically (Aut) calculated features for a random sample of verbs. 
T -~- T R A N S ,  P = PASS ,  V ---- V B N ,  C -~ C A U S ,  A = A N I M .  

Unergative Unaccusative Object-Drop 

hopped scurried folded stabilized inherited swallowed 

Man Aut Man Aut Man Aut Man Aut Man Aut Man Aut 

T 0.21 0 . 2 1  0.00 0.00 0 . 7 1  0.23 0.24 0.18 1.00 0.64 0.96 0.35 
P 0.00 0.00 0.00 0.00 0.44 0.33 0.19 0.13 0.39 0.13 0.54 0.44 
V 0.03 0.00 0.10 0.00 0.56 0.73 0 . 7 1  0.92 0.56 0.60 0.64 0.79 
C 0.00 0.00 0.00 0.00 0.54 0.00 0.24 0.35 0.00 0.06 0.00 0.04 
A 0.93 1.00 0.90 0.14 0.23 0.00 0.02 0.00 0.58 0.32 0.35 0.22 

and objects for a verb- -a l so  captures a "reciprocity" effect for some object-drop verbs 
(such as call), in which subjects and objects can be similar types of entities. Finally, 
a l though expected to be a redundan t  indicator of transitivity, PASS and VBN, unlike 
TRANS, have very  similar values for unaccusat ive and object-drop verbs, indicating 
that their distributions are sensitive to factors we have not  yet  investigated. 

One issue we must  address is how precisely the automatic counts reflect the actual 
linguistic behaviour  of the verbs. That  is, we  must  be assured that the patterns we note 
in the data in Table 6 are accurate reflections of the differential behaviour  of the verb 
classes, and not  an artifact of the way  in which we estimate the features, or a result of 
inaccuracies in the counts. In order  to evaluate the accuracy of our  feature counts, we 
selected two verbs f rom each class, and de termined  the " t rue"  value of each feature 
for each of those six verbs through manual  counting. The six verbs were randomly  
selected from the group 2 subset of the verbs, since counts for group 2 verbs (as 
explained above) had  not  undergone  manual  correction. This allows us to determine 
the accuracy of the fully automatic counting procedures.  The selected verbs (and their 
frequencies) are: hopped (29), scurried (21), folded (189), stabilized (286), inherited (357), 
swallowed (152). For verbs that had  a f requency of over  100 in the "-ed" form, we 
per formed the manual  counts on the first 100 occurrences. 

Table 7 shows the results of the manual  counts, repor ted  as proport ions  to facil- 
itate compar ison to the normal ized automatic counts, shown in adjoining columns. 
We observe first that, overall, most  errors in the automatic counts occur in the unac- 
cusative and object-drop verbs. While tagging errors affect the VBN feature for all of 
the verbs somewhat ,  we note that TP~ANS and PaSS are consistently underes t imated  for 
unaccusative and object-drop verbs. These errors make the unaccusat ive and object- 
drop feature values more  similar to each other, and therefore potential ly harder  to 
distinguish. Furthermore,  because the TRANS and PASS values are underes t imated by  
the automatic counts, and therefore lower in value, they are also closer to the values 
for the unergat ive verbs. For the CAUS feature, we predict  the highest  values for the 
unaccusative verbs, and while that predict ion is confirmed, the automatic counts for 
that class also show the most  errors. Finally, a l though the general  pat tern  of higher  
values for the ANIM feature of unergatives and object-drop verbs is preserved in the 
automatic counts, the feature is underes t imated  for almost all the verbs, again making 
the values for that feature closer across the classes than they are in reality. 

We conclude that, a l though there are inaccuracies in all the counts, the general 
pat terns expected based on our  analysis of the verb classes hold in both the manual  
and automatic counts. Errors in the estimating and counting procedures  are therefore 
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not  likely to be responsible for the pat tern  of data  in Table 6 above,  which  general ly 
matches  our  predictions. Fur thermore,  the errors, at least for this r a n d o m  sample  of 
verbs,  occur in a direction that  makes  our  task of dis t inguishing the classes more  
difficult, and  indicates that  deve lop ing  more  accurate search pat terns  m a y  possibly  
sharpen  the class distinctions, and  improve  the classification performance .  

4. Experiments in Classification 

In this section, we  turn to our  computa t iona l  exper iments  that invest igate whether  the 
statistical indicators of thematic proper t ies  that  we  have  deve loped  can in fact be used 
to classify verbs. Recall that the task we  have  set ourselves is that of automat ical ly  
learning the best class for a set of usages of a verb, as opposed  to classifying individual  
occurrences of the verb. The f requency distr ibutions of our  features yield a vector  for 
each verb that  represents  the es t imated values for the verb  on each d imension  across 
the entire corpus: 

Vector template:  [verb-name,  TRANS, PASS, VBN, CAUS, ANIM, class] 

Example: [opened,  .69, .09, .21, .16, .36, unacc] 

The result ing set of 59 vectors constitutes the data for our  machine  learning experi-  
ments.  We use this data to train an automat ic  classifier to determine,  g iven the feature 
values  for a new verb (not f rom the training set), which  of the three major  classes of 
English opt ional ly intransit ive verbs  it belongs to. 

4.1 Experimental Methodology 
In pilot  exper iments  on a subset  of the features, we  invest igated a n u m b e r  of su- 
perv ised  machine  learning me thods  that  p roduce  automat ic  classifiers (decision tree 
induction, rule learning, and  two types of neural  networks) ,  as well  as hierarchi- 
cal clustering; see Stevenson et al. (1999) for more  detail. Because we  achieved ap- 
proximate ly  the same level of per formance  in all cases, we  na r rowed  our  fur ther  
exper imenta t ion  to the publicly available version of the C5.0 machine  learning sys tem 
(h t tp : / /www.ru leques t . com) ,  a newer  version of C4.5 (Quinlan 1992), due  to its ease 
of use and wide  availability. The C5.0 sys tem generates  bo th  decision trees and cor- 
responding  rule sets f rom a training set of k n o w n  classifications. In our  experiments ,  
we  found  little to no difference in pe r fo rmance  be tween  the trees and  rule sets, and 
repor t  only the rule set results. 

In the exper iments  below, we  follow two methodologies  in training and  testing, 
each of which tests a subset  of cases held out  f rom the training data. Thus, in all cases, 
the results we  repor t  are on test data  that  was  never  seen in training. 7 

The first training and testing me thodo logy  we follow is 10-fold cross-validation. In 
this approach,  the sys tem r andom l y  divides the data into ten parts ,  and  runs  ten t imes 
on a different 90%-training-data/10%-test-data  split, yielding an average  accuracy and  
s tandard  error across the ten test sets. This training me thodo logy  is very  useful for 

7 One anonymous reviewer raised the concern that we do not test on verbs that were unseen by the 
authors prior to finalizing the specific features to count. However, this does not reduce the generality 
of our results. The features we use are motivated by linguistic theory, and derived from the set of 
thematic properties that discriminate the verb classes. It is therefore very unlikely that they are skewed 
to the particular verbs we have chosen. Furthermore, our cross-validation experiments, described in the 
next subsection, show that our results hold across a very large number of randomly selected subsets of 
this sample of verbs. 
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our application, as it yields performance measures across a large number of training 
data/test  data sets, avoiding the problems of outliers in a single random selection 
from a relatively small data set such as ours. 

The second methodology is a single hold-out training and testing approach. Here, 
the system is run N times, where N is the size of the data set (i.e., the 59 verbs in 
our case), each time holding out a single data vector as the test case and using the 
remaining N-1 vectors as the training set. The single hold-out methodology yields an 
overall accuracy rate (when the results are averaged across all N trials), but also-- 
unlike cross-validation--gives us classification results on each individual data vector. 
This property enables us to analyze differential performance on the individual verbs 
and across the different verb classes. 

