
Bootstrapping Morphological Analyzers 
by Combining Human Elicitation and 
Machine Learning 

Kemal Oflazer* 
Sabancl University 

Marjorie McShane* 
New Mexico State University 

Sergei Nirenburg* 
New Mexico State University 

This paper presents a semiautomatic technique for developing broad-coverage finite-state mor- 
phological analyzers for use in natural language processing applications. It consists of three 
components--elicitation of linguistic information from humans, a machine learning bootstrap- 
ping scheme, and a testing environment. The three components are applied iteratively until a 
threshold of output quality is attained. The initial application of this technique is for the mor- 
phology of low-density languages in the context of the Expedition project at NMS U Computing 
Research Laboratory. This elicit-build-test technique compiles lexical and inflectional information 
elicited from a human into a finite-state transducer lexicon and combines this with a sequence 
of morphographemic rewrite rules that is induced using transformation-based learning from 
the elicited examples. The resulting morphological analyzer is then tested against a test set, 
and any corrections are fed back into the learning procedure, which then builds an improved 
analyzer. 

1. Introduction 

The Expedition project at NMSU Computing Research Laboratory is devoted to the 
fast "ramp-up" of machine translation systems from less studied, so-called low-density 
languages, into English. One of the components that must be acquired and built dur- 
ing this process is a morphological analyzer for the source language. Since language 
informants are not expected or required to be well-versed in computational linguistics 
in general, or in recent approaches to building morphological analyzers (e.g., Kosken- 
niemi 1983; Antworth 1990; Karttunen, Kaplan, and Zaenen 1992; Karttunen 1994) and 
the operation of state-of-the-art finite-state tools (e.g., Karttunen 1993; Karttunen and 
Beesley 1992; Karttunen et al. 1996; Mohri, Pereira, and Riley 1998; van Noord 1999; 
van Noord and Gerdemann 1999) in particular, the generation of the morphological 
analyzer component has to be accomplished semiautomatically. The informant will 
be guided through a knowledge elicitation procedure using the elicitation component 
of Expedition, the Boas system. As this task is not easy, we expect that the develop- 
ment of the morphological analyzer will be an iterative process, whereby the human 
informant will revise and /or  refine the information previously elicited based on the 
feedback from test runs of the nascent analyzer. 
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The work reported in this paper describes the process of building and refining mor- 
phological analyzers using data elicited from human informants and machine learning. 
The main use of machine learning in our current approach is in the automatic learning 
of formal rewrite or replace rules for morphographemic changes derived from the ex- 
amples provided by the informant. The subtask of accounting for morphographemic 
changes is perhaps one of the more complicated aspects of building an analyzer; by 
automating it, we expect to improve productivity. 

After a review of related work, we very briefly describe the Boas project, of which 
the current work is a part. Subsequent sections describe the details of the approach, 
the architecture of the morphological analyzer, the elicited descriptive data, and the 
computational processes performed on this data, including segmentation and the in- 
duction of morphographemic rules. We then provide a detailed example of applying 
this approach to developing a morphological analyzer for Polish. Finally, we provide 
some conclusions and ideas for future work. 

2. Related Work 

Machine learning techniques are widely employed in many aspects of language pro- 
cessing. The availability of large, annotated corpora has fueled a significant amount of 
work in the application of machine learning techniques to language processing prob- 
lems, such as part-of-speech tagging, grammar induction, and sense disambiguation, 
as witnessed by recent workshops and journal issues dedicated to this topic. 1 The cur- 
rent work attempts to contribute to this literature by describing a human-supervised 
machine learning approach to the induction of morphological analyzers--a problem 
that, surprisingly, has received little attention. 

There have been a number of studies on inducing morphographemic rules from a 
list of inflected words and a root word list. Johnson (1984) presents a scheme for in- 
ducing phonological rules from surface data, mainly in the context of studying certain 
aspects of language acquisition. The premise is that languages have a finite number of 
alternations to be handled by morphographemic rules and a fixed number of contexts 
in which they appear; so if there is enough data, phonological rewrite rules can be 
generated to account for the data. Rules are ordered by some notion of "surfaciness", 
and at each stage the most surfacy rule--the rule with the most transparent context-- 
is selected. Golding and Thompson (1985) describe an approach for inducing rules of 
English word formation from a corpus of root forms and the corresponding inflected 
forms. The procedure described there generates a sequence of transformation rules, 2 
each specifying how to perform a particular inflection. 

More recently, Theron and Cloete (1997) have presented a scheme for obtaining 
two-level morphology rules from a set of aligned segmented and surface pairs. They 
use the notion of string edit sequences, assuming that only insertions and deletions 
are applied to a root form to get the inflected form. They determine the root form 
associated with an inflected form (and consequently the suffixes and prefixes) by ex- 
haustively matching the inflected form against all root words. The motivation is that 
"real" suffixes will appear frequently in the corpus of inflected forms. Once common 
suffixes and prefixes are identified, the segmentation for an inflected word can be 
determined by choosing the segmentation with the most frequently occurring affix 
segments; the remainder is then considered the root. While this procedure seems to 

1 For instance, the CoNLL (Computational Natural Language Learning) Workshops, recent special issues 
of Machine Learning Journal (Vol. 34 Issue 1/3, Feb. 1999) and AIMagazine (Vol. 18, No. 4, 1997). 

2 Not in the sense in which it is used in transformation-based learning (Brill 1995). 
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be reasonable for a small root word list, the potential for "noisy" or incorrect align- 
ments is quite high when the corpus of inflected forms is large and the procedure 
is not given any prior knowledge of possible segmentations. As a result, automati- 
cally selecting the "correct" segmentation becomes nontrivial. An additional compli- 
cation is that allomorphs show up as distinct affixes and their counts in segmentations 
are not accumulated, which might lead to actual segmentations being missed due to 
fragmentation. The rules are not induced via a learning scheme: aligned pairs are 
compressed into a special data structure and traversals over this data structure gener- 
ate morphographemic rules. Theron and Cloete have experimented with pluralization 
in Afrikaans, and the resulting system has shown about 94% accuracy on unseen 
words. 

Goldsmith (1998) has used an unsupervised learning method based on the mini- 
mum description length principle to learn the "morphology" of a number of languages. 
What is learned is a set of root words and affixes, and common inflectional-pattern 
classes. The system requires just a corpus of words in a language. In the absence of 
any root word list to use as a scaffolding, the shortest forms that appear frequently 
are assumed to be roots, and observed surface forms are then either generated by the 
concatenative affixation of suffixes or by rewrite rules. 3 Since the system has no notion 
of what the roots and their part-of-speech values really are, and what morphological 
information is encoded by the affixes, this information needs to be retrofitted manually 
by a human, who has to weed through a large number of noisy rules. We feel that this 
approach, while quite novel, can be used to build real-world morphological analyzers 
only after substantial modifications are made. 

3. The BOAS Project 

Boas (Nirenburg 1998; Nirenburg and Raskin 1998) is a semiautomatic knowledge 
elicitation system that guides a team of two people (a language informant and a 
programmer) through the process of developing the static knowledge sources required 
to produce a moderate-quality, broad-coverage MT system from any "low-density" 
language into English. Boas contains knowledge about human language phenomena 
and various realizations of these phenomena in a number of specific languages, as 
well as extensive pedagogical support, making the system a kind of "linguist in a 
box," intended to help nonprofessional users with the task. In the spirit of the goal- 
driven, "demand-side" approach to computational applications of language processing 
(Nirenburg and Raskin 1999), the process of acquiring this knowledge has been split 
into two steps: (i) acquiring the descriptive, declarative knowledge about a language 
and (ii) deriving operational knowledge (content for the processing engines) from this 
descriptive knowledge. 

