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A statistical model/or segmentation and word discovery in continuous speech is presented. An 
incremental unsupervised learning algorithm to infer word boundaries based on this model is 
described. Results are also presented of empirical tests showing that the algorithm is competitive 
with other models that have been used/or similar tasks. 

1. Introduction 

English speech lacks the acoustic analog of blank spaces that people are accustomed 
to seeing between words in written text. Discovering words in continuous spoken 
speech is thus an interesting problem and one that has been treated at length in the 
literature. The problem of identifying word boundaries is particularly significant in 
the parsing of written text in languages that do not explicitly include spaces between 
words. In addition, if we assume that children start out with little or no knowledge 
of the inventory of words the language possesses identification of word boundaries is 
a significant problem in the domain of child language acquisition. 1 Although speech 
lacks explicit demarcation of word boundaries, it is undoubtedly the case that it never- 
theless possesses significant other cues for word discovery. However, it is still a matter 
of interest to see exactly how much can be achieved without the incorporation of these 
other cues; that is, we are interested in the performance of a bare-bones language model. 
For example, there is much evidence that stress patterns (Jusczyk, Cutler, and Redanz 
1993; Cutler and Carter 1987) and phonotactics of speech (Mattys and Jusczyk 1999) 
are of considerable aid in word discovery. But a bare-bones statistical model is still 
useful in that it allows us to quantify precise improvements in performance upon the 
integration of each specific cue into the model. We present and evaluate one such 
statistical model in this paper. 2 

The main contributions of this study are as follows: First, it demonstrates the ap- 
plicability and competitiveness of a conservative, traditional approach for a task for 
which nontraditional approaches have been proposed even recently (Brent 1999; Brent 
and Cartwright 1996; de Marcken 1995; Elman 1990; Christiansen, Allen, and Seiden- 
berg 1998). Second, although the model leads to the development of an algorithm that 
learns the lexicon in an unsupervised fashion, results of partial supervision are pre- 
sented, showing that its performance is consistent with results from learning theory. 
Third, the study extends previous work to higher-order n-grams, specifically up to 
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1 See, however, work in Jusczyk and Hohne (1997) and Jusczyk (1997) that presents strong evidence in 
favor of a hypothesis that children already have a reasonably powerful and accurate lexicon at their 
disposal as early as 9 months of age. 

2 Implementations of all the programs discussed in this paper and the input corpus are readily available 
upon request from the author. The programs (totaling about 900 lines) have been written in C++ to 
compile under Unix/Linux. The author will assist in porting it to other architectures or to versions of 
Unix other than Linux or SunOS/Solaris if required. 

(~) 2001 Association for Computational Linguistics 



Computational Linguistics Volume 27, Number 3 

trigrams, and discusses the results in their light. Finally, results of experiments sug- 
gested in Brent (1999) regarding different ways of estimating phoneme probabilities 
are also reported. Wherever possible, results are averaged over 1000 repetitions of the 
experiments, thus removing any potential advantages the algorithm may have had 
due to ordering idiosyncrasies within the input corpus. 

Section 2 briefly discusses related literature in the field and recent work on the 
same topic. The model is described in Section 3. Section 4 describes an unsupervised 
learning algorithm based directly on the model developed in Section 3. This section 
also describes the data corpus used to test the algorithms and the methods used. 
Results are presented and discussed in Section 5. Finally, the findings in this work are 
summarized in Section 6. 

2. Related Work 

While there exists a reasonable body of literature regarding text segmentation, espe- 
cially with respect to languages such as Chinese and Japanese that do not explicitly 
include spaces between words, most of the statistically based models and algorithms 
tend to fall into the supervised learning category. These require the model to be trained 
first on a large corpus of text before it can segment its input. 3 It is only recently that in- 
terest in unsupervised algorithms for text segmentation seems to have gained ground. 
A notable exception in this regard is the work by Ando and Lee (1999) which tries 
to infer word boundaries from character n-gram statistics of Japanese Kanji strings. 
For example, a decision to insert a word boundary between two characters is made 
solely based on whether character n-grams adjacent to the proposed boundary are 
relatively more frequent than character n-grams that straddle it. This algorithm, how- 
ever, is not based on a formal statistical model and is closer in spirit to approaches 
based on transitional probability between phonemes or syllables in speech. One such 
approach derives from experiments by Saffran, Newport,  and Aslin (1996) suggesting 
that young children might place word boundaries between two syllables where the 
second syllable is surprising given the first. This technique is described and evaluated 
in Brent (1999). Other approaches not based on explicit probability models include 
those based on information theoretic criteria such as minimum description length 
(Brent and Cartwright 1996; de Marcken 1995) and simple recurrent networks (Elman 
1990; Christiansen, Allen, and Seidenberg 1998). The maximum likelihood approach 
due to Olivier (1968) is probabilistic in the sense that it is geared toward explicitly 
calculating the most probable segmentation of each block of input utterances (see also 
Batchelder 1997). However, the algorithm involves heuristic steps in periodic purg- 
ing of the lexicon and in the creation in the lexicon of new words. Furthermore, this 
approach is again not based on a formal statistical model. 

Model Based Dynamic Programming, hereafter referred to as MBDP-1 (Brent 1999), 
is probably the most recent work that addresses exactly the same issue as that con- 
sidered in this paper. Both the approach presented in this paper and Brent's MBDP-1 
are unsupervised approaches based on explicit probability models. Here, we describe 
only Brent's MBDP-1 and direct the interested reader to Brent (1999) for an excellent 
review and evaluation of many of the algorithms mentioned above. 

2.1 Brent's model-based dynamic programming method 
Brent (1999) describes a model-based approach to inferring word boundaries in child- 
directed speech. As the name implies, this technique uses dynamic programming to 

3 See, for example, Zimin and Tseng (1993). 
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infer the best segmentation. It is assumed that the entire input corpus, consisting of a 
concatenation of all utterances in sequence, is a single event in probability space and 
that the best segmentation of each utterance is implied by the best segmentation of the 
corpus itself. The model thus focuses on explicitly calculating probabilities for every 
possible segmentation of the entire corpus, and subsequently picking the segmentation 
with the maximum probability. More precisely, the model attempts to calculate 

P(wm) = ~ ~ ~ ~P(Wm i n, L , i , s )P (n ,L ,d , s )  
n L f s 

for each possible segmentation of the input corpus where the left-hand side is the exact 
probability of that particular segmentation of the corpus into words Wm = WlW2 " ' "  Win; 

and the sums are over all possible numbers of words n, in the lexicon, all possible 
lexicons L, all possible frequencies f ,  of the individual words in this lexicon and all 
possible orders of words s, in the segmentation. In practice, the implementation uses 
an incremental approach that computes the best segmentation of the entire corpus 
up to step i, where the ith step is the corpus up to and including the ith utterance. 
Incremental performance is thus obtained by computing this quantity anew after each 
segmentation i - 1, assuming however, that segmentations of utterances up to but not 
including i are fixed. 