Under both training and testing methodologies, the baseline (chance) performance 
in this task--a three-way classification--is 33.9%. In the single hold-out methodology, 
there are 59 test cases, with 20, 19, and 20 verbs each from the unergative, unaccusative, 
and object-drop classes, respectively. Chance performance of picking a single class label 
as a default and assigning it to all cases would yield at most 20 out of the 59 cases 
correct, or 33.9%. For the cross-validation methodology, the determination of a baseline 
is slightly more complex, as we are testing on a random selection of 10% of the full 
data set in each run. The 33.9% figure represents the expected relative proportion of a 
test set that would be labelled correctly by assignment of a default class label to the 
entire test set. Although the precise make-up of the test cases vary, on average the test 
set will represent the class membership proportions of the entire set of verbs. Thus, 
as with the single hold-out approach, chance accuracy corresponds to a maximum of 
20/59, or 33.9%, of the test set being labelled correctly. 

The theoretical maximum accuracy for the task is, of course, 100%, although in 
Section 5 we discuss some classification results from human experts that indicate that 
a more realistic expectation is much lower (around 87%). 

4.2 Results Using 10-Fold Cross-Validation 
We first report the results of experiments using a training methodology of 10-fold cross- 
validation repeated 50 times. This means that the 10-fold cross-validation procedure is 
repeated for 50 different random divisions of the data. The numbers reported are the 
averages of the results over all the trials. That is, the average accuracy and standard 
error from each random division of the data (a single cross-validation run including 
10 training and test sets) are averaged across the 50 different random divisions. This 
large number of experimental trials gives us a very tight bound on the mean accuracy 
reported, enabling us to determine with high confidence the statistical significance of 
differences in results. 

Table 8 shows that performance of classification using individual features varies 
greatly, from little above the baseline to almost 22% above the baseline, or a reduction 
of a third of the error rate, a very good result for a single feature. (All reported 
accuracies in Table 8 are statistically distinct, at the p < .01 level, using an ANOVA 
[dr = 249, F = 334.72], with a Tukey-Kramer post test.) 

The first line of Table 9 shows that the combination of all features achieves an 
accuracy of 69.8%, which is 35.9% over the baseline, for a reduction in the error rate of 
54%. This is a rather considerable result, given the very low baseline (33.9%). Moreover, 
recall that our training and testing sets are always disjoint (cf., Lapata and Brew [1999]; 
Siegel [1999]); in other words, we are predicting the classification of verbs that were 
never seen in the training corpus, the hardest situation for a classification algorithm. 

The second through sixth lines of Table 9 show the accuracy achieved on each 
subset of features that results from removing a single feature. This allows us to evaluate 
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Table 8 
Percent accuracy and standard error of the verb classification task using each feature 
individually, under a training methodology of 10-fold cross-validation repeated 50 times. 

Feature %Accuracy %SE 

CAUS 55.7 .1 

VBN 52.5 .5 

PASS 50.2 .5 

TRANS 47.1 .4 

ANIM 35.3 .5 

Table 9 
Percent accuracy and standard error of the verb classification task using features in 
combination, under a training methodology of 10-fold cross-validation repeated 50 times. 

Feature 
Features Used Not Used %Accuracy %SE 

1. TRANS PASS VBN CAUS ANIM 69.8 .5 
2. TRANS VBN CAUS ANIM PASS 69.8 .5 
3. TRANS PASS VBN ANIM CAUS 67.3 .6 
4. TRANS PASS CAUS ANIM VBN 66.5 .5 
5. TRANS PASS VBN CAUS ANIM 63.2 .6 
6. PASS VBN CAUS ANIM TRANS 6 1 . 6  .6 

the contribution of each feature to the performance of the classification process, by 
comparing the performance of the subset wi thout  it, to the performance using the full 
set of features. We see that the removal  of PASS (second line) has no effect on the results, 
while removal  of the remaining features yields a 2-8% decrease in performance.  (In 
Table 9, the differences between all reported accuracies are statistically significant, at 
the p < .05 level, except for between lines 1 and 2, lines 3 and 4, and lines 5 and 6, 
using an ANOVA [dr = 299, F = 37.52], with a Tukey-Kramer post test.) We observe 
that the behavior  of the features in combination cannot be predicted by  the individual  
feature behavior. For example, CAUS, which is the best individually, does not  greatly 
affect accuracy when  combined with the other features (compare line 3 to line 1). 
Conversely, ANIM and TRANS, which do not  classify verbs accurately when  used alone, 
are the most  relevant in a combination of features (compare lines 5 and 6 to line 1). We 
conclude that experimentat ion with combinations of features is required to determine 
the relevance of individual  features to the classification task. 

The general behaviour  in classification based on individual  features and on size 
4 and size 5 subsets of features is confirmed for all subsets. Appendix  B reports the 
results for all subsets of feature combinations, in order  of decreasing performance.  
Table 10 summarizes  this information. In the first data column, the table illustrates 
the average accuracy across all subsets of each size. The second through sixth data 
columns report  the average accuracy of all the size n subsets in which each feature 
occurs. For example,  the second data cell in the second row (54.9) indicates the average 
accuracy of all subsets of size 2 that contain the feature VBN. The last row of the 
table indicates the average accuracy for each feature of all subsets containing that 
feature. 
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Table 10 
Average percent accuracy of feature subsets, by subset size and by sets of each size including 
each feature. 

Mean Accuracy of Subsets 
Subset Mean Accuracy that Include Each Feature 

Size by Subset Size VBN PASS TRANS ANIM CAUS 

1 48.2 52.5 50.2 47.1 35.3 55.7 
2 55.1 54.9 52.8 56.4 58.0 57.6 
3 60.5 60.1 58.5 62.3 61.1 60.5 
4 65.7 65.5 64.7 66.7 66.3 65.3 
5 69.8 69.8 69.8 69.8 69.8 69.8 

Mean Acc/Feature: 60.6 59.2 60.5 58.1 61.8 

The first observa t ion- - tha t  more features per form bet ter - - is  confirmed overall, 
in all subsets. Looking at the first data co lumn of Table 10, we can observe that, on 
average, larger sets of features per form better than smaller sets. Furthermore,  as can be 
seen in the following individual  feature columns, individual  features per form better in 
a bigger set than in a smaller set, wi thout  exception. The second observa t ion- - tha t  the 
performance of individual  features is not  always a predictor  of their performance in 
combinat ion-- is  confirmed by  compar ing  the average performance of each feature in 
subsets of different sizes to the average across all subsets of each size. We can observe, 
for instance, that the feature CAUS, which performs very  well alone, is average in 
feature combinations of size 3 or 4. By contrast, the feature ANIM, which is the wors t  
if used alone, is ve ry  effective in combination,  with above average performance for all 
subsets of size 2 or greater. 

4.3 Results Using Single Hold-Out Methodology 
One of the disadvantages of the cross-validation training methodology,  which aver- 
ages performance across a large number  of r an d o m  test sets, is that we do not  have 
performance data for each verb, nor  for each class of verbs. In another  set of experi- 
ments,  we used the same C5.0 system, but  employed  a single hold-out  training and 
testing methodology.  In this approach,  we hold out  a single verb vector as the test case, 
and train the system on the remaining 58 cases. We then test the resulting classifier on 
the single hold-out  case, and record the assigned class for that verb. This procedure  
is repeated for each of the 59 verbs. As noted  above, the single hold-out  me thodo logy  
has the benefit  of yielding both  classification results on each individual  verb, and an 
overall accuracy rate (the average results across all 59 trials). Moreover,  the results on 
individual  verbs provide  the data necessary for determining accuracy for each verb 
class. This allows us to determine the contribution of individual  features as above, but  
with reference to their effect on the performance of individual  classes. This is impor-  
tant, as it enables us to evaluate our  hypotheses  concerning the relation be tween the 
thematic features and verb class distinctions, which we turn to in Section 4.4. 

We per formed single hold-out  experiments  on the full set of features, as well as on 
each subset of features with a single feature removed.  The first line of Table 11 shows 
that the overall accuracy for all five features is almost exactly the same as that achieved 
with the 10-fold cross-validation methodo logy  (69.5% versus 69.8%). As with the cross- 
validation results, the removal  of PASS does not  degrade  pe r fo rmance- - in  fact, here its 
removal  appears  to improve performance (see line 2 of Table 11). However ,  it should 
be noted  that this increase in performance results from one additional verb being 
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Table 11 
Percent accuracy of the verb classification task using features in combination, under a single 
hold-out training methodology. 