An important goal that we strive to achieve regarding these descriptive and op- 
erational pieces of information, be they elicited from human informants or acquired 
via machine learning, is that they be transparent, human-readable, and, where neces- 
sary, human-maintainable and human-extendable, contrary to the opaque and unin- 
terpretable representations acquired by various statistical learning paradigms. 

Before proceeding any further, we would also like to make explicit the aims and 
limitations of our approach. Our main goal is to significantly expedite the develop- 
ment of a morphological analyzer. It is clear that for inflectional languages where each 

3 Some of these rules may not make sense, but they are necessary to account for the data: for instance, a 
rule like insert  a word f ina l  y after the root " eas " is used to generate easy. 
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root word can be associated with a finite number of word forms, one can, with a lot of 
work, generate a list of word forms with associated morphological features encoded, 
then use this as a lookup table to analyze word forms in input texts. Since this pro- 
cess is time consuming, expensive, and error-prone, it is something we would like to 
avoid. We prefer to capture general morphophonological and morphographemic phe- 
nomena using sample paradigms as the basis of lexical abstractions. This reduces the 
acquisition process to assigning citation forms to one of the established paradigms; 
the automatic generation process described below does the rest of the work. 4 This 
process is still imperfect, as we expect human informants to err in making their 
paradigm abstractions and to overlook details and exceptions. So, the whole pro- 
cess is an iterative one, with convergence to a wide-coverage analyzer coming slowly 
at the beginning (where morphological phenomena and lexicon abstractions are be- 
ing defined and tested), but  significantly speeding up once wholesale lexical acqui- 
sition starts. Since the generation of the operational content (data files to be used 
by the morphological analyzer engine) from the elicited descriptions is expected to 
take only a few minutes, feedback on operational performance can be provided very 
quickly. 

Human languages have many diverse morphological phenomena and it is not 
our intent at this point to have a universal architecture that can accommodate any 
and all phenomena. Rather, we propose an extensible approach that can accommo- 
date additional functionality in future incarnations of Boas. We also intend to limit 
morphological processing to single tokens and to deal with multitoken phenomena, 
such as partial or full word reduplications, with additional machinery that we do not 
discuss here. 

4. The Elicit-Build-Test Loop 

In this paper we concentrate on operational content in the context of building a mor- 
phological analyzer. To determine this content, we integrate the information provided 
by the informant with automatically derived information. The whole process is an 
iterative one, as illustrated in Figure 1: the elicited information is transformed into 
the operational data required by the generic morphological analyzer engine and the 
resulting analyzer is then tested on a test corpus, s'6 Any discrepancies between the 
output of the analyzer and the test corpus are then analyzed and potential sources 
of errors are given as feedback to the elicitation process. Currently, this feedback is 
limited to identifying problems in handling morphographemic processes (such as for 
instance the change of word-final -y to -i when the suffix -est is added). 

The box in Figure 1 labeled Morphological Analyzer Generation is the main com- 
ponent, which takes in the elicited information and generates a series of regular ex- 
pressions for describing the morphological lexicon and morphographemic rules. The 
morphographemic rules describing changes in spelling as a result of affixation opera- 
tions are induced from the examples provided by using transformation-based learning 
(Brill 1995; Satta and Henderson 1997). The result is an ordered set of contextual re- 
place or rewrite rules, much like those used in phonology. 

4 We use  the te rm citation form to refer to the word  form that  is u sed  to look up  a g iven  inflected form 
in a dictionary. It m a y  be the  root or s t em form that  affixation is appl ied  to, or  it m a y  have  addi t ional  
morphologica l  markers  to indicate its citation form status.  

5 We current ly  use  XRCE finite-state tools as our  target env i ronmen t  (Kar t tunen et al. 1996). 
6 The test  corpus  is either elicited f rom the h u m a n  informant  or compi led  f rom on-l ine resources  for the  

l anguage  in quest ion.  
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C o r p u s  1 
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[ Content for Morphological Analyzer Engine ] 
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The elicit-build-test paradigm for bootstrapping a morphological analyzer. 

4.1 Morphological Analyzer Architecture 
We adopt the general approach advocated by Karttunen (1994) and build the morpho- 
logical analyzer as the combination of several finite-state transducers, some of which 
are constructed directly from the elicited information, and others of which are con- 
structed from the output  of the machine learning stage. Since the combination of the 
transducers is computed at compile-time, there are no run-time overheads. The ba- 
sic architecture of the morphological analyzer is depicted in Figure 2. The analyzer 
consists of the union of transducers, each of which implements the morphological 
analysis process for one paradigm. Each transducer is the composition of a number  of 
components. These components (from bottom to top) are described below: 

. 

. 

The bottom component  is an ordered sequence of morphographemic 
rules that are learned via transformation-based learning from the sample 
inflectional paradigms provided by the human  informant. These rules are 
then composed into one finite-state transducer (Kaplan and Kay 1994). 

The citation form and affix lexicon contains the citation forms and the 
affixes. We currently assume that all affixation is concatenative and that 
the lexicon is described by a regular expression of the sort 
[ P r e f i x e s  ]* [ Ci ta t ionForms ] [ S u f f i x e s  ].7 

7 We currently assume that we have at most one prefix and at most one suffix, but this is not a 
fundamental limitation. The elicitation of morphotactics for an agglutinating language like Turkish or 
Finnish requires a significantly more sophisticated elicitation machinery. 
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Surface Form (e.g., happiest) 

Figure 2 
General architecture of the morphological analyzer. 

. 

. 

. 

The morpheme to surfacy feature mapping essentially maps  
morphemes  to feature names but  retains some encoding of the surface 
morpheme.  Thus, a l lomorphs that encode the same feature would  be 
m a ppe d  to different surfacy features. 

The lexical and surfacy constraints  specify any conditions to constrain 
the possibly overgenerat ing morphotact ics  of the citation form and 
m or phe me  lexicons. These constraints can be encoded using the citation 
forms and the surfacy features generated by  the previous  mapping.  The 
use of surfacy features also enables reference to zero morphemes ,  which 
otherwise could not  be used. For instance, if in some parad igm a certain 
prefix does not  co-occur with a certain suffix, or always occurs with 
some other suffix, or if a certain citation form in that pa rad igm has 
exceptional behavior  with respect to one or more  of the affixes, or if the 
affixal aUomorph that goes with a certain citation form depends  on the 
propert ies  of the citation form, these are encoded at this level as 
finite-state constraints. 

The surfacy feature to feature mapping module  maps  the surfacy 
representat ion of the affixes to symbolic feature names; as a result, no 
surface information remains except for the citation form. Thus, for 
instance, a l lomorphs that encode the same feature and map to different 
surfacy features now map  to the same feature symbol. 
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. The feature constraints specify constraints among the symbolic features. 
They are different means of constraining morphotactics than the one 
provided by lexical and surfacy constraints. At this level, one refers to 
and constrains symbolic morphosyntactic features as opposed to surfacy 
features. This may provide a more natural or convenient abstraction, 
especially for languages with long-distance morphotactic constraints. 

These six finite-state transducers are composed to yield a transducer for the paradigm. 
The union of the transducers for all paradigms produces one (possibly large) trans- 
ducer for morphological analysis, where surface strings applied at the lower end pro- 
duce all possible analyses at the upper end. 