There are two problems with this approach. First, the assumption that the entire 
corpus of observed speech should be treated as a single event in probability space ap- 
pears rather radical. This fact is appreciated even in Brent (1999), which states "From a 
cognitive perspective, we know that humans segment each utterance they hear with- 
out waiting until the corpus of all utterances they will ever hear becomes available" 
(p. 89). Thus, although the incremental algorithm in Brent (1999) is consistent with a 
developmental model, the formal statistical model of segmentation is not. 

Second, making the assumption that the corpus is a single event in probability 
space significantly increases the computational complexity of the incremental algo- 
rithm. The approach presented in this paper circumvents these problems through the 
use of a conservative statistical model that is directly implementable as an incremental 
algorithm. In the following section, we describe the model and how its 2-gram and 
3-gram extensions are adapted for implementation. 

3. Model Description 

The language model described here is a fairly standard one. The interested reader is 
referred to Jelinek (1997, 57-78), where a detailed exposition can be found. Basically, 
we seek 

--- argmax P(W) (1) 
W 

n 

= a r g m a x r - [ P ( w i l w l  . . . . .  Wi_l) (2) 
W i=1 

n 

= a r g m i n ~ - ~ - l o g P ( w i l w l  . . . . .  w i -1 )  (3) 
W i=1 

where W = wl . . . . .  wn with w i C L denotes a particular string of n words belonging to 
a lexicon L. 

The usual n-gram approximation is made by grouping histories wl . . . . .  wi-1  into 
equivalence classes, allowing us to collapse contexts into histories at most n - 1 words 
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backwards (for n-grams). Estimations of the required n-gram probabilities are then 
done with relative frequencies using back-off to lower-order n-grams when a higher- 
order estimate is not reliable enough (Katz 1987). Back-off is done using the Witten and 
Bell (1991) technique, which allocates a probability of Ni/(Ni q- Si) t o  unseen/-grams 
at each stage, with the final back-off from unigrams being to an open vocabulary 
where word probabilities are calculated as a normalized product of phoneme or letter 
probabilities. Here, Ni is the number of distinct /-grams and Si is the sum of their 
frequencies. The model can be summarized as follows: 

( s~ C(w~_2,wi_l,wi) if C(wi_2, Wi_l, wi) ~> 0 
p(wilwi_2, wi_l ) = INB+S3 C(w,_,,w,) (4) 

[ N3~3P(wi [ Wi-1) otherwise 

( s2 C(wi_l,wi) 
P(Wi ] Wi--1) ~ -  ~ N2+S2 ~ if C(wi-1, wi) > 0 

N2 P(wi) (5) / ~ otherwise 

( c ( ~ )  
P(wi) = ~Nkts ~ if C(wi) > 0 (6) 

[ ~ P ~ ( w i )  otherwise 

ki 

r(#) I-I r(wi~']) 
PE (wi) = j = l  

1 - r(#) (7) 

where C 0 denotes the count or frequency function, ki denotes the length of word wi, 
excluding the sentinel character #, wi[j] denotes its jth phoneme, and r 0 denotes the 
relative frequency function. The normalization by dividing using 1 - r(#) in Equa- 
tion (7) is necessary because otherwise 

O 0  

~ P ( w )  = ~ ( 1 -  P(#))iP(#) (8) 
w i = 1  

= 1 - P(#) (9) 

Since we estimate P(w~]) by r(w~]), dividing by 1 - r ( # )  will ensure that ~ w  P(w) = 1. 

4. Method 

As in Brent (1999), the model described in Section 3 is presented as an incremental 
learner. The only knowledge built into the system at start-up is the phoneme table, 
with a uniform distribution over all phonemes, including the sentinel phoneme. The 
learning algorithm considers each utterance in turn and computes the most proba- 
ble segmentation of the utterance using a Viterbi search (Viterbi 1967) implemented 
as a dynamic programming algorithm, as described in Section 4.2. The most likely 
placement of word boundaries thus computed is committed to before the algorithm 
considers the next utterance presented. Committing to a segmentation involves learn- 
ing unigram, bigram, and trigram frequencies, as well as phoneme frequencies, from 
the inferred words. These are used to update the respective tables. 

To account for effects that any specific ordering of input utterances may have on 
the segmentations that are output, the performance of the algorithm is averaged over 
1000 runs, with each run receiving as input a random permutation of the input corpus. 

4.1 The input corpus 
The corpus, which is identical to the one used by Brent (1999), consists of orthographic 
transcripts made by Bernstein-Ratner (1987) from the CHILDES collection (MacWhin- 
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Table 1 
Twenty randomly chosen utterances from the input corpus with their orthographic transcripts. 
See the appendix for a list of the ASCII representations of the phonemes. 

Phonemic Transcription Orthographic English text 

hQ sIli 6v mi 
1Uk D*z D6 b7 wiT hIz h&t 
9 TINk 9 si 6nADR bUk 
tu 
Dis wAn 
r9t WEn De wOk 
huz an D6 tE16fon &lls 
sit dQn 
k&n yu rid It tu D6 dOgi 
D* 
du yu si him h( 
1Uk 
yu want It In 
W* did It go 
&nd WAt # Doz 
h9 m6ri 
oke Its 6 cIk 
y& 1Uk WAt yu did 
oke 
tek It Qt 

How silly of me 
Look, there's the boy with his hat 
I think I see another book 
Two 
This one 
Right when they walk 
Who's on the telephone, Alice? 
Sit down 
Can you feed it to the doggie? 
There 
Do you see him here? 
Look 
You want it in 
Where did it go? 
And what are those? 
Hi Mary 
Okay it's a chick 
Yeah, look what you did 
Okay 
Take it out 

ney and Snow 1985). The speakers in this study were nine mothers speaking freely to 
their children, whose ages averaged 18 months (range 13-21). Brent and his colleagues 
transcribed the corpus phonemically (using the ASCII phonemic representation in the 
appendix to this paper) ensuring that the number of subjective judgments in the pro- 
nunciation of words was minimized by transcribing every occurrence of the same 
word identically. For example, "look", "drink", and "doggie" were always transcribed 
"lUk", "driNk", and "dOgi" regardless of where in the utterance they occurred and 
which mother uttered them in what way. Thus transcribed, the corpus consists of a 
total of 9790 such utterances and 33,399 words, and includes one space after each 
word and one newline after each utterance. For purposes of illustration, Table 1 lists 
the first 20 such utterances from a random permutation of this corpus. 