Feature %Accuracy 
Features Used Not Used on All Verbs 

1. TRANS PASS VBN CAUS ANIM 69.5 
2. TRANS VBN CAUS ANIM PASS 71.2 
3. TRANS PASS VBN ANIM CAUS 62.7 
4. TRANS PASS CAUS AN1M VBN 61.0 
5. TRANS PASS VBN CAUS ANIM 61.0 
6. PASS VBN CAUS ANIM TRANS 64.4 

Table 12 
F score of classification within each class, under a single hold-out training methodology. 

Feature F score (%) F score (%) F score (%) 
Features Used Not Used for Unergs for Unaccs for Objdrops 

1. TRANS PASS VBN CAUS ANIM 73.9 68.6 
2. TRANS VBN CAUS ANIM PASS 76.2 75.7 
3. TRANS PASS VBN ANIM CAUS 65 .1  6 0 . 0  

4.  TRANS PASS CAUS ANIM VBN 6 6 . 7  6 5 . 0  

5. TRANS PASS VBN CAUS AN1M 72.7 47.0 
6. PASS VBN CAUS ANIM TRANS 78.1 5 1 . 5  

64.9 
61.6 
62.8 
51.3 
60.0 
61.9 

classified correctly. The remaining lines of Table 11 show that the removal  of any other 
feature has a 5-8% negative effect on performance, again similar to the cross-validation 
results. (Although note that the precise accuracy achieved is not the same in each case 
as with 10-fold cross-validation, indicating that there is some sensitivity to the precise 
make-up of the training set when  using a subset of the features.) 

Table 12 presents the results of the single hold-out  experiments in terms of per- 
formance within each class, using an F measure with balanced precision and recall. 8 
The first line of the table shows clearly that, using all five features, the unergatives 
are classified with greater accuracy (F = 73.9%) than the unaccusative and object-drop 
verbs (F scores of 68.6% and 64.9%, respectively). The features appear  to be better 
at distinguishing unergatives than the other two verb classes. The remaining lines of 
Table 12 show that this pattern holds for all of the subsets of features as well. Clearly, 
future work  on our verb classification task will need to focus on determining features 
that better discriminate unaccusative and object-drop verbs. 

One potential explanation that we can exclude is that the pattern of results is due 
s imply to the frequencies of the verbs- - tha t  is, that more frequent verbs are more ac- 
curately classified. We examined the relation between classification accuracy and log 

8 For all previous results, we reported an accuracy measure (the percentage of correct classifications out 
of all classifications). Using the terminology of true or false positives/negatives, this is the same as 
truePositives/(truePositives + falseNegafives). In the earlier results, there are no falsePositives or 
trueNegatives, since we are only considering for each verb whether it is correctly classified 
(truePositive) or not (falseNegative). However, when we turn to analyzing the data for each class, the 
possibility arises of having falsePositives and trueNegatives for that class. Hence, here we use the 
balanced F score, which calculates an overall measure of performance as 2PR/(P + R), in which P 
(precision) is truePositives/(truePositives + falsePositives), and R (recall) is 
truePositives/(truePositives + falseNegatives). 
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frequencies of the verbs, both  by  class and individually. By class, unergatives have 
the lowest average log frequency (1.8), but  are the best classified, while unaccusatives 
and object-drops are comparable (average log frequency = 2.4). If we group individ- 
ual verbs by  frequency, the propor t ion  of errors to the total number  of verbs is not  
linearly related to frequency (log frequency K 2 : 7  er rors /24 verbs, or 29% error; log 
frequency between 2 and 3 : 7  er rors /25 verbs, or 28% error; log frequency > 3 : 4  
er rors /10 verbs, or 40% error). Moreover, it seems that the highest-frequency verbs 
pose the most  problems to the program. In addition, the only verb of log frequency 
K 1 is correctly classified, while the only one with log frequency > 4 is not. In con- 
clusion, we do not  find that there is a simple mapping  from frequency to accuracy. In 
particular, it is not  the case that more  frequent  classes or verbs are more  accurately 
classified. 

One factor possibly contributing to the poorer  performance on unaccusatives and 
object-drops is the greater degree of error in the automatic counting procedures  for 
these verbs, which we discussed in Section 3.2. In addit ion to explorat ion of other 
linguistic features, another  area of future work  is to develop better  search patterns,  for 
transitivity and passive in particular. Unfortunately,  one limiting factor in automatic 
counting is that we inherit  the inevitable errors in POS tags in an automatically tagged 
corpus. For example,  while the unergative verbs are classified highly accurately, we 
note that two of the three errors in misclassifying unergatives (galloped and paraded) are 
due  to a high degree of error in tagging. 9 The verb galloped is incorrectly tagged VBN 
instead of VBD in all 12 of its uses in the corpus, and the verb paraded is incorrectly 
tagged VBN instead of VBD in 13 of its 33 uses in the corpus. After correcting only 
the VBN feature of these two verbs to reflect the actual part  of speech, overall  accuracy 
in classification increases by  almost 10%, illustrating the importance of bo th  accurate 
counts and accurate annotat ion of the corpora. 

4.4 Contribution of  the Features to Classification 
We can further use the single hold-out  results to determine the contribution of each 
feature to accuracy within each class. We do this by compar ing the class labels as- 
signed using the full set of five features (TRANS, PASS, VBN, CAUS, ANIM) with the class 
labels assigned using each size 4 subset of features. The difference in classifications 
be tween each four-feature subset and the full set of features indicates the changes in 
class labels that we can attribute to the added  feature in going from the four-feature 
to five-feature set. Thus, we can see whether  the features indeed contribute to dis- 
criminating the classes in the manner  predicted in Section 2.2, and summar ized  here 
in Table 13. 

We illustrate the data with a set of confusion matrices, in Tables 14 and 15, which 
show the pat tern  of errors according to class label for each set of features. In each 
confusion matrix, the rows indicate the actual class of incorrectly classified verbs, and 
the columns indicate the assigned class. For example,  the first row of the first panel  
of Table 14 shows that one unergat ive was incorrectly labelled as unaccusative,  and 
two unergatives as object-drop. To determine the confusabili ty of any two classes (the 

9 The third error in classification of unergatives is the verb floated, which we conjecture is due not to 
counting errors, but to the linguistic properties of the verb itself. The verb is unusual for a 
manner-of-motion verb in that the action is inherently "uncontrolled", and thus the subject of the 
intransitive/object of the transitive is a more passive entity than with the other unergatives (perhaps 
indicating that the inventory of thematic roles should be refined to distinguish activity verbs with less 
agentive subjects). We think that this property relates to the notion of internal and external causation 
that is an important factor in distinguishing unergative and unaccusative verbs. We refer the interested 
reader to Stevenson and Merlo (1997b), which discusses the latter issue in more detail. 
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Table 13 
Expected class discriminations for each feature. 

Feature Expected Frequency Pattern 

Transitivity Unerg < Unacc < ObjDrop 

Causativity Unerg, ObjDrop < Unacc 

Animacy Unacc < Unerg, ObjDrop 

Passive Voice Unerg < Unacc < ObjDrop 

VBN Tag Unerg < Unacc < ObjDrop 

Table 14 
Confusion matrix indicating number of errors in classification by verb class, for the full set of 
five features, compared to two of the four-feature sets. E = unergatives, A = unaccusatives, 
O = object-drops. 

Assigned Class 

All features w /o  CAUS W/O ANIM 

E A O E A O E A O 

Actual E 1 2 4 2 2 2 

Class A 4 3 5 2 5 6 

O 5 3 4 5 3 5 

Table 15 
Confusion matrix indicating number of errors in classification by verb class, for the full set of 
five features and for three of the four-feature sets. E = unergatives, A = unaccusatives, 
O = object-drops. 

Assigned Class 

All fea tures  w/o TRANS W/O PASS w / o  VBN 

E A O E A O E A O E A O 

Actual E 1 2 2 2 1 3 1 5 

Class A 4 3 3 7 1 4 2 4 

O 5 3 2 5 5 3 4 6 

opposite of discriminability), we look at two cells in the matrix: the one in which 
verbs of the first class were assigned the label of the second class, and the one in 
which verbs of the second class were assigned the label of the first class. (These pairs 
of cells are those opposite the diagonal of the confusion matrix.) By examining the 
decrease (or increase) in confusability of each pair of classes in going from a four- 
feature experiment to the five-feature experiment, we gain insight into how well (or 
h o w  poorly) the added  feature helps to discriminate each pair of classes. 