4.2 Information Elicited from Human Informants 
The Boas environment guides the language informant through a series of questions 
leading up to paradigm delineation. The informant indicates the parameters for which 
a given part of speech inflects (e.g., Case, Number), the relevant values for those pa- 
rameters (e.g., Nominative, Accusative; Singular, Plural), and the licit combinations 
of parameter values (e.g., Nominative Singular, Nominative Plural). The informant 
then posits any number of paradigms, whose members are expected to show sim- 
ilar patterns of inflection. It is assumed that all citation forms that belong to the 
same paradigm take essentially the same set of inflectional affixes (perhaps subject 
to morphophonological variations). It is expected that the citation forms and/or  the 
affixes may undergo systematic or idiosyncratic morphographemic changes. It is also 
assumed that certain citation forms in a given paradigm may behave in some excep- 
tional way (for instance, contrary to all other citation forms, a given citation form 
may not have one of the inflected forms.) A paradigm description provides the full 
inflectional pattern for one characteristic or distinguished citation form and additional 
examples for any other citation forms whose inflectional forms undergo nonstandard 
morphographemic changes. If necessary, any lexical and feature constraints can be 
encoded. Currently the provisions we have for such constraints are limited to writing 
regular expressions (albeit at a much higher level than standard regular expressions); 
however, capturing such constraints using a more natural language (e.g., Ranta 1998) 
can be incorporated into future versions. 

4.3 Elicited Descriptive Data 
Figure 3 presents the encoding of the information elicited for one paradigm of a Polish 
morphological analyzer, which will be covered in detail later, s 

The data elicited using the user interface component of Boas is converted into 
a description text file with various components delineated by SGML-like tags. The 
components in the description are as follows: 

• The <LANGUAGE-DESCRIPTION... > component lists information about the 
language and specifies its vowels and consonants, and other orthographic 
symbols that do not fall into those two groups. 

• A paradigm description starts with the tag <PARADIGM NAME=... >, which 
lists the name of the paradigm, its part-of-speech category, and any 

8 Our actual system works using unicode character representation. But unicode input and output are not 
yet supported in the XRCE xfst tool, hence we employ an ASCII external representation for the unicode 
characters during off-line testing. In the following examples, however, we have opted to represent the 
actual characters as they should appear on screen. 
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<LANGUAGE-DESCRIPTION TYPE = "morphology" 

NAME = "Polish" 

ALPHABET = "a~bcdde~fghijklhnnfio6pqrs~tuvwxyz~z" 

VOWELS = "age@io6uy" 

CONSONANTS= "bcddfghjkl~mnfipqrs~tvwxz~z" 

OTHER = ""> 

<PARADIGM NAME="MasclnUStart" POS = "Noun" FEATURES="Masculine"> 

<PRIMARY-EXAMPLE> 

<INF-GROUP> 

<PRIMARY-CIT-FORM FORM = "telefon"> 

<INF-FORM FORM = "telefon" FEATURE = "Nom. Sg."> 

<INF-FORM FORM = "tslefon" FEATURE ="Acc. Sg."> 

<INF-FORM FORM = "telefonach" FEATURE = "Loc.Pl."> 

<INF-FORM FORM = "telefonami" FEATURE = "Instr.Pl."> 

</INF-GROUP> 

</PRIMARY-EXAMPLE > 

<EXAMPLE> 

<INF-GROUP> 

</INF-GROUP> 

</EXAMPLE> 

<LEXICON> 

</LEXICON> 

</PARADIGM> 

<CIT-FORM FORM = "akcent"> 

<INF-FORM FORM = "akcent" FEATURE = "Nom. Sg."> 

<INF-FORM FORM = "akcencie" FEATURE = "Loc.Sg."> 

<CIT-FORM FORM = "stron"> 

<CIT-FORM FORM = "klub"> 

<CIT-FORM FORM = "sklep"> 

</LANGUAGE-DESCRIPTION> 

Figure 3 
Sample paradigm description generated by Boas elicitation. 

additional morphosyntactic features that are common to all citation 
forms in this paradigm. In the example in Figure 3, the paradigm is for 
masculine nouns. Everything up to the </PARADIGM> tag is part of the 
descriptive data for the paradigm. This descriptive data consists of a 
primary example, a series of zero or more additional examples, and the 
lexicon. 

The primary example is given between the <PRIMARY-EXAMPLE> and 
</PRIMARY-EXAMPLE> tags. The description is given as a sequence of one 
or more inflection groups between <INF-GROUP> and </INF-GROUP> tags. 
In some instances, a given lexical item can use different citation forms in 
different inflectional forms. For example, one citation form might be 
used in the present tense and another in the past tense; or one might be 
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used with multisyllable affixes and another with single-syllable affixes. 
Thus, a given lexical item can have multiple citation forms, each of 
which gets associated with a mutually exclusive subset of inflectional 
forms. All the citation forms for a given lexical item, plus all its 
inflectional forms, are represented in an inflection group. If the 
association of citation forms with inflectional forms is predictable (as 
indicated by the language informant), the subsets of inflectional forms 
are processed separately; if not, we assume that all citation forms can be 
used in all inflectional forms and hence overgenerate. Manual constraints 
can later be added, if necessary, to constrain this overgeneration. 

Additional examples are provided between <EXAMPLE> and </EXAMPLE> 
tags. Examples contain new citation forms plus any inflectional forms 
that are not predictable based on the primary example. Each example is 
considered an inflectional group and is enclosed within the 
corresponding tags. 

The citation forms given in the primary example and any additional 
examples are considered to be a part of the citation form lexicon of the 
paradigm definition. Any additional citation forms in this paradigm are 
listed between the <LEXICON> and </LEXICON> tags. 

5. Generating the Morphological Analyzer 

The morphological analyzer is a finite-state transducer that is actually the union of 
the transducers for each paradigm definition in the description provided. Thus, the 
elicited data is processed one paradigm at a time. For each paradigm we proceed as 
follows: 

. 

. 

. 

The elicited primary citation form and associated inflected forms are 
processed to find the "best" segmentation of the forms into stem and 
affixes. 9 Although we allow for inflectional forms to have both a prefix 
and a suffix (one of each), we expect only suffixation to be employed by 
the inflecting languages with which we are dealing (Sproat 1992). 

Once the affixes are determined, we segment the inflected forms for the 
primary example and any additional examples provided, and pair them 
with the corresponding surface forms. The segmented forms are now 
based on the citation form plus the affixes (not the stem). The reason is 
that we expect the morphological analyzer to generate the citation form 
for further access to lexical databases to be used in the applications. The 
resulting segmented form-surface form pairs make up the example base 
of the paradigm. 

The citation forms given in the primary example, in additional examples, 
and explicitly in the lexicon definition of the elicited data, along with the 
mapping from suffix strings to the corresponding morphosyntactic 
features, are compiled (by our morphological analyzer generating 
system) into suitable regular expressions (expressed using the regular 

9 The stern is considered to be that part of the citation form onto which affixes are attached, and in our 
context it has no function except for determining the affix strings. 
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. 

. 

expression language of the XRCE finite-state tools [Karttunen et al. 
1996]). l° 

The example base of the paradigm generated in step 2 is then used by a 
learning algorithm to generate a sequence of morphographemic rules 
(Kaplan and Kay 1994) that handle the morphographemic phenomena. 

The regular expressions for the lexicon in step 3 and the regular 
expressions for the morphographemic rules induced in step 4 are then 
compiled into finite-state transducers and combined by composition to 
generate the finite-state morphological analyzer for the paradigm. 

The resulting finite-state transducers for each paradigm are then unioned to give 
the transducer for the complete set of paradigms. 

5.1 Determining Segmentation and Affixes 
The suffixes and prefixes in a paradigm are determined by segmenting the inflected 
forms provided for the primary example. This process is complicated by the fact that 
the citation form may not correspond to the stem--it may contain a morphological in- 
dication that it is the citation form. Furthermore, since the language informant provides 
only a small number of examples, statistically motivated approaches like the one sug- 
gested by Theron and Cleoete (1997) are not applicable. We have experimented with a 
number of approaches and have found that the following approach works quite well. 