It should be noted that the choice of this particular corpus for experimentation is 
motivated purely by its use in Brent (1999). As has been pointed out by reviewers of an 
earlier version of this paper, the algorithm is equally applicable to plain text in English 
or other languages. The main advantage of the CHILDES corpus is that it allows 
for ready comparison with results hitherto obtained and reported in the literature. 
Indeed, the relative performance of all the algorithms discussed is mostly unchanged 
when tested on the 1997 Switchboard telephone speech corpus with disfluency events 
removed. 

4.2 Algorithm 
The dynamic programming algorithm finds the most probable word sequence for each 
input utterance by assigning to each segmentation a score equal to its probability, and 
committing to the segmentation with the highest score. In practice, the implementation 
computes the negative logarithm of this score and thus commits to the segmentation 
with the least negative logarithm of its probability. The algorithm for the unigram 
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BEGIN 

Input (by ref) utterance u[O..n] where u[i] are the characters in it. 

bestSegpoint := n; 
bestScore := evalWord(u[O..n]); 
for i from 0 to n-l; do 

subUtterance := copy(u[O..i]) ; 
word := copy(u[i+l..n]); 
score := evalUtterance(subUtterance) + evalWord(word); 
if (score < bestScore); then 

bestScore = score; 
bestSegpoint := i; 

fi 
done 
insertWordBoundary (u, bestSegpoint) 
return bestScore ; 

END 

Figure 1. Algorithm: evalUtterance 
Recursive optimization algorithm to find the best segmentation of an input utterance using the 
unigram language model described in this paper. 

BEGIN 
Input (by reference) word w[O..k] where w[i] are the phonemes in it. 

score = O; 
if L.frequency(word) =-- O; then { 

escape = L. size () / (L. size () +L. sumFrequencies ()) 
P_O = phonemes, relat iveFrequency ( ' # ' ) ; 
score = -log(escape) -log(P O/(I-P_O)); 
for each w[i]; do 

score -= log (phonemes. relat iveFrequency (w [i] ) ) ; 
done 

} else { 
P w = L.frequency(w)/(L.size()+L.sumFrequencies()) ; 
score = -log(P_w); 

} 

return score; 
END 

Figure 2. Function: evalWord 
The function to compute - logP(w) of an input word w. L stands for the lexicon object. If the 
word is novel, then it backs off to using a distribution over the phonemes in the word. 

language model  is presented in recursive form in Figure 1 for readability. The actual 
implementat ion,  however,  used an iterative version. The algori thm to evaluate the 
back-off probabili ty of a word  is given in Figure 2. Algorithms for b igram and t r igram 
language models  are s t raightforward extensions of that given for the unigram model.  
Essentially, the algori thm description can be s u m m ed  up semiformally as follows: For 
each input  utterance u, we evaluate every  possible way  of segmenting it as u = u' + w 
where  u' is a subutterance from the beginning of the original ut terance up  to some 
point  within it and w- - the  lexical difference be tween  u and u ' - - i s  treated as a word.  
The subutterance u' is itself evaluated recursively using the same algorithm. The base 
case for recursion when  the algori thm rewinds is obtained w h en  a subutterance cannot  
be split fur ther  into a smaller component  subutterance and word,  that is, w h en  its 
length is zero. Suppose for example,  that a given utterance is abcde, where  the letters 
represent  phonemes.  If seg(x) represents the best segmentat ion of the utterance x and 
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word(x) denotes that x is treated as a word, then 

~ word(abcde) 
seg(a) + word(bcde) 

seg(abcde) = best of seg(ab) + word(cde) 
seg(abc) + word(de) 
seg(abcd) + word(e) 

The evalUtterance algorithm in Figure 1 does precisely this. It initially assumes the 
entire input utterance to be a word on its own by assuming a single segmentation point 
at its right end. It then compares the log probability of this segmentation successively 
to the log probabilities of segmenting it into all possible subutterance-word pairs. 

The implementation maintains four separate tables internally, one each for uni- 
grams, bigrams, and trigrams, and one for phonemes. When the procedure is initially 
started, all the internal n-gram tables are empty. Only the phoneme table is popu- 
lated with equipossible phonemes. As the program considers each utterance in turn 
and commits to its best segmentation according to the evalUtterance algorithm, the 
various internal n-gram tables are updated correspondingly. For example, after some 
utterance abcde is segmented into a bc de, the unigram table is updated to increment the 
frequencies of the three entries a, bc, and de, each by 1, the bigram table to increment 
the frequencies of the adjacent bigrams a bc and bc de, and the trigram table to incre- 
ment the frequency of the trigram a bc de. 4 Furthermore, the phoneme table is updated 
to increment the frequencies of each of the phonemes in the utterance, including one 
sentinel for each word inferred. 5 Of course, incrementing the frequency of a currently 
unknown n-gram is equivalent to creating a new entry for it with frequency 1. Note 
that the very first utterance is necessarily segmented as a single word. Since all the 
n-gram tables are empty when the algorithm attempts to segment it, all probabilities 
are necessarily computed from the level of phonemes up. Thus, the more words in 
the segmentation of the first utterance, the more sentinel characters will be included 
in the probability calculation, and so the lesser the corresponding segmentation prob- 
ability will be. As the program works its way through the corpus, n-grams inferred 
correctly by virtue of their relatively greater preponderance compared to noise tend to 
dominate their respective n-gram distributions and thus dictate how future utterances 
are segmented. 