An  analysis of the confusion matrices reveals that the behavior of the features 
largely conforms to our  linguistic predictions, leading us to conclude that the features 
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we counted worked largely for the reasons we had hypothesized. We expected CAUS 
and ANIM to be particularly helpful in identifying unaccusatives, and these predictions 
are confirmed. Compare the second to the first panel of Table 14 (the errors without 
the CAUS feature compared to the errors with the ¢AUS feature added to the set). 
We see that, without the CAUS feature, the confusability between unaecusatives and 
unergatives, and between unaccusatives and object-drops, is 9 and 7 errors, respec- 
tively; but when CAUS is added to the set of features, the confusability between these 
pairs of classes drops substantially, to 5 and 6 errors, respectively. On the other hand, 
the confusability between unergatives and object-drops becomes slightly worse (errors 
increasing from 6 to 7). The latter indicates that the improvement in unaccusatives is 
not simply due to an across-the-board improvement in accuracy as a result of having 
more features. We see a similar pattern with the ANIM feature. Comparing the third 
to the first panel of Table 14 (the errors without the ANIM feature compared to the 
errors with the ANIM feature added to the set), we see an even larger improvement in 
discriminability of unaccusatives when the ANIM feature is added. The confusability 
of unaccusatives and unergatives drops from 7 errors to 5 errors, and of unaccusatives 
and object-drops from 11 errors to 6 errors. Again, confusability of unergatives and 
object-drops is worse, with an increase in errors of 5 to 7. 

We had predicted that the TRANS feature would make a three-way distinction 
among the verb classes, based on its predicted linear relationship between the classes 
(see the inequalities in Table 13). We had further expected that PASS and VBN would 
behave similarly, since these features are correlated to TRANS. To make a three-way dis- 
tinction among the verb classes, we would expect confusability between all three pairs 
of verb classes to decrease (i.e., discriminability would improve) with the addition of 
TRANS, PASS, or VBN. We find that these predictions are confirmed in part. 

First consider the TRANS feature. Comparing the second to the first panel of Ta- 
ble 15, we find that unergatives are already accurately classified, and the addition of 
TRANS to the set does indeed greatly reduce the confusability of unaccusatives and 
object-drops, with the number of errors dropping from 12 to 6. However, we also 
observe that the confusability of unergatives and unaccusatives is not improved, and 
the confusability of unergatives and object-drops is worsened with the addition of 
the TRANS feature, with errors in the latter case increasing from 4 to 7. We conclude 
that the expected three-way discriminability of TRANS is most apparent in the reduced 
confusion of unaccusative and object-drop verbs. 

Our initial prediction was that PASS and VBN would behave similarly to TRANS-- 
that is, also making a three-way distinction among the classes--although the aggregate 
data revealed little difference in these feature values between unaccusatives and object- 
drops. Comparing the third to the first panel of Table 15, we observe that the addition 
of the PAss feature hinders the discriminability of unergatives and unaccusatives (in- 
creasing errors from 2 to 5); it does help in discriminating the other pairs of classes, 
but only slightly (reducing the number of errors by 1 in each case). The VBN fea- 
ture shows a similar pattern, but is much more helpful at distinguishing unergatives 
from object-drops, and object-drops from unaccusatives. In comparing the fourth to 
the first panel of Table 15, we find that the confusability of unergatives and object- 
drops is reduced from 9 errors to 7, and of unaccusatives and object-drops from 10 
errors to 6. The latter result is somewhat surprising, since the aggregate VBN data 
for the unaccusative and object-drop classes are virtually identical. We conclude that 
contribution of a feature to classification is not predictable from the apparent dis- 
criminability of its numeric values across the classes. This observation emphasizes the 
importance of an experimental method to evaluating our approach to verb classifica- 
tion. 
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Table 16 
Percent agreement (%Agr) and pair-wise agreement (K) of three experts (El, E2, E3) and the 
program compared to each other and to a gold standard (Levin). 

PROGRAM E1 E2 E3 

%Agr K %Agr K %Agr K %Agr K 

E1 59% .36 
E2 68% .50 75% .59 
E3 66% .49 70% .53 77% .66 
LEVIN 69.5% .54 71% .56 86.5% .80 83% .74 

5. Establishing the Upper Bound for the Task 

In order to evaluate  the pe r fo rmance  of the a lgor i thm in practice, we  need to compare  
it to the accuracy of classification pe r fo rmed  by  an expert,  which  gives a realistic uppe r  
bound  for the task. The lively theoretical debate  on class m e m b e r s h i p  of verbs,  and  the 
complex nature  of the linguistic informat ion necessary to accomplish this task, led us to 
believe that  the task is difficult and not  likely to be pe r fo rmed  at 100% accuracy even 
b y  experts,  and  is also likely to show differences in classification be tween  experts. 
We repor t  here the results of two exper iments  which measure  expert  accuracy in 
classifying our  verbs (compared  to Levin 's  classification as the gold standard),  as well  
as inter-expert  agreement .  (See also Merlo and  Stevenson [2000a] for more  details.) 
To enable compar i son  of responses,  we  pe r fo rmed  a c losed-form quest ionnaire study, 
where  the n u m b e r  and  types  of the target  classes are defined in advance,  for which  
we p repa red  a forced-choice and  a non-forced-choice variant.  The forced-choice s tudy  
provides  data for a maximal ly  restricted exper imenta l  situation, which corresponds  
mos t  closely to the automat ic  verb classification task. However ,  we are also interested 
in slightly more  natural  r e su l t s - -p rov ided  by  the non-forced-choice t a s k - - w h e r e  the 
experts  can assign the verbs  to an "others"  category. 

We asked three experts  in lexical semantics  (all nat ive speakers  of English) to 
complete  the forced-choice electronic quest ionnaire study. Nei ther  author  was  a m o n g  
the three experts,  w h o  were  all professionals  in computa t iona l  or theoretical linguistics 
wi th  a specialty in lexical semantics.  Materials consisted of individual ly  r andomized  
lists of the same 59 verbs  used  for the machine  learning experiments ,  us ing Levin 's  
(1993) electronic index, available f rom Chicago Univers i ty  Press. The verbs  were  to 
be classified into the three target  c lasses- -unergat ive ,  unaccusative,  and  ob jec t -d rop- -  
which were  described in the instructions. 1° (All materials  and  instructions are available 
at URL h t tp : / /www. la t l . un ige . ch / l a t l / pe r sona l /pao la .h tml . )  

Table 16 shows an analysis of the results, repor t ing both  percent  agreement  and  
pairwise  agreement  (according to the Kappa  statistic) a m o n g  the experts  and  the 
program.  ~1 Assessing the percentage of verbs on which the experts  agree gives us 

10 The definitions of the classes were as follows. Unergative: A verb that assigns an agent theta role to the 
subject in the intransitive. If it is able to occur transitively, it can have a causative meaning. 
Unaccusative: A verb that assigns a patient/theme theta role to the subject in the intransitive. When it 
occurs transitively, it has a causative meaning. Object-Drop: A verb that assigns an agent role to the 
subject and patient/theme role to the object, which is optional. When it occurs transitively, it does not 
have a causative meaning. 

11 In the comparison of the program to the experts, we use the results of the classifier under single 
hold-out training--which yields an accuracy of 69.5%--because those results provide the classification 
for each of the individual verbs. 
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an intuitive measure. However, this measure does not take into account how much 
the experts agree o v e r  the expected agreement by chance. The latter is provided by 
the Kappa statistic, which we calculated following Klauer (1987, 55-57) (using the z 
distribution to determine significance; p ~ 0.001 for all reported results). The Kappa 
value measures the experts', and our classifier's, degree of agreement over chance, 
with the gold standard and with each other. Expected chance agreement varies with 
the number and the relative proportions of categories used by the experts. This means 
that two given pairs of experts might reach the same percent agreement on a given 
task, but not have the same expected chance agreement, if they assigned verbs to 
classes in different proportions. The Kappa statistic ranges from 0, for no agreement 
above chance, to 1, for perfect agreement. The interpretation of the scale of agreement 
depends on the domain, like all correlations. Carletta (1996) cites the convention from 
the domain of content analysis indicating that .67 K K < .8 indicates marginal agree- 
ment, while K > .8 is an indication of good agreement. We can observe that only one 
of our agreement figures comes close to reaching what would be considered "good" 
under this interpretation. Given the very high level of expertise of our human experts, 
we suspect then that this is too stringent a scale for our task, which is qualitatively 
quite different from content analysis. 