Using the notion of description length (Rissanen 1989), we try to find a stem and 
a set of affixes that account for all the inflected forms of the primary example. Let 
C = (cl, c2 . . . . .  ccl be the character string for the citation form in the primary example 
(ci are symbols in the alphabet of the language). Let Sk = (cl, c2 . . . . .  Ckl, 1 < k <_ c 
be a (string) prefix of C length k. We assume that the stem onto which morphological 
affixes are attached is Sk for some k. 11 The set of inflectional forms given in the primary 

J J ,fill (f//are alphabet example are {F1, F2,. . . ,  El}, with each Fj = ~f~,f~ . . . .  symbols in the 

of the language and lj is the length of the jth form). The function ed(v,w) (ed for 
edit distance), where v and w are strings, measures the minimum number of symbol 
insertions and deletions (but not substitutions) that can be applied to v to obtain w 
(Damerau 1964). 12 We define 

j=f 
d(Sk) = k + ~_~ ed(Sk, Fj) 

j= l  

as a measure of the information needed to account for all the inflected forms. The first 
term above, k, is the length of the stem. The second term, the summation, measures 
how many symbols must be inserted and deleted to obtain the inflected form. The 
Sk with the minimum d(Sk) is then chosen as the stem S. Creating segmentations 
based on stem S proceeds as follows: To determine the affixes in each inflected form 

Fj = ~f~,f~ . . . . .  f/i/, we compute the projection of the stem Pj = ~f~ . . . .  ,f/el in Fj, as that 

10 Note that other finite state tools could also be used (e.g., Mohri, Pereira and Riley 1998; van Noord 
1999). 

11 The stem can also be an arbitrary substring of C, not just some initial prefix. Our approach can 
certainly extend to that. 

12 The function ed(...) assumes that vowels  only align wi th  other  vowels  or are elided, and consonants  
only align wi th  consonants  or are elided. 
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substring of Fj whose alignment with S provides the minimum edit distance, that is, 

P j = argmin ed ( S, ~f~ . . . . . .  /d,>) 
(f~ ..... ,fd,>,l<_b'<e'<lj 

Then we select the substring ~f~ . . . . .  f~-l> of Fj (if it exists) as the prefix and . . .  ,J~} q~+l" 

(if it exists) as the suffix. If there are multiple substrings of Fj that give the same 
(minimum) edit distance when aligned with S, we prefer the longer substring. We 
then create 

f~_l + C + 9<~+1 . . . . .  . . . . .  

as an aligned segmented form-surface form pair and add it to the example base that 
we will use in the learning stage. Note that we now use the citation form C, and not 
the stem S, as a part of the segmented form. 

Thus, at the end of the process we generate pairs of inflected forms and their 
corresponding segmented forms to be used in the derivation of the morphographemic 
rules. These pairs come from both the inflected forms given in the primary example 
and from any additional examples given. 

For example, suppose we have the following primary example: 

<PRIMARY-EXAMPLE> 

<INF-GROUP> 

<PRIMARY-CIT-FORM FORM = "strona"> 

<INF-FORM FORM = "strona" FEATURE = "Nom. Sg."> 

<INF-FORM FORM = "strong" FEATURE = "Acc. Sg."> 

<INF-FORM FORM = "strony" FEATURE = "Gen. Sg."> 

<INF-FORM FORM = "stronie" FEATURE = "Dat.Sg."> 

<INF-FORM FORM = "stronie" FEATURE ="Loc. Sg."> 

<INF-FORM FORM = "strong" FEATURE ="Instr. Sg."> 

<INF-FORM FORM = "strony" FEATURE = "Nom. Pl."> 

<INF-FORM FORM = "strony" FEATURE = "Acc.PI."> 

<INF-FORM FORM = "stron" FEATURE = "Gen. Pl."> 

<INF-FORM FORM = "stronom" FEATURE = "Dat. Pl."> 

<INF-FORM FORM = "stronach" FEATURE = "Loc.Pl."> 

<INF-FORM FORM = "stronami" FEATURE = "Instr.Pl."> 

</INF-GROUP> 

</PRIMARY-EXAMPLE> 

For this example, stems Sk: s, st, str, stro, stron, strona, are considered. Table 1 
tabulates d(Sk) considering all the unique inflected forms above. It can be seen that 
the value of d(Ss) is minimum for $5 = S = stron. We then determine suffixes based 
on this stem selection. The suffixes are given in this table under k = 5, where the stem 
S = stron perfectly aligns with the initial substring stron in each inflected form Fj, with 
0 edit distance. 

The segmented form-surface form pairs in Table 2 are then generated from the 
alignment of the stem with each surface form. 

5.2 Learning Segmentation and Morphographemic Rules 
The citation form and the affix information elicited and extracted by the process de- 
scribed above are used to construct regular expressions for the lexicon component 
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Table 1 
Stems Sk and the corresponding d(Sk). 

k = l  k = 2  

Stems Considered, Sk 

k = 3  k = 4  k = 5  k = 6  
Form Fj s st str stro stron 
strona 5 4 3 2 1 
stron~ 5 4 3 2 1 
strony 5 4 3 2 1 
stronie 6 5 4 3 2 
stron G 5 4 3 2 1 
stron 4 3 2 1 0 
stronom 6 5 4 3 2 
stronach 7 6 5 4 3 
stronami 7 6 5 4 3 

Suffix 
-a 
-¢ 
-y 
-ie 

-om 
-ach 
-ami 

strona 
0 
2 
2 
3 
2 
1 
3 
2 
2 

d(Sk) 51 43 35 27 19 

Table 2 
The segmented and surface pair examples obtained. 

Segmented Surface 
strona+a strona 
strona+~ stron~ 
strona+y strony 
strona+ie stronie 
strona+ G stron G 
strona+ stron 
strona+om stronom 
strona+ach stronach 
strona+ami stronami 

of each paradigm. 13 The example segmentat ions are fed into the learning module  to 
induce morphographemic  rules. 

5.2.1 Generat ing  Candidate  Rules  f rom Examples .  The preprocessing stage yields 
a list of pairs of segmented lexical forms and surface forms. The segmented forms 
contain the citation forms and affixes; the affix boundaries  are marked by  the + symbol. 
This list is then processed by  a transformation-based learning parad igm (Brill 1995; 
Satta and Henderson  1997), as illustrated in Figure 4. The basic idea is that we consider 
the list of segmented words  as our input  and find transformation rules (expressed as 
contextual rewrite rules) to incrementally transform this list into the list of surface 
forms. The transformation we choose at every iteration is the one that makes the list 
of segmented forms closest to the list of surface forms. 

The first step in the learning process is an initial al ignment of pairs using a stan- 
dard dynamic  p rogramming  scheme. The only constraints in the al ignment are: (i) a + 
in the segmented lexical form is always aligned with an empty  string on the surface 
side, notated by 0; (ii) a consonant  on one side is always aligned with a consonant  or 
0 on the other side, and likewise for vowels; (iii) the al ignment must  correspond to 

13 The result of this process is a script for the XRCE finite-state tool xfst. Large-scale lexicons can be more 
efficiently compiled by the XRCE tool lexc. We currently do not generate lexc scripts, but it is trivial to 
do so. 
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Segmented 
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(Truth) 

Transformation-based learning of morphographemic rules. 

the m i n im um edit distance between the original lexical and surface forms. 14 From this 
point  on, we will use a simple example from English to clarify our  points. 