One can easily see that the running time of the program is O(mn 2) in the total 
number of utterances (m) and the length of each utterance (n), assuming an efficient 
implementation of a hash table allowing nearly constant lookup time is available. Since 
individual utterances typically tend to be small, especially in child-directed speech as 
evidenced in Table 1, the algorithm practically approximates to a linear time procedure. 
A single run over the entire corpus typically completes in under 10 seconds on a 300 
MHz i686-based PC running Linux 2.2.5-15. 

Although the algorithm is presented as an unsupervised learner, a further exper- 
iment to test the responsiveness of each algorithm to training data is also described 
here: The procedure involves reserving for training increasing amounts of the input 
corpus, from 0% in steps of approximately 1% (100 utterances). During the training 
period, the algorithm is presented with the correct segmentation of the input utter- 
ance, which it uses to update trigram, bigram, unigram, and phoneme frequencies as 

4 Amending the algorithm to include special markers for the start and end of each utterance was not 
found to make a significant difference in its performance. 

5 In this context, see also Section 5.2 regarding experiments conducted to investigate different ways of 
estimating phoneme probabilities. 
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required. After the initial training segment of the input corpus has been considered, 
subsequent utterances are then processed in the normal way. 

4.3 Scoring 
In line with the results reported in Brent (1999), three scores are reported - -  precision, 
recall, and lexicon precision. Precision is defined as the proportion of predicted words 
that are actually correct. Recall is defined as the proportion of correct words that were 
predicted. Lexicon precision is defined as the proportion of words in the predicted 
lexicon that are correct. In addition to these, the number of correct and incorrect 
words in the predicted lexicon were computed, but they are not graphed here because 
lexicon precision is a good indicator of both. 

Precision and recall scores were computed incrementally and cumulatively within 
scoring blocks, each of which consisted of 100 utterances. These scores were computed 
and averaged only for the utterances within each block scored, and thus represent the 
performance of the algorithm only on the block scored, occurring in the exact context 
among the other scoring blocks. Lexicon scores carried over blocks cumulatively. In 
cases where the algorithm used varying amounts of training data, precision, recall, and 
lexical precision scores are computed over the entire corpus. All scores are reported 
as percentages. 

5. Results 

Figures 3-5 plot the precision, recall, and lexicon precision of the proposed algorithm 
for each of the unigram, bigram, and trigram models against the MBDP-1 algorithm. 
Although the graphs compare the performance of the algorithm with only one pub- 
lished result in the field, comparison with other related approaches is implicitly avail- 
able. Brent (1999) reports results of running the algorithms due to Elman (1990) and 
Olivier (1968), as well as algorithms based on mutual information and transitional 
probability between pairs of phonemes, over exactly the same corpus. These are all 
shown to perform significantly worse than Brent's MBDP-1. The random baseline al- 
gorithm in Brent (1999), which consistently performs with under 20% precision and 
recall, is not graphed for the same reason. This baseline algorithm offers an important 
advantage: It knows the exact number of word boundaries, even though it does not 
know their locations. Brent argued that if MBDP-1 performs as well as this random 
baseline, then at the very least, it suggests that the algorithm is able to infer informa- 
tion equivalent to knowing the right number of word boundaries. A second important 
reason for not graphing the algorithms with worse performance was that the scale 
on the vertical axis could be expanded significantly by their omission, thus allowing 
distinctions between the plotted graphs to be seen more clearly. 

The plots originally given in Brent (1999) are over blocks of 500 utterances. How- 
ever, because they are a result of running the algorithm on a single corpus, there is no 
way of telling whether the performance of the algorithm was influenced by any partic- 
ular ordering of the utterances in the corpus. A further undesirable effect of reporting 
results of a run on exactly one ordering of the input is that there tends to be too much 
variation between the values reported for consecutive scoring blocks. To mitigate both 
of these problems, we report averaged results from running the algorithms on 1000 
random permutations of the input data. This has the beneficial side effect of allowing 
us to plot with higher granularity, since there is much less variation in the precision 
and recall scores. They are now clustered much closer to their mean values in each 
block, allowing a block size of 100 to be used to score the output. These plots are thus 
much more readable than those obtained without such averaging of the results. 
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Averaged precision. This is a plot of the segmentation precision over 100 utterance blocks 
averaged over 1000 runs, each using a random permutation of the input corpus. Precision is 
defined as the percentage of identified words that are correct, as measured against the target 
data. The horizontal axis represents the number of blocks of data scored, where each block 
represents 100 utterances. The plots show the performance of the 1-gram, 2-gram, 3-gram, and 
MBDP-1 algorithms. The plot for MBDP-1 is not visible because it coincides almost exactly 
with the plot for the 1-gram model. Discussion of this level of similarity is provided in 
Section 5.5. The performance of related algorithms due to Elman (1990), Olivier (1968) and 
others is implicitly available in this and the following graphs since Brent (1999) demonstrates 
that these all perform significantly worse than MBDP-1. 

One ma y  object that the original transcripts carefully preserve the order  of ut- 
terances directed at children by  their mothers,  and hence randomly  permut ing  the 
corpus would  destroy the fidelity of the simulation. However ,  as we argued,  the per- 
mutat ion and averaging does have significant beneficial side effects, and if anything, 
it only eliminates f rom the point  of view of the algorithms the impor tant  advan-  
tage that real children may  be given by  their mothers  through a specific order ing of 
the utterances. In any case, we have found no significant difference in performance 
between the pe rmuted  and unpe rmuted  cases as far as the various algorithms are 
concerned. 

In this context, it would  be interesting to see h o w  the algorithms would  fare if 
the utterances were in fact favorably ordered,  that is, in order  of increasing length. 
Clearly, this is an important  advantage for all the algorithms concerned. Section 5.3 
presents the results of an exper iment  based on a generalization of this situation, where 
instead of ordering the utterances favorably, we treat an initial por t ion of the corpus 
as a training component ,  effectively giving the algorithms free word  boundar ies  after 
each word.  
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Figure 5 
Averaged lexicon precision over 1000 runs, each using a random permutation of the input 
corpus. 
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5.1 Discuss ion  
Clearly, the performance of the present model is competitive with MBDP-1 and, as a 
consequence, with other algorithms evaluated in Brent (1999). However, note that the 
model proposed in this paper has been developed entirely along conventional lines 
and has not made the somewhat radical assumption that the entire observed corpus 
is a single event in probability space. Assuming that the corpus consists of a single 
event, as Brent does, requires the explicit calculation of the probability of the lexicon 
in order to calculate the probability of any single segmentation. This calculation is 
a nontrivial task since one has to sum over all possible orders of words in L. This 
fact is recognized in Brent (1999, Appendix), where the expression for P(L) is derived 
as an approximation. One can imagine then that it would be correspondingly more 
difficult to extend the language model in Brent (1999) beyond the case of unigrams. In 
practical terms, recalculating lexicon probabilities before each segmentation increases 
the running time of an implementation of the algorithm. Although all the algorithms 
discussed tend to complete within one minute on the reported corpus, MBDP-I's 
running time is quadratic in the number of utterances, while the language models 
presented here enable computation in almost linear time. The typical running time 
of MBDP-1 on the 9790-utterance corpus averages around 40 seconds per run on a 
300 MHz i686 PC while the 1-gram, 2-gram, and 3-gram models average around 7, 10, 
and 14 seconds, respectively. 