Evaluating the experts' performance summarized in Table 16, we can remark two 
things, which confirm our expectations. First, the task is difficult--i.e., not performed 
at 100% (or close) even by trained experts, when compared to the gold standard, with 
the highest percent agreement with Levin at 86.5%. Second, with respect to comparison 
of the experts among themselves, the rate of agreement is never very high, and the 
variability in agreement is considerable, ranging from .53 to .66. This evaluation is 
also supported by a 3-way agreement measure (Siegel and Castellan 1988). Applying 
this calculation, we find that the percentage of verbs to which the three experts gave 
the same classification (60%, K = 0.6) is smaller than any of the pairwise agreements, 
indicating that the experts do not all agree on the same subset of verbs. 

The observation that the experts often disagree on this difficult task suggests that 
a combination of expert judgments might increase the upper bound. We tried the 
simplest combination, by creating a new classification using a majority vote: each 
verb was assigned the label given by at least two experts. Only three cases did not 
have any majority label; in these cases we used the classification of the most accurate 
expert. This new classification does not improve the upper bound, reaching only 86.4% 
(K = .80) compared to the gold standard. 

The evaluation is also informative with respect to the performance of the program. 
On the one hand, we observe that if we take the best performance achieved by an 
expert in this task---86.5%--as the maximum achievable accuracy in classification, 
our algorithm then reduces the error rate over chance by approximately 68%, a very 
respectable result. In fact, the accuracy of 69.5% achieved by the program is only 1.5% 
less than one of the human experts in comparison to the gold standard. On the other 
hand, the algorithm still does not perform at expert level, as indicated by the fact that, 
for all experts, the lowest agreement score is with the program. 

One interesting question is whether experts and program disagree on the same 
verbs, and show similar patterns of errors. The program makes 18 errors, in total, com- 
pared to the gold standard. However, in 9 cases, at least one expert agrees with the 
classification given by the program. The program makes fewer errors on unergatives 
(3) and comparably many on unaccusatives and object-drops (7 and 8 respectively), in- 
dicating that members of the latter two classes are quite difficult to classify. This differs 
from the pattern of average agreement between the experts and Levin, who agree on 
17.7 (of 20) unergatives, 16.7 (of 19) unaccusatives, and 11.3 (of 20) object-drops. This 
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clearly indicates that the object-drop class is the most difficult for the human experts 
to define. This class is the most heterogeneous in our verb list, consisting of verbs 
from several subclasses of the "unexpressed object alternation" class in (Levin, 1993). 
We conclude that the verb classification task is likely easier for very homogeneous 
classes, and more difficult for more broadly defined classes, even when the exemplars 
share the critical syntactic behaviors. 

On the other hand, frequency does not appear to be a simple factor in explaining 
patterns of agreement between experts, or increases in accuracy. As in Section 4.3, 
we again analyze the relation between log frequency of the verbs and classification 
performance, here considering the performance of the experts. We grouped verbs in 
three log frequency classes: verbs with log frequency less than 2 (i.e., frequency less 
than 100), those with log frequency between 2 and 3 (i.e., frequency between 100 
and 1000), and those with log frequency over 3 (i.e., frequency over 1000). The low- 
frequency group had 24 verbs (14 unergatives, 5 unaccusatives, and 5 object-drop), 
the intermediate-frequency group had 25 verbs (5 unergatives, 9 unaccusatives, and 
11 object-drops), and the high-frequency group had 10 verbs (1 unergative, 5 unac- 
cusatives, and 4 object-drops). We found that verbs with high and low frequency yield 
better accuracy and agreement among the experts than the verbs with mid frequency. 
Neither the accuracy of the majority classification, nor the accuracy of the expert that 
had the best agreement with Levin, were linearly affected by frequency. For the ma- 
jority vote, verbs with frequency less than 100 yield an accuracy of 92%, K = .84; 
verbs with frequency between 100 and 1000, accuracy 80%, K = .69; and for verbs 
with frequency over 1000, accuracy 90%, K = .82. For the "best" expert, the pattern 
is similar: verbs with frequency less than 100 yield an accuracy of 87.5%, K = .74; 
verbs with frequency between 100 and 1000, accuracy 84%, K = .76; and verbs with 
frequency over 1000, accuracy 90%, K = .82. 

We can see here that different frequency groups yield different classification be- 
havior. However, the relation is not simple, and it is clearly affected by the composition 
of the frequency group: the middle group contains mostly unaccusative and object- 
drop verbs, which are the verbs with which our experts have the most difficulty. This 
confirms that the class of the verb is the predominant factor in their pattern of errors. 
Note also that the pattern of accuracy across frequency groupings is not the same as 
that of the program (see Section 4.3, which revealed the most errors by the program on 
the highest frequency verbs), again indicating qualitative differences in performance 
between the program and the experts. 

Finally, one possible shortcoming of the above analysis is that the forced-choice 
task, while maximally comparable to our computational experiments, may not be a 
natural one for human experts. To explore this issue, we asked two different experts 
in lexical semantics (one native speaker of English and one bilingual) to complete the 
non-forced-choice electronic questionnaire study; again, neither author served as one 
of the experts. In this task, in addition to the three verb classes of interest, an answer 
of "other" was allowed. Materials consisted of individually randomized lists of 119 
target and filler verbs taken from Levin's (1993) electronic index, as above. The targets 
were again the same 59 verbs used for the machine learning experiments. To avoid 
unwanted priming of target items, the 60 fillers were automatically selected from the 
set of verbs that do not share any class with any of the senses of the 59 target verbs 
in Levin's index. In this task, if we take only the target items into account, the experts 
agreed 74.6% of the time (K = 0.64) with each other, and 86% (K = 0.80) and 69% 
(K = 0.57) with the gold standard. (If we take all the verbs into consideration, they 
agreed in 67% of the cases [K = 0.56] with each other, and 68% [K = 0.55] and 60.5% 
[K = 0.46] with the gold standard, respectively.) These results show that the forced- 
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choice and non-forced-choice task are comparable in accuracy of classification and 
inter-judge agreement on the target classes, giving us confidence that the forced-choice 
results provide a reasonably stable upper bound for computational experiments. 

6. Discussion 

The work presented here contributes to some central issues in computational linguis- 
tics, by providing novel insights, data, and methodology in some cases, and by rein- 
forcing some previously established results in others. Our research stems from three 
main hypotheses: 

. 

. 

. 

Argument structure is the relevant level of representation for verb 
classification. 

Argument structure is manifested distributionally in syntactic 
alternations, giving rise to differences in subcategorization frames or the 
distributions of their usage, or in the properties of the NP arguments to 
a verb. 

This information is detectable in a corpus and can be learned 
automatically. 

We discuss the relevant debate on each of these hypotheses, and the contribution of 
our results to each, in the following subsections. 

6.1 Argument Structure and Verb Classification 
Argument structure has previously been recognized as one of the most promising 
candidates for accurate classification. For example, Basili, Pazienza, and Velardi (1996) 
argue that relational properties of verbs--their argument structure--are more infor- 
mative for classification than their definitional properties (e.g., the fact that a verb 
describes a manner of motion or a way of cooking). Their arguments rest on linguistic 
and psycholinguistic results on classification and language acquisition (in particular, 
Pinker, [1989]; Rosch [1978]). 

Our results confirm the primary role of argument structure in verb classification. 
Our experimental focus is particularly clear in this regard because we deal with verbs 
that are "minimal pairs" with respect to argument structure. By classifying verbs that 
show the same subcategorizations (transitive and intransitive) into different classes, 
we are able to eliminate one of the confounds in classification work created by the 
fact that subcategorization and argument structure are often co-variant. We can infer 
that the accuracy in our classification is due to argument structure information, as 
subcategorization is the same for all verbs. Thus, we observe that the content of the 
thematic roles assigned by a verb is crucial for classification. 