Assume that we have the pairs (un+happy+est ,  u n h ap p i e s t )  and (shop+ed, 
shopped) in our  example base. We align these and determine the total number  of 
"errors" in the segmented forms that we have to fix to make all segmented forms 
match the corresponding surface forms. The initial a l ignment  produces  the aligned 
pairs: 

un + happy + est shopO+ ed 

un 0 happi 0 est shopp 0 ed 

with a total of five errors. From each segmented pair we generate rewrite rules of the 
sort is 

u - >  i [] LeftContext, RightContext ; 

where  u(pper) is a symbol in the segmented form, l (ower)  is a symbol in the surface 
form. Rules are generated only from those aligned symbol  pairs that are different. 
L e f t C o n t e x t  and Righ tContex t  are simple regular expressions describing contexts 
in the segmented side (up to some small length), also taking into account the word  
boundaries.  For instance, from the first aligned-pair example,  this procedure  would  
generate rules such as the following (depending on the amount  of left and right context 
allowed): 

y -> i 

y -> i 

y -> i 

+ -> 0 

+ -> 0 

+ -> 0 

+ -> 0 

p_ y->i 

p_+es y->i 

p_ + e s t # y-> i 

# U n 

e s t 

e s t #  . .  
est# Ppy - 

+ -> 0 

p _ + e  
p _ + e s t  

p p _ + e  

# u n  _ h a p  

14 We arbitrarily choose one if there are multiple legitimate alignments. 
15 We use the XRCE finite-state tools regular expression syntax (Karttunen et al. 1996). For the sake of 

readability, we will ignore the escape symbol (%) that should precede any special characters (e.g., ÷) 
used in these rules. 
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The # symbol denotes a word boundary and is intended to capture any word-initial 
and word-final phenomena. The segmentation rules (+ -> 0) require at least some 
minimal left or right context (usually longer than the minimal context for other rules 
in order to produce more accurate segmentation decisions). We disallow contexts that 
consist only of a morpheme boundary, as such contexts are usually not informative. 
It should be noted that these rules transform a segmented form into a surface form 
(contrary to what may be expected for analysis). This lets us capture situations where 
multiple segmented forms map to the same surface form, which occurs when the 
language has morphological ambiguity. Thus, in a reverse lookup, a given surface 
form may be interpreted in multiple ways, if applicable. 

Since we have many examples of aligned pairs in our example base, it is likely that 
a given rule will be generated from many pairs. For instance, if the pairs (stop+ed, 
stopped) and ( t r ip+ed,  t r ipped)  were also in the list, the gemination rule 0 -> p 
I I p - + e d (along with certain others) will also be generated from these examples. 
We count how many times a rule is generated and associate this number with the rule 
as its promise, meaning that it promises to fix this many "errors" if it is selected to 
apply to the current list of segmented forms. 

5.2.2 G e n e r a l i z i n g  R u l e s .  The candidate rules generated by the processes described 
above refer to specific strings of symbols as left and right contexts. It is, however, 
possible to obtain more generalized rules by classifying the symbols in the alphabet 
into phonologically relevant groups, like vowels and consonants. The benefit of this 
approach is that the number of rules thus induced is typically smaller, and more 
unseen cases can be covered. 

For instance, in addition to a rule like 0 -> p I I p - + e ,  the rules 

0 -> p 
0 -> p 

CONSONANTS _ 

p _ + VOWELS 
+ e 

0 -> p CONSONANTS _ + VOWELS 

can be generated, where symbols such as CONSONANTS and VOWELS stand for regu- 
lar expressions denoting the union of relevant symbols in the alphabet. The promise 
scores of the generalized rules are found by adding the promise scores of the origi- 
nal rules generating them. Generalization substantially increases the number of can- 
didate rules to be considered during each iteration, but this is not a very serious 
issue, as the number of examples per paradigm is expected to be quite small. The 
rules thus learned would be the most general set of rules that do not conflict with 
the evidence in the examples. It is possible to use a more refined set of classes that 
correspond to subclasses of vowels (e.g., high vowels) and consonants (e.g., frica- 
tives) but these will substantially increase the number of candidate rules at every 
iteration and will have an impact on the iteration time unless examples are chosen 

carefully. 

5.2.3 Selecting Rules. At each iteration, all the rules along with their promise scores 
are generated from the current state of the example pairs. The rules generated are then 
ranked based on their promise scores, with the top rule having the highest promise. 
Among rules with the same promise score, we rank more general rules higher, with 
generality being based on context subsumption (i.e., preference goes to rules using 
shorter contexts and/or  referring to classes of symbols, like vowels or consonants). 
All segmentation rules go to the bottom of the list, though within this group, rules 
are still ranked based on decreasing promise and context generality. The reasoning 
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for treating the segmenta t ion  rules separa te ly  and  later in the process is that  affixa- 
tion boundar ies  consti tute contexts for all m o r p h o g r a p h e m i c  changes; therefore they 
should  not  be el iminated if there are any  (more) m o r p h o g r a p h e m i c  p h e n o m e n a  to 
process. 

Starting wi th  the top- ranked  rule, we  test each rule on the segmented  compo-  
nent  of the pairs. A finite-state engine emulates  the replace rules to see h o w  m u c h  
the segmented  forms  are "fixed." The first rule that  fixes as m a n y  "errors"  as it 
p romises  to fix, and  does not  generate  an inter im example  base  wi th  generat ion 
ambiguity,  is selected. 16 The issue of generat ion ambigu i ty  refers to cases where  the 
same segmented  forms are pai red  with  distinct surface forms. 17 In such cases, find- 
ing a rule that  fixes both  pairs  is not  possible,  so in choosing rules, we  avoid any  
rules whose  tentative applicat ion generates  an inter im example  base  wi th  such am-  
biguities. In this way, we  can account  for all the discrepancies be tween  the sur- 
face and segmented  forms wi thout  falling into a local minima.  Al though we do not  
have  formal  proof  that this s imple  heuristic avoids  such local min ima  situations, in 
our  exper imenta t ion  wi th  a large n u m b e r  of cases we  have  never  seen such an in- 
stance. 

The complete  p rocedure  for rule learning can n o w  be given as follows: 

- Align surface and segmented forms in the example base; 

- Compute total Error; 

- while(Error > O) { 

-Generate all possible rewrite rules subject to context size limits; 

-Rank Rules  ; 
- w h i l e  ( t h e r e  a r e  more r u l e s  and a r u l e  has  not  y e t  been s e l e c t e d )  { 

- Tentatively apply the next rule to all the segmented forms; 

- Re-align the resulting segmented forms with the 

corresponding surface forms to see how many 

''errors'' have been fixed; 

- If the number of errors fixed is equal to what the rule 

promised to fix AND the result does not have generation 

ambiguity, select this rule; 
} 

-Commit the changes performed by the rule on the segmented forms 

to the example base; 

-Reduce Error by the promise score of the selected rule; 

This p rocedure  eventual ly  generates  an ordered sequence of two ordered groups  
of rewri te  rules. The first g roup  of rules is for any  m o r p h o g r a p h e m i c  p h e n o m e n a  
in the given set of examples ,  and  the second group  of rules handles  segmentat ion.  
All these rules are composed  in the order  in which  they are genera ted to construct  
the Morphog raphemic  Rules t ransducer  at the bo t tom of each p a r a d i g m  (see Fig- 
ure 2). 

16 Note that a rule may actually introduce unintended errors in other pairs, since context checking is 
done only on the segmented form side; therefore what a rule delivers may be different than what it 
promises, as promise scores also depend on the surface side. 