Furthermore, the language models presented in this paper estimate probabilities 
as relative frequencies, using commonly used back-off procedures, and so they do 
not assume any priors over integers. However, MBDP-1 requires the assumption of 
two distributions over integers, one to pick a number for the size of the lexicon and 
another to pick a frequency for each word in the lexicon. Each is assumed such that 
the probability of a given integer P(i) is given by 6 ~-~i2. We have since found some 
evidence suggesting that the choice of a particular prior does not offer any significant 
advantage over the choice of any other prior. For example, we have tried running 
MBDP-1 using P(i) = 2 -i and still obtained comparable results. It should be noted, 
however, that no such subjective prior needs to be chosen in the model presented in 
this paper. 

The other important difference between MBDP-1 and the present model is that 
MBDP-1 assumes a uniform distribution over all possible word orders. That is, in a 
corpus that contains nk distinct words such that the frequency in the corpus of the ith 
distinct word is given byfk(i), the probability of any one ordering of the words in the 
corpus is 

I-ITk ilk(i)! 
k~ 

because the number of unique orderings is precisely the reciprocal of the above quan- 
tity. Brent (1999) mentions that there may well be efficient ways of using n-gram 
distributions in the MBDP-1 model. The framework presented in this paper is a for- 
mal statement of a model that lends itself to such easy n-gram extendibility using the 
back-off scheme proposed here. In fact, the results we present are direct extensions of 
the unigram model into bigrams and trigrams. 

In this context, an intriguing feature of the results is worth discussing here. Note 
that while, with respect to precision, the 3-gram model is better than the 2-gram model, 
which in turn is better than the 1-gram model, with respect to recall, their performance 
is exactly the opposite. A possible explanation of this behavior is as follows: Since the 
3-gram model places greatest emphasis on word triples, which are relatively less fre- 
quent than words and word pairs, it has, of all the models, the least evidence available 
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to infer word boundaries from the observed data. Even though back-off is performed 
for bigrams when a trigram is not found, there is a cost associated with such backing 
off--this is the extra fractional factor N3/(N3 + $3) in the calculation of the segmen- 
tation's probability. Consequently, the 3-gram model is the most conservative in its 
predictions. When it does infer a word boundary, it is likely to be correct. This con- 
tributes to its relatively higher precision since precision is a measure of the proportion 
of inferred boundaries that were correct. More often than not, however, when the 
3-gram model does not have enough evidence to infer words, it simply outputs the 
default segmentation, which is a single word (the entire utterance) instead of more 
than one incorrectly inferred one. This contributes to its poorer recall since recall is 
an indicator of the number of words the model fails to infer. Poorer lexicon precision 
is likewise explained. Because the 3-gram model is more conservative, it infers new 
words only when there is strong evidence for them. As a result many utterances are 
inserted as whole words into its lexicon, thereby contributing to decreased lexicon 
precision. The framework presented here thus provides a systematic way of trading 
off precision against recall or vice-versa. Models utilizing higher-order n-grams give 
better recall at the expense of precision. 

5.2 Estimation of phoneme probabilities 
Brent (1999, 101) suggests that it might be worthwhile to study whether learning 
phoneme probabilities from distinct lexical entries yields better results than learning 
these probabilities from the input corpus. That is, rather than inflating the probability 
of the phoneme "th" in the by the preponderance of the and the-like words in actual 
speech, it is better to control it by the number of such distinct words. Presented below 
are an initial analysis and experimental results in this regard. 

Assume the existence of some function ~x: N ~ N that maps the size, n, of a 
corpus C, onto the size of some subset X of C we may define. If this subset X = C, 
then ~c is the identity function, and if X = L is the set of distinct words in C, we 
have q~L(n) = ILl. 

Let lx be the average number of phonemes per word in X and let E~x be the 
average number of occurrences of phoneme a per word in X. Then we may estimate 
the probability of an arbitrary phoneme a from X as follows. 

P(a J X) 
C(a IX) 

~ ,  C(ai I X) 

E~x~x(N) 
IxqJx(N) 

where, as before, C(a I X) is the count function that gives the frequency of phoneme a 
in X. If ~x is deterministic, we can then write 

P(a I X) = Eax (10) 
Ix 

Our experiments suggest that EaL ~ Eac and that 1L ~ lC. We are thus led to suspect 
that estimates should be roughly the same regardless of whether probabilities are 
estimated from L or C. This is indeed borne out by the results we present below. Of 
course, this is true only if there exists, as we assumed, some deterministic function ~L 
and this may not necessarily be the case. There is, however, some evidence that the 
number of distinct words in a corpus can be related to the total number of words in 
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Figure 6 
Plot shows the rate of growth of the lexicon with increasing corpus size as percentage of total 
size. Actual is the actual number of distinct words in the input corpus. 1-gram, 2-gram, 3-gram 
and MBDP plot the size of the lexicon as inferred by each of the algorithms. It is interesting 
that the rates of lexicon growth are roughly similar to each other regardless of the algorithm 
used to infer words and that they may all potentially be modeled by a function such as k v ~  
where N is the corpus size. 

the corpus in this way. In Figure 6 the rate of lexicon growth is plot ted against the 
propor t ion of the corpus size considered. The values for lexicon size were collected 
using the Unix filter 

cat $*Itr ' ' \\Ol2lawk '{print (LE$O]++)? v : ++v;}' 

and smoothed by  averaging over 100 runs, each on a separate permuta t ion  of the 
input  corpus. The plot strongly suggests that the lexicon size can be approximated by  
a deterministic function of the corpus size. It is interesting that the shape of the plot 
is roughly the same regardless of the algori thm used to infer words,  suggesting that 
all the algorithms segment word-like units that share at least some statistical propert ies 
with actual words.  