6.2 Argument Structure and Distributional Statistics 
Our results further support the assumption that thematic differences across verb 
classes are apparent not only in differences in subcategorization frames, but also in 
differences in their frequencies. This connection relies heavily on the hypothesis that 
lexical semantics and lexical syntax are correlated, following Levin (1985; 1993). How- 
ever, this position has been challenged by Basili, Pazienza, and Velardi (1996) and 
Boguraev and Briscoe (1989), among others. For example, in an attempt to assess 
the actual completeness and usefulness of the Longman Dictionary of Contemporary 
English (LDOCE) entries, Boguraev and Briscoe (1989) found that people assigned a 
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"change of possession" meaning both to verbs that had dative-related subcategoriza- 
tion frames (as indicated in the LDOCE) and to verbs that did not. Conversely, they 
also found that both verbs that have a change-of-possession component in their mean- 
ing and those that do not could have a dative code. They conclude that the thesis put 
forth by Levin (1985) is only partially supported. Basili, Pazienza, and Velardi (1996) 
show further isolated examples meant to illustrate that lexical syntax and semantics 
are not in a one-to-one relation. 

Many recent results, however, seem to converge in supporting the view that the 
relation between lexical syntax and semantics can be usefully exploited (Aone and 
McKee 1996; Dorr 1997; Dorr, Garman, and Weinberg 1995; Dorr and Jones 1996; La- 
pata and Brew 1999; Schulte im Walde 2000; Siegel 1998; Siegel 1999). Our work in 
particular underscores the relation between the syntactic manifestations of argument 
structure, and lexical semantic class. In light of these recent successes, the conclusions 
in Boguraev and Briscoe (1989) are clearly too pessimistic. In fact, their results do not 
contradict the more recent ones. First of all, it is not the case that if an implication 
holds from argument structure to subcategorization (change of possession implies da- 
tive shift), the converse also holds. It comes as no surprise that verbs that do not 
have any change-of-possession component in their meaning may also show dative 
shift syntactically. Secondly, as Boguraev and Briscoe themselves note, Levin's state- 
ment should be interpreted as a statistical trend, and as such, Boguraev and Briscoe's 
results also confirm it. They claim however, that in adopting a statistical point of view, 
predictive power is lost. Our work shows that this conclusion is not appropriate either: 
the correlation is strong enough to be useful to predict semantic classification, at least 
for the argument structures that have been investigated. 

6.3 Detection of Argument Structure in Corpora 
Given the manifestation of argument structure in statistical distributions, we view cor- 
pora, especially if annotated with currently available tools, as repositories of implicit 
grammars, which can be exploited in automatic verb-classification tasks. Besides es- 
tablishing a relationship between syntactic alternations and underlying semantic prop- 
erties of verbs, our approach extends existing corpus-based learning techniques to the 
detection and automatic acquisition of argument structure. To date, most work in this 
area has focused on learning of subcategorization from unannotated or syntactically 
annotated text (e.g., Brent [1993]; Sanfilippo and Poznanski [1992]; Manning [1993]; 
Collins [1997]). Others have tackled the problem of lexical semantic classification, but 
using only subcategorization frequencies as input data (Lapata and Brew 1999; Schulte 
im Walde 2000). Specifically, these researchers have not explicitly addressed the def- 
inition of features to tap directly into thematic role differences that are not reflected 
in subcategorization distinctions. On the other hand, when learning of thematic role 
assignment has been the explicit goal, the text has been semantically annotated (Web- 
ster and Marcus 1989), or external semantic resources have been consulted (Aone and 
McKee 1996; McCarthy 2000). We extend these results by showing that thematic in- 
formation can be induced from linguistically-guided counts in a corpus, without the 
use of thematic role tagging or external resources such as WordNet. 

Finally, our results converge with the increasing agreement that corpus-based tech- 
niques are fruitful in the automatic construction of computational lexicons, providing 
machine readable dictionaries with complementary, reusable resources, such as fre- 
quencies of argument structures. Moreover, these techniques produce data that is eas- 
ily updated, as the information contained in corpora changes all the time, allowing 
for adaptability to new domains or usage patterns. This dynamic aspect could be ex- 
ploited if techniques such as the one presented here are developed, which can work 
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on a rough collection of texts, and do not require a carefully balanced corpus or time- 
consuming semantic tagging. 

7. Related Work 

We conclude from the discussion above that our own work and work of others support 
our hypotheses concerning the importance of the relation between classes of verbs and 
the syntactic expression of argument structure in corpora. In light of this, it is instruc- 
tive to evaluate our results in the context of other work that shares this view. Some 
related work requires either exact exemplars for acquisition, or external pre-compiled 
resources. For example, Dorr (1997) summarizes a number of automatic classification 
experiments based on encoding Levin's alternations directly, as symbolic properties 
of a verb (Dorr, Garman, and Weinberg 1995; Dorr and Jones 1996). Each verb is rep- 
resented as the binary settings of a vector of possible alternations, acquired through 
a large corpus analysis yielding exemplars of the alternation. To cope with sparse 
data, the corpus information is supplemented by syntactic information obtained from 
the LDOCE and semantic information obtained from WordNet. This procedure clas- 
sifies 95 unknown verbs with 61% accuracy. Dorr also remarks that this result could 
be improved to 83% if missing LDOCE codes were added. While Dorr's work re- 
quires finding exact exemplars of the alternation, Oishi and Matsumoto (1997) present 
a method that, like ours, uses surface indicators to approximate underlying proper- 
ties. From a dictionary of dependency relations, they extract case-marking particles as 
indicators of the grammatical function properties of the verbs (which they call the- 
matic properties), such as subject and object. Adverbials indicate aspectual properties. 
The combination of these two orthogonal dimensions gives rise to a classification of 
Japanese verbs. 

Other work has sought to combine corpus-based extraction of verbal properties 
with statistical methods for classifying verbs. Siegel's work on automatic aspectual 
classification (1998, 1999) also reveals a close relationship between verb-related syn- 
tactic and semantic information. In this work, experiments to learn aspectual classifi- 
cation from linguistically-based numerical indicators are reported. Using combinations 
of seven statistical indicators (some morphological and some reflecting syntactic co- 
occurrences), it is possible to learn the distinction between events and states for 739 
verb tokens with an improvement of 10% over the baseline (error rate reduction of 
74%), and to learn the distinction between culminated and non-culminated events for 
308 verb tokens with an improvement of 11% (error rate reduction of 29%) (Siegel 
1999). 

In work on lexical semantic verb classification, Lapata and Brew (1999) further 
support the thesis of a predictive correlation between syntax and semantics in a statis- 
tical framework, showing that the frequency distributions of subcategorization frames 
within and across classes can disambiguate the usages of a verb with more than one 
known lexical semantic class. On 306 verbs that are disambiguated by subcategoriza- 
tion frame, they achieve 91.8% accuracy on a task with a 65.7% baseline, for a 76% 
reduction in error rate. On 31 verbs that can take the same subcategorization(s) in 
different classes--more similar to our situation in that subcategorization alone cannot 
distinguish the classes--they achieve 83.9% accuracy compared to a 61.3% baseline, 
for a 58% reduction in error. Aone and McKee (1996), working with a much coarser- 
grained classification of verbs, present a technique for predicate-argument extraction 
from multi-lingual texts. Like ours, their work goes beyond statistics over subcate- 
gorizations to include counts over the more directly semantic feature of animacy. No 
numerical evaluation of their results is provided. 

400 



Merlo and Stevenson Statistical Verb Classification 

Schulte im Walde (2000) applies two clustering methods  to two types of frequency 
data for 153 verbs from 30 Levin (1993) classes. One set of experiments uses verb 
subcategorization frequencies, and the other uses subcategorization frequencies plus 
selectional preferences (a numerical measure based on an adaptat ion of the relative 
entropy method of Resnik [1996]). The best results achieved are a correct classification 
of 58 verbs out of 153, with a precision of 61% and recall of 36%, obtained using 
only subcategorization frequencies. We calculate that this corresponds to an F-score of 
45% with balanced precision and recall, n The use of selectional preference information 
decreases classification performance under  either clustering algorithm. The results are 
somewhat  difficult to evaluate further, as there is no description of the classes included. 
Also, the method of counting correctness entails that some "correct" classes may  be 
split across distant clusters (this level of detail is not  reported), so it is unclear how 
coherent the class behaviour actually is. 