17 Consider a state of the example base where some segmented lexical form L is paired with different 
surface forms $1 and $2, that is, we have pairs (L, $1) and (L, $2) in our example base. Any rule that 
will bring L closer to $1 will also change L of the second pair and potentially make it impossible to 
bring it closer to $2. 
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5.3 Identifying Errors and Providing Feedback 
Once the Morphographemic Rules transducers are compiled and composed with the 
lexicon transducer that is generated automatically from the elicited information, we 
obtain an analyzer for the paradigm. The analyzer for the paradigm can be tested by 
using the xfst environment of the XRCE finite-state tools. This environment provides 
machinery for testing the output of the analyzer by generating all forms involving 
a specific citation form, a specific morphosyntactic feature, or the like. This kind of 
testing has proved quite sufficient for our purposes. 

When the full analyzer is generated by unioning all the analyzers for each para- 
digm, one can do a more comprehensive test against a test corpus to see what surface 
forms in the test corpus are not recognized by the generated analyzer. Apart from 
revealing obvious deficiencies in coverage (e.g., missing citation forms in the lexicon), 
such testing provides feedback about minor human errors--the failure to cover cer- 
tain morphographemic phenomena, or the incorrect assignment of citation forms to 
paradigms, for example. 

Our approach is as follows: we use the resulting morphological analyzer with an 
error-tolerant finite-state recognizer engine (Oflazer 1996). Using this engine, we try to 
find words recognized by the analyzer that are (very) close to a rejected (correct) word 
in the test corpus, essentially performing a reverse spelling correction. If the rejection 
is due to a small number of errors (1 or 2), the erroneous words recognized by the 
recognizer are aligned with the corresponding correct words from the test corpus. 
These aligned pairs can then be analyzed to see what the problems may be. 

5.4 Applicability to Infixing, Circumfixing, and Agglutinating Languages 
The machine learning procedure for inducing rewrite rules is not language dependent. 
It is applicable to any language whose lexical representation is a concatenation of 
free and bound morphemes (or portions thereof). All this stage requires is a set of 
pairs of lexical and surface representations of the examples compiled for the example 
base. 

We have tested the rule learning component above on several other languages in- 
cluding Turkish, an agglutinating language, using an example base with lexical forms 
produced by a variant of the two-level morphology-based finite-state morphological 
analyzer described in Oflazer (1994). The lexical representation for Turkish also in- 
volved meta symbols (such as H for high vowels, D for dentals, etc.), which would 
be resolved with the appropriate surface symbol by the rules learned. For instance, 
vowel harmony rules would learn to resolve H as one of ~, i ,  u, ii in the appropriate 
context. 

Furthermore, the version of the rule learning (sub)system used for Turkish also 
made use of context-bound morphophonological distinctions that are not elicited in 
Boas, such as high vowels, low unrounded vowels, dentals, etc. The rules generated 
were the most general set of rules that did not conflict with the example base. There 
were many examples in the example base that involved multiple suffixes, not just 
one, as in the inflecting languages we address in this paper. It was quite satisfying 
to observe that the system could learn rules for dealing with vowel harmony, de- 
voicing, and so on. A caveat is that if there were too many examples and too many 
morphophonological classes, the number of candidate rules to be tried increased ex- 
ponentially. This could be alleviated to a certain extent by a careful selection of the 
example base. 

Thus, the rule-learning component is applicable to agglutinative, and also to in- 
fixing and circumfixing languages, provided there is a proper representation of the 
lexical and surface forms. However, for infixing languages it could be very problem- 

74 



Oflazer, Nirenburg, and McShane Bootstrapping Morphological Analyzers 

atic to have a linear representation of the infixation, with the lexical root being split 
in two and the morphotactics picking up the first part, the infix, and the second part. 
To prevent overgeneration, the infix lexicon might have to be replicated for each root, 
to enforce the fact that the two parts of the stem go together. 18 The case for circumfix- 
ation is simpler since the number of such morphemes is assumed to be much smaller 
than the number of stems, so the circumfixing morphemes can be split up into two 
lexicons and treated as a prefix-suffix combination. The co-occurrence restrictions for 
the respective pairs can then be manually enforced with finite-state constraints that 
can be added to the lexical and surfacy constraints section of the analyzer (see Fig- 
ure 2). 

Thus, in all three cases, learning the rules is not a problem provided the example 
base is in the requisite linear representation. On the other hand, this approach as such 
is inapplicable to languages like Arabic, which have radically different word formation 
processes (for which a number of other finite-state approaches have been proposed; 
(see, for example, Beesley [1996] and Kiraz [2000]). 

On the other hand, in contrast to acquiring the rewrite rules, eliciting the mor- 
photactics and the affix lexicons for an agglutinating language (semi)automatically 
is a very different process and is yet to be addressed. There are three parts to this 
problem: 

. 

2. 

3. 

Determining the boundaries of free and bound morphemes, accounting 
for any morphographemic variations; 

Determining the order of morphemes; 

Determining the "semantics" of the morphemes, that is, the features they 
encode. 

These are complicated by a number of additional issues such as zero morphemes, local 
and long-distance co-occurrence restrictions (e.g., for allomorph selection), exceptions, 
productive derivations, circular derivations, and morphemes with the same surface 
forms but a totally different morphotactic position and function. Also, in languages 
that have a phenomenon like vowel harmony, such as Turkish, even if all harmonic 
allomorphs of a certain suffix are somehow automatically grouped into a lexicon with- 
out any further abstraction, severe overgeneration would result, unless the all root and 
suffix lexicons were split or replicated along vowel lines. In such cases, a human in- 
formant (who possesses a certain familiarity with morphographemics and issues of 
overgeneration) may have to resort to manual abstraction of the morpheme represen- 
tations. Then the process of acquiring the features for inflectional and derivational 
morphemes could proceed. 

6. Bootstrapping a Polish Analyzer 

This section presents a quite extensive example of bootstrapping a morphological an- 
alyzer for Polish by iteratively providing examples and testing the morphological an- 
alyzer systematically. The idea of this exercise was to have a relatively limited number 
of paradigms that bunched words showing slight inflectional variations. 19 For reasons 

18 This is much like what one encounters when dealing with reduplication in the FS framework. Also 
note that this is a lexicon issue and not a rule issue. 

19 Nonexpert language informants using Boas will be encouraged to split, rather than bunch, paradigms, 
for the sake of simplicity. 
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of space, the exposition is limited to developing four paradigms, of which one will be 
covered in detail. The paradigms here cover only a subset of masculine norms, and 
do not treat feminine or neuter nouns at all; however, they cover all the problems that 
would  be found in words of those genders. 

For purposes of testing the learner off-line (i.e., outside the Boas environment), we 
tried to keep to a min imum the number  of inflected forms given for each additional 
citation form. This was a learner-oriented task and intended to determine how robust 
the learner could become with a min imum of input. When using the Boas interface, the 
language informant will not have the option of selectively providing inflected forms. 
The interface works as follows: the informant gives all forms of the pr imary example 
and lists other citation forms that he or she thinks belong to the given paradigm. Hav- 
ing learned rules from the pr imary example, the learner generates all the inflectional 
forms for each citation form provided. The informant then corrects all mistakes and 
the learner relearns the rules. So, the informant  never has the opportuni ty  to say "Well, 
I know the learner can't  predict the locative singular for this word,  so I will supply 
it overtly from the outset." The informant will just have to wait  for the learner to get 
the given forms wrong and then correct them. Any other approach would  make for 
a complex interface and would  require a sophisticated language informant- -not  what  
we are expecting. 