Table 2 summarizes  our  empirical findings in this regard. For each model - -namely ,  
1-gram, 2-gram, 3-gram and MBDP- I - -we  test all three of the following possibilities: 

1. Always use a uniform distribution over phonemes.  

2. Learn the phoneme  distribution from the lexicon. 

3. Learn the phoneme  distribution from the corpus, that is, f rom all words,  
whether  distinct or not. 
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Table 2 
Summary of results from each of the algorithms for each of the following cases: 
Lexicon-Phoneme probabilities estimated from the lexicon, Corpus-Phoneme probabilities 
estimated from input corpus and Uniform-Phoneme probabilities assumed uniform and 
constant. 

Lexicon 
Corpus 
Uniform 

Lexicon 
Corpus 
Uniform 

Precision 

1-gram 2-gram 3-gram MBDP 

67.7 68.08 68.02 67 
66.25 66.68 68.2 66.46 
58.08 64.38 65.64 57.15 

Recall 

1-gram 2-gram 3-gram MBDP 

70.18 68.56 65.07 69.39 
69.33 68.02 66.06 69.5 
65.6 69.17 67.23 65.07 

Lexicon Precision 

1-gram 2-gram 3-gram MBDP 

Lexicon 52.85 54.45 47.32 53.56 
Corpus 52.1 54.96 49.64 52.36 
Uniform 41.46 52.82 50.8 40.89 

The row labeled Lexicon lists scores on the entire corpus from a program that 
learned phoneme probabilities from the lexicon. The row labeled Corpus lists scores 
from a program that learned these probabilities from the input corpus, and the row 
labeled Uniform lists scores from a program that just assumed uniform phoneme prob- 
abilities throughout. While the performance is clearly seen to suffer when a uniform 
distribution over phonemes is assumed, whether the distribution is estimated from 
the lexicon or the corpus does not seem to make any significant difference. These 
results lead us to believe that, from an empirical point of view, it really does not 
matter whether phoneme probabilities are estimated from the corpus or the lexicon. 
Intuitively, however, it seems that the right approach ought to be one that estimates 
phoneme frequencies from the corpus data since frequent words ought to have a 
greater influence on the phoneme distribution than infrequent ones. 

5.3 R e s p o n s i v e n e s s  to training 
It is interesting to compare the responsiveness of the various algorithms to the effect 
of training data. Figures 7-8 plot the results (precision and recall) over the whole 
input corpus, that is, blocksize = cxD, as a function of the initial proportion of the 
corpus reserved for training. This is done by dividing the corpus into two segments, 
with an initial training segment being used by the algorithm to learn word, bigram, 
trigram, and phoneme probabilities, and the second segment actually being used as 
the test data. A consequence of this is that the amount of data available for testing 
becomes progressively smaller as the percentage reserved for training grows. So the 
significance of the test diminishes correspondingly. We can assume that the plots cease 
to be meaningful and interpretable when more than about 75% (about 7500 utterances) 
of the corpus is used for training. At 0%, there is no training information for any 
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Figure 7 
Responsiveness of the algori thm to training information. The horizontal axis represents the 
initial percentage of the data corpus that was used for training the algorithm. This graph 
shows the improvement  in precision with training size. 
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Table 3 
Errors in the output of a fully trained 3-gram language model. Erroneous segmentations are 
shown in boldface. 

# 3-gram output Target 

3482 ... in the doghouse ... in the dog house 
5572 aclock a clock 
5836 that's alright that's all right 
7602 that's right it's a hairbrush that's right it's a hair brush 

algorithm and the scores are identical to those reported earlier. We increase the amount 
of training data in steps of approximately 1% (100 utterances). For each training set 
size, the results reported are averaged over 25 runs of the experiment, each over a 
separate random permutation of the corpus. As before, this was done both to correct 
for ordering idiosyncrasies, and to smooth the graphs to make them easier to interpret. 

We interpret Figures 7 and 8 as suggesting that the performance of all algorithms 
discussed here can be boosted significantly with even a small amount of training. It 
is noteworthy and reassuring to see that, as one would expect from results in compu- 
tational learning theory (Haussler 1988), the number of training examples required to 
obtain a desired value of precision p, appears to grow with 1/(1 - p). The intriguing 
reversal in the performance of the various n-gram models with respect to precision 
and recall is again seen here and the explanation for this too is the same as discussed 
earlier. We further note, however, that the difference in performance between the dif- 
ferent models tends to narrow with increasing training size; that is, as the amount 
of evidence available to infer word boundaries increases, the 3-gram model rapidly 
catches up with the others in recall and lexicon precision. It is likely, therefore, that 
with adequate training data, the 3-gram model might be the most suitable one to use. 
The following experiment lends support to this conjecture. 

5.4 Fully trained algorithms 
The preceding discussion raises the question of what would happen if the percentage 
of input used for training was extended to the limit, that is, to 100% of the corpus. This 
precise situation was tested in the following way: The entire corpus was concatenated 
onto itself; the models were then trained on the first half and tested on the second 
half of the corpus thus augmented. Although the unorthodox nature of this procedure 
does not allow us to attach all that much significance to the outcome, we nevertheless 
find the results interesting enough to warrant some mention, and we thus discuss here 
the performance of each of the four algorithms on the test segment of the input corpus 
(the second half). As one would expect from the results of the preceding experiments, 
the trigram language model outperforms all others. It has a precision and recall of 
100% on the test input, except for exactly four utterances. These four utterances are 
shown in Table 3, retranscribed into plain English. 

Intrigued as to why these errors occurred, we examined the corpus, only to find er- 
roneous transcriptions in the input, dog house is transcribed as a single word "dOghQs" 
in utterance 614, and as two words elsewhere. Likewise, o'clock is transcribed "6klAk" 
in utterance 5917, alright is transcribed "Olr9t" in utterance 3937, and hair brush is 
transcribed "h*brAS" in utterances 4838 and 7037. Elsewhere in the corpus, these are 
transcribed as two words. 

The erroneous segmentations in the output of the 2-gram language model are 
shown in Table 4. As expected, the effect of reduced history is apparent from an in- 
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Table 4 
Errors in the output of a fully trained 2-gram language model. Erroneous segmentations are 
shown in boldface. 