McCarthy (2000) proposes a method to identify diathesis alternations. After learn- 
ing subcategorization frames, based on a parsed corpus, selectional preferences are 
acquired for slots of the subcategorization frames, using probability distributions over 
Wordnet classes. Alternations are detected by testing the hypothesis that, given any 
verb, the selectional preferences for arguments occurring in alternating slots will be 
more similar to each other than those for slots that do not alternate. For instance, given 
a verb participating in the causative alternation, its selectional preferences for the sub- 
ject in an intransitive use, and for the object in a transitive use, will be more similar 
to each other than the selectional preferences for these two slots of a verb that does 
not participate in the causative alternation. This method achieves the best accuracy 
for the causative and the conative alternations (73% and 83%, respectively), despite 
sparseness of data. McCarthy reports that a simpler measure of selectional preferences 
based simply on head words yields a lower 63% accuracy. Since this latter measure 
is very similar to our CAUS feature, we think that our results would  also improve by 
adopting a similar method of abstracting from head words to classes. 

Our work extends each of these approaches in some dimension, thereby provid- 
ing additional support  for the hypothesis that syntax and semantics are correlated in 
a systematic and predictive way. We extend Dorr 's  alternation-based automatic classi- 
fication to a statistical setting. By using distributional approximations of indicators of 
alternations, we solve the sparse data problem without  recourse to external sources of 
knowledge, such as the LDOCE, and in addition, we are able to learn argument  struc- 
ture alternations using exclusively positive examples. We improve on the approach of 
Oishi and Matsumoto (1997) by learning argument  structure properties, which, unlike 
grammatical functions, are not marked morphologically, and by not relying on exter- 
nal sources of knowledge. Furthermore, in contrast to Siegel (1998) and Lapata and 
Brew (1999) our method applies successfully to previously unseen words--i .e. ,  test 
cases that were not represented in the training s e t .  13 This is a very important  property 
of lexical acquisition algorithms to be used for lexicon organization, as their main 
interest lies in being applied to unknown words. 

On the other hand,  our approach is similar to the approaches of Siegel, and La- 
pata and Brew (1999), in attempting to learn semantic notions from distributions of 

12 A baseline of 5% is reported, based on a closest-neighbor pairing of verbs, but it is not straightforward 
to compare this task to the proposed clustering algorithm. Determining a meaningful baseline for 
unsupervised clustering is clearly a challenge, but this gives an indication that the clustering task is 
indeed difficult. 

13 Siegel (1998) reports two experiments over verb types with disjoint training and test sets, but the 
results were not significantly different from the baseline. 
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indicators that can be gleaned from a text. In our case, we are trying to learn argu- 
ment structure, a finer-grained classification than the dichotomic distinctions studied 
by Siegel. Like Lapata and Brew, three of our indicators--TRANS, VBN, PASS--are based 
on the assumption that distributional differences in subcategorization frames are re- 
lated to underlying verb class distinctions. However, we also show that other syntactic 
indicators--cAUS and ANIM--can be devised that tap directly into the argument struc- 
ture of a verb. Unlike Schulte im Walde (2000), we find the use of these semantic 
features helpful in classification--using only TRANS and its related features, VBN and 
PASS, we achieve only 55% accuracy, in comparison to 69.8% using the full set of fea- 
tures. This can perhaps be seen as support for our hypothesis that argument structure 
is the right level of representation for verb class distinctions, since it appears that our 
features that capture thematic differences are useful in classification, while Schulte im 
Walde's selectional restriction features were not. 

Aone and McKee (1996) also use features that are intended to tap into both sub- 
categorization and thematic role distinctions--frequencies of the transitive use and 
animate subject use. In our task, we show that subject animacy can be profitably ap- 
proximated solely with pronoun counts, avoiding the need for reference to external 
sources of semantic information used by Aone and McKee. In addition, our work ex- 
tends theirs in investigating much finer-grained verb classes, and in classifying verbs 
that have multiple argument structures. While Aone and McKee define each of their 
classes according to a single argument structure, we demonstrate the usefulness of 
syntactic features that capture relations across different argument structures of a sin- 
gle verb. Furthermore, while Aone and McKee, and others, look at relative frequency 
of subcategorization frames (as with our TRANS feature), or relative frequency of a 
property of NPs within a particular grammatical function (as with our ANIM feature), 
we also look at the paradigmatic relations across a text between thematic arguments 
in different alternations (with our CAUS feature). 

McCarthy (2000) shows that a method very similar to ours can be used for identi- 
fying alternations. Her qualitative results confirm, however, what was argued in Sec- 
tion 2 above: counts that tap directly into the thematic assignments are necessary to 
fully identify a diathesis alternation. In fact, on close inspection, McCarthy's method 
does not distinguish between the induced-action alternation (which the unergatives 
exhibit) and the causative/inchoative alternation (which the unaccusatives exhibit); 
thus, her method does not discriminate two of our classes. It is likely that a combina- 
tion of our method, which makes the necessary thematic distinctions, and her more 
sophisticated method of detecting alternations would give very good results. 

8. Limitations and Future Work 

The classification results show that our method is powerful, and suited to the clas- 
sification of unknown verbs. However, we have not yet addressed the problem of 
verbs that can have multiple classifications. We think that many cases of ambigu- 
ous classification of the lexical entry for a verb can be addressed with the notion 
of intersective sets introduced by Dang et al. (1998). This is an important concept, 
which proposes that "regular" ambiguity in classification--i.e., sets of verbs that have 
the same multi-way classifications according to Levin (1993)--can be captured with 
a finer-grained notion of lexical semantic classes. Thus, subsets of verbs that occur 
in the intersection of two or more Levin classes form in themselves a coherent se- 
mantic (sub)class. Extending our work to exploit this idea requires only defining 
the classes appropriately; the basic approach will remain the same. Given the cur- 
rent demonstration of our method on fine-grained classes that share subcategoriza- 
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tion alternations, we are optimistic regarding its future performance on intersective 
sets. 

Because we assume that thematic properties are reflected in alternations of argu- 
ment structure, our features require searching for relations across occurrences of each 
verb. This motivated our initial experimental focus on verb types. However, when 
we turn to consider ambiguity, we must also address the problem that individual in- 
stances of verbs may come from different classes, and we may (like Lapata and Brew 
[1999]) want to classify the individual tokens of a verb. In future research we plan 
to extend our method to the case of ambiguous tokens, by experimenting with the 
combination of several sources of information: the classification of each instance will 
be a function of a bias for the verb type (using the cross-corpus statistics we collect), 
but also of features of the usage of the instance being classified (cf., Lapata and Brew 
[1999]; Siegel [1998]). 

Finally, corpus-based learning techniques collect statistical information related to 
language use, and are a good starting point for studying human linguistic perfor- 
mance. This opens the way to investigating the relation of linguistic data in text to 
people's linguistic behaviour and use. For example, Merlo and Stevenson (1998) show 
that, contrary to the naive assumption, speakers' preferences in syntactic disambigua- 
tion are not simply directly related to frequency (i.e., a speaker's preference for one 
construction over another is not simply modelled by the frequency of the construc- 
tion, or of the words in the construction). Thus, the kind of corpus investigation we 
are advocating--founded on in-depth linguistic analysis--holds promise for building 
more natural NLP systems which go beyond the simplest assumptions, and tie to- 
gether statistical computational linguistic results with experimental psycholinguistic 
data. 

9. Conclusions 

In this paper, we have presented an in-depth case study, in which we investigate 
machine learning techniques for automatically classifying a set of verbs into classes 
determined by their argument structures. We focus on the three major classes of op- 
tionally intransitive verbs in English, which cannot be discriminated by their subcate- 
gorizations, and therefore require distinctive features that are sensitive to the thematic 
properties of the verbs. We develop such features and automatically extract them from 
very large, syntactically annotated corpora. Results show that a small number of lin- 
guistically motivated lexical features are sufficient to achieve a 69.8% accuracy rate 
in a three-way classification task with a baseline (chance) performance of 33.9%, for 
which the best performance achieved by a human expert is 86.5%. 