Polish is a highly inflectional West Slavic language that is written using extended 
Latin characters (six consonants and three vowels have diacritics). Certain phonemes 
are writ ten using combinations of letters: e.g., sz, cz, and szcz represent phonetic ~, 
G and ~ ,  respectively. R° Polish nominals inflect for seven cases: Nominative (Nom.), 
Accusative (Acc.), Genitive (Gen.), Dative (Dat.), Locative (Loc.), Instrumental  (Instr.), 
and Vocative (Voc.); and two numbers: Singular (Sg.) and Plural (P1.). 21 The complex- 
ity of Polish declension derives from four sources: (i) certain stem-final consonants 
mutate  during inflection; these are called "alternating" consonants, and are contrasted 
with so-called "nonalternating" consonants (al ternat ing/nonalternat ing is a crucial 
diagnostic for paradigm delineation in Polish); (ii) certain letters are spelled differ- 
ently depending on whether  they are word-final or word-internal (e.g., word-final 
-d is written -si when  followed by a vocalic ending); (iii) final-syllable vowels are 
added /de le t ed  in some (not entirely predictable) words; and (iv) declension is not 
entirely phonologically driven--semantics  and idiosyncrasy affect inflectional end- 
ings. 

The following practical simplifications have been made  for testing purposes: 

Words that are normally capitalized (like names) are not capitalized here. 

Some inflectional form(s) that might not be semantically valid (e.g., 
plurals for collectives) were disregarded. Thus a bit of overgeneration 
still remains but  can be removed with some additional effort. 

6.1 Paradigm 1 
The process starts with the description of Paradigm 1, which describes alternating 
inanimate masculine nouns with genitive singular in -u and no vowel shifts. The 

20 We actually treat these as single symbols during learning. Such symbols are indicated in the 
description file in a special section that we have omitted in Figure 3. 

21 The Vocative case was not included in these tests because it is not expected to occur widely in the 
journalistic prose for which the system is being built. 
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following p r i m a r y  example  for the 

Case 
N o m .  
Acc. 
Gen. 
Dat. 
Loc. 
Instr. 

citation fo rm telefon is g iven in full: 

Number 
Singular Plural 
telefon telefony 
telefon telefony 
telefonu telefon6w 
telefonowi telefonom 
telefonie telefonach 
telefonem telefonami 

All inflectional forms in this p a r a d i g m  are trivial except: 

• The Loc.Sg. depends  on the final consonant  and  induces or thographic  
al ternations for some al ternat ing consonants:  22 

Final Consonant(s) 
b, p, f, w, m, n, s, z 
t, d, st, zm 
Lr, st 
g, k, ch 

Loc.Sg. Ending 
-ie 
- ie  

-e 
-u  

Consonant Alternations 

t- ,c,  d--,dz, st--+gc, zm--*;~m 
f~l ,  r--*rz, sl--*gl 

• Instr.Sg. and  Nom.P1. depend  on the final consonant;  two velars have  an 
idiosyncratic ending: 

Final Consonant(s) 

b, p, f, w, m, n, s, z 
t, d, st zm, L r, st, ch 
g ,k  

Instr.Sg. 
Ending 
- e m  

- i e m  

Nom.P1. 
Ending 
-y 

-i 

The fol lowing examples  were  p rov ided  in addition to the inflectional forms  of the 
p r i m a r y  example  in order  to show Loc.Sg. endings  and  accompany ing  consonant  al- 
ternations that  could not  be predic ted based on the p r i m a r y  example:  

1. t~c:  akcent (Nom.Sg.), akcencie (Loc.Sg.) 

2. d --* dz: wyktad (Nom.Sg.), wyktadzie (Loc.Sg.) 

3. st ---~dc: most (Nom.Sg.), modcie (Loc.Sg.) 

4. zm---~m: komunizm (Nom.Sg.), komuni~mie (Loc.Sg.) 

5. t-*l: artykut (Nom.Sg.), artykule (Loc.Sg.) 

6. r--*rz: teatr (Nom.Sg.), teatrze (Loc.Sg.) 

7. st~sl:  pomyst (Nom.Sg.), pomydle (Loc.Sg.) 

The fol lowing addi t ional  examples  were  p rov ided  to show velar  pecularities: 

8. g: pociqg (Nom.Sg.), pociqgu (Loc.Sg.), pociqgiem (Instr.Sg.), pociqgi (Nom.Pl.) 

22 Strictly speaking, the consonants b, p,f, w, m, n, s, and z alternate as well in the Loc.Sg., since 
alternating/nonalternating is a phonological distinction, not a graphotactic one. The softening of these 
consonants is indicated by the -i that precedes the canonical Loc.Sg. ending -e. However, for our 
purposes it is more straightforward to consider the Loc.Sg. ending for these consonants -ie with no 
accompanying graphotactic alternation. 
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Table 3 
Summary of runs for Paradigm 1. 

Citation Additional Run 1 Additional Run 2 Additional Run 3 
Key Forms Examples Results Examples Results Examples Results 
0 telefon, stron, x/ 

paragraf, 
~piew, sklep, 
ttum, adres, 
obraz 

1 akcent, bilet Nom.Sg. mutates all Nom.P1. mutates Instr.Sg. x/ 
Loc.Sg. oblique forms lnstr.Sg. 

2 wyklad, sad Nom.Sg. mutates all Nom.P1. mutates Instr.Sg. x/ 
Loc.Sg. oblique forms Instr.Sg. 

3 most, list Nom.Sg. mutates all Nom.P1. mutates Instr.Sg. V' 
Loc.Sg. oblique forms Instr.Sg. 

4 komunizm, Nom.Sg. mutates all Nom.P1. mutates Instr.Sg. ~/ 
socjalizm Loc.Sg. oblique forms Instr.Sg. 

5 artykut, Nom.Sg. mutates all Nora.P1. mutates Instr.Sg. x/ 
kawat Loc.Sg. oblique forms Instr.Sg. 

6 teatr, numer Nom.Sg. mutates all Nom.P1. mutates Instr.Sg. x/ 
Loc.Sg. oblique forms Instr.Sg. 

7 pomysl, Nom.Sg. mutates all Nom.P1. mutates Instr.Sg. x/ 
zmyst Loc.Sg. oblique forms Instr.Sg. 

8 poci~g, brzeg Nom.Sg. x/ 
Loc.Sg. 
Instr.Sg. 
Nora.P1. 

9 bank, krok Nom.Sg. missed velar- Loc.Sg. of v / 
krok; 

Loc.Sg. specific Loc.Sg.; Add btysk to 
Instr.Sg. gave *krokie lexicon for 
Nom.P1. not kroku testing 

10 dach, wirch Nom.Sg. missed velar- Loc.Sg. of wrong add v / 
wirch; 

specific Loc.Sg.; Add ~miech Instr.Sg. Instr.Sg. 
gave *wirchie to lexicon for wirch, of 
not wirchu for testing ~miech wirch 

Loc.Sg. 

. 

10. 

k: bank (Nom.Sg.), banku (Loc.Sg.), bankiem (Instr.Sg.), banki (Nom.Pl.) 

ch: dach (Nom.Sg.), dachu (Loc.Sg.) 

Table 3 summarizes the first three runs for this paradigm, which were sufficient to 
create a relatively robust set of morphological rules that required only slight amend- 
ment  and further testing in two additional runs. For this and subsequent such tables 
we use the following conventions: Key 0 shows the pr imary citation form and addi- 
tional citation forms whose inflectional patterns should be fully covered by the rules 
generated for the pr imary example. The other key numbers  correspond to the addi- 
tional examples given above. Boldface citation forms under  the lexicon column are 
those for which some additional inflectional examples were given. The citation forms 
given in plain text are for testing purposes. Oblique cases refer to the Genitive, Dative, 
Locative, and Instrumental  cases. 