# 2-gram output Target 

614 you want the dog house you want the doghouse 
3937 thats all right that's alright 
5572 a clock a clock 
7327 look a hairbrush look a hair brush 
7602 that's right its a hairbrush that's right its a hair brush 
7681 hairbrush hair brush 
7849 it's called a hairbrush it's called a hair brush 
7853 hairbrush hair brush 

crease in the total number  of errors. However ,  it is interesting to note that while the 
3-gram model  incorrectly segmented an incorrect transcription (utterance 5836) that's 
all right to produce  that's alright, the 2-gram model  incorrectly segmented a correct 
transcription (utterance 3937) that's alright to produce  that's all right. The reason for 
this is that the bigram that's all is encountered relatively frequently in the corpus and 
this biases the algori thm toward segmenting the all out of alright when  it follows 
that's. However ,  the 3-gram model  is not  likewise biased because, having encoun- 
tered the exact 3-gram that's all right earlier, there is no back-off to try bigrams at this 
stage. 

Similarly, it is interesting that while the 3-gram model  incorrectly segments the 
incorrectly transcribed dog house into doghouse in utterance 3482, the 2-gram model  
incorrectly segments the correctly transcribed doghouse into dog house in utterance 614. 
In the trigrarn model,  - log P(houselthe, dog) = 4.8 and - log P(doglin, the) = 5.4, 
giving a score of 10.2 to the segmentat ion dog house. However ,  due  to the error in 
transcription, the t r igram in the doghouse is never  encountered in the training data, 
a l though the bigram the doghouse is. Backing off to bigrams, - l o g P ( d o g h o u s e l t h e  ) 
is calculated as 8.1. Hence the probabil i ty that doghouse is segmented as dog house 
is less than the probabili ty that it is a single word.  In the 2-gram model,  however,  
- logP(dog] the)P(houseldog ) = 3.7 + 3.2 = 6.9 while - logP(doghouse[ the)  = 7.5, 
whence dog house is the preferred segmentat ion even though the training data con- 
tained instances of all three bigrams. For errors in the output  of a 1-gram model ,  see 
Table 5. 

The errors in the output  of Brent's fully trained MBDP-1 algori thm are not  shown 
here because they are identical to those p roduced  by  the 1-gram model  except for one 
utterance. This single difference is the segmentat ion of utterance 8999, "lItL QtlEts" 
(little outlets), which the 1-gram model  segmented correctly as "lItL QtlEts", but  MBDP- 
1 segmented as "lItL Qt lets".  In both MBDP-1 and the 1-gram model,  all four words,  
little, out, lets and outlets, are familiar at the time of segmenting this utterance. MBDP-1 
assigns a score of 5.3+5.95 = 11.25 to the segmentation out + lets versus a score of 11.76 
to outlets. As a consequence, out + lets is the preferred segmentation. In the 1-gram 
language model,  the segmentat ion out + lets scores 5.31 + 5.97 = 11.28, whereas outlets 
scores 11.09. Consequently, it selects outlets as the preferred segmentation. The only 
thing we could surmise from this was either that this difference must  have come about  
due  to chance (meaning that this m a y  not  have occurred if certain parts  of the corpus 
had been different in any way) or else the interplay between the different elements in 
the two models  is too subtle to be addressed within the scope of this paper. 
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Table 5 
Errors in the output of a fully trained 1-gram language model. 

# 1-gram output Target 

244 brush Al ice ' s  hair brush Alice's hair 
503 you're in to distraction . .-  you're into distraction . . .  
1066 you my trip it you might rip it 
1231 this is little doghouse this is little dog house 
1792 stick it on to there stick it onto there 
3056 . . .  so he doesn't  run in to . . .  so he doesn' t  run  into 
3094 . . .  to be in the highchair --. to be in the high chair 
3098 . . .  for this highchair . . .  for this high chair 
3125 . . .  already . . . . . .  all r e a d y . . -  
3212 -. .  could talk in to it . . .  could talk into it 
3230 can heel I down on them can he lie down on them 
3476 that's a doghouse that's a dog house 
3482 . . .  in the doghouse . . .  in the dog house 
3923 . . .  when it's nose . . .  when it snows 
3937 that's all right that's alright 
4484 its about mealt ime s its about meal times 
5328 tell him to way cup tell him to wake up 
5572 o'clock a clock 
5671 where's my little hairbrush where's my little hair brush 
6315 that's a nye that's an i 
6968 okay mommy take seat okay mommy takes it 
7327 look a hairbrush look a hair brush 
7602 that's right its a hai rbrush that's right its a hair brush 
7607 go along way to find it today go a long way to find it today 
7676 morn put sit mom puts it 
7681 hairbrush hair brush 
7849 its called a hairbrush its called a hair brush 
7853 hairbrush hair brush 
8990 . . .  in the highchair . . .  in the high chair 
8994 for baby's a nice highchair for baby's a nice high chair 
8995 that's like a highchair that's right that's like a high chair that's right 
9168 he has along tongue he has a long tongue 
9567 you wanna go in the highchair you wanna go in the high chair 
9594 along red tongue a long red tongue 
9674 doghouse dog house 
9688 highchair again high chair again 
9689 . . .  the highchari --. the high chair 
9708 I have along tongue I have a long tongue 

5.5 Similari t ies  b e t w e e n  MBDP-1  and the 1-gram M o d e l  
The s imilar i t ies  b e t w e e n  the o u t p u t s  of MBDP-1 a n d  the 1 -g ram m o d e l  are so great  
tha t  we  suspec t  they  m a y  be  c a p t u r i n g  essen t ia l ly  the s ame  n u a n c e s  of the d o m a i n .  
A l t h o u g h  Brent  (1999) expl ic i t ly  states tha t  p robab i l i t i e s  are no t  e s t ima ted  for words ,  
it t u r n s  ou t  tha t  i m p l e m e n t a t i o n s  of MBDP-1 do  e n d  u p  h a v i n g  the s ame  effect as 
e s t ima t ing  probabi l i t i es  f rom rela t ive  f requenc ies  as the 1 -g ram m o d e l  does.  The relative 
probability of a fami l ia r  w o r d  is g i v e n  in  E q u a t i o n  22 of Brent  (1999) as 