Returning to our original questions of what can and need be learned about the 
relational properties of verbs, we conclude that argument structure is both a highly 
useful and learnable aspect of verb knowledge. We observe that relevant semantic 
properties of verb classes (such as causativity, or animacy of subject) may be suc- 
cessfully approximated through countable syntactic features. In spite of noisy data 
(arising from diverse sources such as tagging errors, or limitations of our extraction 
patterns), the lexical properties of interest are reflected in the corpora robustly enough 
to positively contribute to classification. 

We remark, however, that deep linguistic analysis cannot be eliminated--in our 
approach it is embedded in the selection of the features to count. Specifically, our 
features are derived through a detailed analysis of the differences in thematic role as- 
signments across the verb classes under investigation. Thus, an important contribution 
of the work is the proposed mapping between the thematic assignment properties of 
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the verb classes, and the statistical distributions of their surface syntactic properties.  
We think that using such linguistically mot ivated features makes the approach very  
effective and easily scalable: we report  a 54% reduct ion in error rate (a 68% reduction, 
w hen  the h u m a n  expert-based upper  bound  is considered), using only five features 
that are readily extractable from automatically annotated corpora. 
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Appendix A 

The fo l lowing  three  tables con t a in  the overal l  f r equency  a n d  the n o r m a l i z e d  feature  
va lues  for each of the 59 verbs  in  our  e x p e r i m e n t a l  set. 

Unergative Verbs 
Freq VBN PASS TRANS CAUS ANIM 

Min Value 8 0.00 0.00 0.00 0.00 0.00 
Max Value 4088 1.00 0.39 0.74 0.00 1.00 

floated 176 0.43 0.26 0.74 0.00 0.17 
hurried 86 0.40 0.31 0.50 0.00 0.37 
jumped 4088 0.09 0.00 0.03 0.00 0.20 
leaped 225 0.09 0.00 0.05 0.00 0.13 
marched 238 0.10 0.01 0.09 0.00 0.12 
paraded 33 0.73 0.39 0.46 0.00 0.50 
raced 123 0.01 0.00 0.06 0.00 0.15 
rushed 467 0.22 0.12 0.20 0.00 0.10 
vaulted 54 0.00 0.00 0.41 0.00 0.03 
wandered 67 0.02 0.00 0.03 0.00 0.32 
galloped 12 1.00 0.00 0.00 0.00 0.00 
glided 14 0.00 0.00 0.08 0.00 0.50 
hiked 25 0.28 0.12 0.29 0.00 0.40 
hopped 29 0.00 0.00 0.21 0.00 1.00 
jogged 8 0.29 0.00 0.29 0.00 0.33 
scooted 10 0.00 0.00 0.43 0.00 0.00 
scurried 21 0.00 0.00 0.00 0.00 0.14 
skipped 82 0.22 0.02 0.64 0.00 0.16 
tiptoed 12 0.17 0.00 0.00 0.00 0.00 
trotted 37 0.19 0.17 0.07 0.00 0.18 

Unaccusative Verbs 
Freq VBN PASS TRANS CAUS ANIM 

Min Value 13 0.16 0.00 0.02 0.00 0.00 
Max Value 5543 0.95 0.80 0.76 0.41 0.36 

boiled 58 0.92 0.70 0.42 0.00 0.00 
cracked 175 0.61 0.19 0.76 0.02 0.14 
dissolved 226 0.51 0.58 0.71 0.05 0.11 
exploded 409 0.34 0.02 0.66 0.37 0.04 
flooded 235 0.47 0.57 0.44 0.04 0.03 
fractured 55 0.95 0.76 0.51 0.00 0.00 
hardened 123 0.92 0.55 0.56 0.12 0.00 
melted 70 0.80 0.44 0.02 0.00 0.19 
opened 3412 0.21 0.09 0.69 0.16 0.36 
solidified 34 0.65 0.21 0.68 0.00 0.12 
collapsed 950 0.16 0.00 0.16 0.01 0.02 
cooled 232 0.85 0.21 0.29 0.13 0.11 
folded 189 0.73 0.33 0.23 0.00 0.00 
widened 1155 0.18 0.02 0.13 0.41 0.01 
changed 5543 0.73 0.23 0.47 0.22 0.08 
cleared 1145 0.58 0.40 0.50 0.31 0.06 
divided 1539 0.93 0.80 0.17 0.10 0.05 
simmered 13 0.83 0.00 0.09 0.00 0.00 
stabilized 286 0.92 0.13 0.18 0.35 0.00 
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Object-Drop Verbs 
Freq VBN PASS TRANS CAUS ANIM 

Min Value 39 0.10 0.04 0.21 0.00 0.00 
Max Value 15063 0.95 0.99 1.00 0.24 0.42 

carved 185 0.85 0.66 0.98 0.00 0.00 
danced 88 0.22 0.14 0.37 0.00 0.00 
kicked 308 0.30 0.18 0.97 0.00 0.33 
knitted 39 0.95 0.99 0.93 0.00 0.00 
painted 506 0.72 0.18 0.71 0.00 0.38 
played 2689 0.38 0.16 0.24 0.00 0.00 
reaped 172 0.56 0.05 0.90 0.00 0.22 
typed 57 0.81 0.74 0.81 0.00 0.00 
washed 137 0.79 0.60 1.00 0.00 0.00 
yelled 74 0.10 0.04 0.38 0.00 0.00 
borrowed 1188 0.77 0.15 0.60 0.13 0.19 
inherited 357 0.60 0.13 0.64 0.06 0.32 
organized 1504 0.85 0.38 0.65 0.18 0.07 
rented 232 0.72 0.22 0.61 0.00 0.42 
sketched 44 0.67 0.17 0.44 0.00 0.20 
cleaned 160 0.83 0.47 0.21 0.05 0.21 
packed 376 0.84 0.12 0.40 0.05 0.19 
studied 901 0.66 0.17 0.57 0.05 0.11 
swallowed 152 0.79 0.44 0.35 0.04 0.22 
called 15063 0.56 0.22 0.72 0.24 0.16 

Appendix B 

Pe r fo rmance  of all the subse ts  of features,  i n  order  of dec reas ing  accuracy. To d e t e r m i n e  
w h e t h e r  the difference b e t w e e n  a n y  two  resul ts  is s ta t is t ical ly  s ignif icant ,  the 95% 
conf idence  in te rva l  can  be  ca lcu la ted  for each of the two  results ,  a n d  the two  ranges  
checked  to see w h e t h e r  they  over lap .  To do  this, take each accuracy  p lu s  a n d  m i n u s  
2.01 t imes  its associa ted  s t a n d a r d  error  to get the 95% conf idence  r ange  (dr = 49, 
t = 2.01). If the two  r anges  over lap ,  t h e n  the difference in  accuracy  is no t  s igni f icant  
at the p < .05 level.  

Accuracy SE Features Accuracy SE Features 

69.8 0.5 TRANS PASS VBN CAUS ANIM 57.3 0.5 TRANS CAUS 
69.8 0.5 TRANS VBN CAUS ANIM 57.3 0.5 PASS VBN ANIM 
67.3 0.6 TRANS PASS VBN ANIM 56.7 0.5 PASS CAUS ANIM 
66.7 0.5 TRANS VBN ANIM 55.7 0.5 VBN CAUS 
66.5 0.5 TRANS PASS CAUS ANIM 55.7 0.1 CAUS 
64.4 0.5 TRANS VBN CAUS 55.4 0.4 PASS CAUS 
63.2 0.6 TRANS PASS VBN CAUS 55.0 0.6 TIKANS PASS VBN 
63.0 0.5 TRANS PASS ANIM 54.7 0.4 TRANS PASS 
62.9 0.4 TRANS CAUS AN~M 54.2 0.5 TRANS VBN 
62.1 0.5 CAUS ANIM 52.5 0.5 VBN 
61.7 0.5 TRANS PASS CAUS 50.9 0.5 PASS ANIM 
61.6 0.6 PASS VBN CAUS ANIM 50.2 0.6 PASS VBN 
60.1 0.4 VBN CAUS ANIM 50.2 0.5 PASS 
59.5 0.6 TRANS ANIM 47.1 0.4 TKANS 
59.4 0.5 VBN ANIM 35.3 0.5 ANIM 
57.4 0.6 PASS VBN CAUS 
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