2 
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where k is the total number of words and fk(k) is the frequency at that point in seg- 
mentation of the kth word. It effectively approximates to the relative frequency 

fk(k) 
k 

as fk(k) grows. The 1-gram language model of this paper explicitly claims to use this 
specific estimator for the unigram probabilities. From this perspective, both MBDP- 
1 and the 1-gram model tend to favor the segmenting out of familiar words that 
do not overlap. It is interesting, however, to see exactly how much evidence each 
needs before such segmentation is carried out. In this context, the author recalls an 
anecdote recounted by a British colleague who, while visiting the USA, noted that the 
populace in the vicinity of his institution had grown up thinking that Damn British 
was a single word, by virtue of the fact that they had never heard the latter word in 
isolation. We test this particular scenario here with both algorithms. The programs are 
first presented with the utterance damnbritish. Having no evidence to infer otherwise, 
both programs assume that damnbritish is a single word and update their lexicons 
accordingly. The interesting question now is exactly how many instances of the word 
british in isolation each program would have to see before being able to successfully 
segment a subsequent presentation of damnbritish correctly. 

Obviously, if the word damn is also unfamiliar, there will never be enough evidence 
to segment it out in favor of the familiar word damnbritish. Hence each program is 
presented next with two identical utterances, damn. Unless two such utterances are 
presented, the estimated probabilities of the familiar words damn and damnbritish will 
be equal; and consequently, the probability of any segmentation of damnbritish that 
contains the word damn will be less than the probability of damnbritish considered as 
a single word. 

At this stage, we present each program with increasing numbers of utterances 
consisting solely of the word british followed by a repetition of the very first utterance 
--damnbritish. We find that MBDP-1 needs to see the word british on its own three 
times before having enough evidence to disabuse itself of the notion that damnbritish 
is a single word. In comparison, the 1-gram model is more skeptical. It needs to see 
the word british on its own seven times before committing to the right segmentation. 
To illustrate the inherent simplicity of the model presented here, we can show that it is 
easy to predict this number analytically from the 1-gram model. Let x be the number 
of instances of british required. Then using the discounting scheme described, we have 

P(damnbritish) = 1/(x + 6) 

P(damn) = 2/ (x+6)  

P(british) = x/(x + 6) 

and 

We seek an x for which P(damn)P(british) > P(damnbritish). Thus, we get 

2x/(x + 6) 2 > 1/(x q- 6) ~ x > 6 

The actual scores for MBDP-1 when presented with damnbritish for a second time are 
- logP(damnbritish) = 2.8 and - logP(D&m) -logP(brItIS) = 1.8 + 0.9 = 2.7. For 
the 1-gram model, - log P(damnbritish) = 2.6 and - log P(D&m) - log P(brItIS) = 
1.9 + 0.6 ~ 2.5. Note, however, that skepticism in this regard is not always a bad 
attribute. It is desirable for the model to be skeptical in inferring new words because 
a badly inferred word will adversely influence future segmentation accuracy. 
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6. Summary 

In summary, we have presented a formal model of word discovery in continuous 
speech. The main advantages of this model over that of Brent (1999) are: First, the 
present model has been developed entirely by direct application of standard tech- 
niques and procedures in speech processing. Second, it makes few assumptions about 
the nature of the domain and remains conservative as far as possible in its develop- 
ment. Finally, the model can be easily extended to incorporate more historical detail. 
This is clearly evidenced by the extension of the unigram model to handle bigrams 
and trigrams. Empirical results from experiments suggest that the algorithm performs 
competitively with alternative unsupervised algorithms proposed for inferring words 
from continous speech. We have also carried out and reported results from experiments 
to determine whether particular ways of estimating phoneme (or letter) probabilities 
may be more suitable than others. 

Although the algorithm is originally presented as an unsupervised learner, we 
have shown the effect that training data has on its performance. It appears that the 
3-gram model is the most responsive to training information with regard to segmen- 
tation precision, obviously by virtue of the fact that it keeps more knowledge from the 
utterances presented. Indeed, we see that a fully trained 3-gram model performs with 
100% accuracy on the test set. Admittedly, the test set in this case was identical to the 
training set, but we should keep in mind that we were keeping only limited history--  
namely 3-grams--and a significant number of utterances in the input corpus (4023 
utterances) were four words or more in length. Thus, it is not completely insignificant 
that the algorithm was able to perform this well. 

7. Future work 

We are presently working on the incorporation into the model of more complex 
phoneme distributions, such as the biphone and triphone distributions. Some pre- 
liminary results we have obtained in this regard appear to be encouraging. 

With regard to estimation of word probabilities, a fruitful avenue we are exploring 
involves modification of the model to address the sparse data problem using interpo- 
lation such that 

P(wi [ Wi--a, Wi--1) = /~3f(wi I Wi--2'Wi--1) ÷ ,~2f(wi l Wi--1) ÷ 41f(wi) 

where the positive coefficients satisfy 41 + 42 ÷ 43 = 1 and can be derived so as to 
maximize P(W). 

Taking the lead from Brent (1999), attempts to model more complex distributions 
for unigrams such as those based on template grammars, as well as the systematic in- 
corporation of prosodic, stress, and phonotactic constraint information into the model, 
are both subjects of current interest. Unpublished results already obtained suggest 
that biasing the segmentation such that every word must have at least one vowel in 
it dramatically increases segmentation precision from 67.7% to 81.8%, and imposing 
a constraint that words can begin or end only with permitted clusters of consonants 
increases precision to 80.65%. We are planning experiments to investigate models in 
which these properties can be learned in the same way as n-grams. 

Appendix: Inventory of Phonemes 

The following tables list the ASCII representations of the phonemes used to transcribe 
the corpus into a form suitable for processing by the algorithms. 
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Consonants Vowels  

ASCII Example ASCII Example 

p pan I bit 
b ban E bet 
m man & bat 
t tan A but 
d dam a hot 
n nap O law 
k can U put 
g go 6 her 
N sing i beet 
f fan e bait 
v van u boot 
T thin o boat 
D than 9 buy 
s sand Q bout 
z zap 7 boy 
S ship 
Z pleasure 
h hat 
c chip 
G gel 
1 lap 
r rap 
y yet 
w wall 
W when 
L bottle 
M rhythm 

button 

Vowel + r 

ASCII Example 

3 bird 
R butter 
# arm 
% horn 
• air 
( e a r  

) lure 
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