The original assumption for Paradigm 1 was that it would  be sufficient to pro- 
vide one unmuta ted  form (the Nom.Sg.) plus the muta ted  form (the Loc.Sg.) for words 
ending in mutat ing consonants. This led to overgeneralization of the alternation; there- 
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fore, another unmutated form had to be added as a "control." Adding the Nom.P1. 
forms fixed most oblique forms for all the words, but it left the Instr.Sg. mutated. 
This appears to be because the inflectional ending for the Loc.Sg. (which mutates) and 
the Instr.Sg. (which does not) both begin in -e for the words in question. Adding the 
Instr.Sg. overtly counters overgeneralization of the alternation. The source of the velar 
errors is not immediately evident. 

Supplementary testing was carried out after the above-mentioned words were all 
correct. Correct forms were produced for all new words showing consonant mutations 
and velar peculiarities: samolot, przyklad, pretekst, podziaL kolor, dtug, lek, gmach. One error 
for a nonmutating word (in Key 0) occurred. This word, herb, ends in a different 
consonant than the primary example and produced the wrong Loc.Sg. form. This was 
later added overtly and more words with other nonmutating consonants (postcp, puf, 
gniew, film, opis, raz) were tested; all were covered correctly. 

6.2 Paradigm 2 
The paradigm implemented next was Paradigm 2: alternating inanimate masculine 
nouns with genitive singular in -u and vowel shifts. The following primary example 
for the citation form gr6b was given in full: 

Case 
Nom. 
Acc. 
Gen. 
Dat. 
Loc. 
Instr. 

Number 
Singular Plural 
gr6b groby 
gr6b groby 
grobu grob6w 
grobowi grobom 
grobie grobach 
grobem grobami 

This paradigm is just like Paradigm 1, except that there are vowel shifts that are 
not entirely graphotactically predictable; therefore, words showing these shifts must be 
classed separately. The vowel shifts occur in all inflectional forms except the Nom.Sg. 
and the Acc.Sg., which are identical. The following vowel shifts occurred in the cases 
we considered (~b indicates vowel deletion). 

Vowel in Vowel in 
Nom.Sg./Acc.Sg. Other Forms 

6 o 
e 
ie ~b 
a e ~ 

This shift only occurs in Loc.Sg. 

The following consonant alternations are also observed in this paradigm: 

Consonant in 
Most Forms 

d 
dz 
t 
r 

Consonant in 
Loc.Sg. 

d z  

~dz 
1 

r z  

Based on the experience of Paradigm 1, the Instr.Sg. forms for all words with 
consonant alternation were provided as examples at the outset to avoid the overgen- 
eralization of the alternation. The velar pecularities are still in effect and must be dealt 
with explicitly. 
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The following examples were given to exemplify vowel shifts with an unmuta t ing  
consonant: 

1. e --* q~ shift with n: sen(Nom.Sg.), snie (Loc.Sg.) 

The following examples were employed to show vowel shifts in combination with 
various consonant alternations in the Loc.Sg. forms: 

. 

. 

, 

5. 

6. 

d ~ o and d --* dz: samoch6d (Nom.Sg.), samochodzie (Loc.Sg.), samochodem 
(Instr.Sg.) 

a --~ e and zd ~ ~dz: dojazd (Nom.Sg.), doje~dzie (Loc.Sg.), dojazdem 
(Instr.Sg.) 

d --+ o and t --* h st6t (Nom.Sg.), stole (Loc.Sg.), stotem (Instr.Sg.) 

e -* ~ and r --~ rz: puder (Nom.Sg.), pudrze (Loc.Sg.), pudrem (Instr.Sg.) 

ie --~ ~ and r ~ rz: cukier (Nom.Sg.), cukrze (Loc.Sg.), cukrem (Instr.Sg.) 

Finally, the following examples were given to show velar peculiarities: 

. 

. 

e --, ~ with k: budynek (Nom.Sg.), budynku (Loc.Sg.), budynkiem (Instr.Sg.), 
budynki (Nom.P1.) 

d --* 0 with g: r6g (Nom.Sg.), rogu (Loc.Sg.), rogiem (Instr.Sg.), rogi 
(Nom.P1.) 

At the end of first run for this paradigm only one of the eight groups above 
was covered completely. All vowel shifts for all groups came out right. However, the 
Nom.P1. and Acc.P1. endings were incorrectly generalized as -i instead of -y, probably 
because two "exceptional" velar examples (in -i) were provided in contrast to one 
"regular" nonvelar example (in -y). Adding  the Nom.P1. forms of three nonvelar words 
fixed this error. The results for velars were perfect except for the loss of z in 10 of 12 
forms of obowiqzek. Adding  the Nom.P1. form obowi~zki fixed this. For st6t and d6t, the 
consonant alternation was incorrectly extended to Gen.Sg. Adding  the Gen.Sg. form 
of st6t fixed this error for both words. At the end of the second run, all groups were 
correctly learned. 

Supplementary testing after the above-mentioned words  were correct included the 
words naw6z, doch6d, poz6r, rozbi6r, gr6d, rozch6d, nar6d, wtorek, kierunek; all forms were 
correct. 

6.3 P a r a d i g m  3 
Paradigm 3 contains alternating "man"  nouns - - tha t  is, masculine nouns referring to 
h u m a n  men. The following pr imary example for the citation form pasierb was given 
in full: 

Case 
Nom. 

acc.  
Gen. 
Dat. 
Loc. 
InstE 

Number 
Singular 
pasierb 

pasierba 
pasierba 
pasierbowi 
pasierbie 
pasierbem 

Plural 
pasierbowie 
pasierbi 
pasierb6w 
pasierb6w 
pasierbom 
pasierbach 
pasierbami 
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In this paradigm, all of the consonant alternations encountered above are still in 
effect and some word-final consonants undergo additional alternations in the Nom.P1. 
The velar peculiarities remain in effect. One additional complication in this paradigm 
is that there may be multiple Nom.P1. forms for a given citation form (e.g., pasierbowie 
and pasierbi are both acceptable Nora.P1. forms for pasierb). Furthermore, -i/-y are allo- 
morphs in complementary distribution (i.e., the second Nom.P1. form in this paradigm 
is realized with -y for certain word-final consonants). 

Stem-Final 
Consonant 
b, f, w, m, n, z, t 
p, ch 
d , t  
r ,k ,g 

Nom.P1. 
Ending 
-owie or -i or both 
-i only 
-owie only 
-owie or -y or both 

Since the analyzer needs only to analyze (and not generate) forms, there is no need 
to split this paradigm into five different ones to account for each Nom.P1. possibility: 
-owie,-owie/-i,-i, -owie/-y, -y. We simply permit overgeneration, allowing each word to 
have two Nom.P1. forms: the correct one of the -i/-y allomorphs and -owie. Further, 
since the analyzer has no way to predict which of the -i/-y allomorphs is used with a 
given word-final consonant, explicit examples of each word-final consonant must be 
provided. 

These considerations lead to splitting the citation forms for this paradigm into 
14 groups, which represent the primary example plus 13 inflectional groups added 
as supplementary examples. The Nom.Sg., Loc.Sg., and both (or applicable) Nom.P1. 
forms were provided for all groups apart from the primary example. After the first 
run, 13 of 14 groups were correctly covered. The remaining group was handled cor- 
rectly in two additional runs: two more inflectional forms of the example in word-final 
r had to be provided to counter overgeneralization of the r --* rz alternation. 

Supplementary testing after the above-mentioned words were correct included 
the citation forms drab, piastun, kasztelan, faraon, w6jt, mnich, biedak, norweg, wtoch. The 
following errors were encountered: 

norweg got the Acc.Sg./Gen.Sg. form *norweda instead of norwega. 
Adding the correct Acc.Sg. form fixed this problem. 

wtoch got the Nom.P1. form *wtoci instead of wtosi. This form was added 
overtly. 

mnich got the Nom.P1. form *mnici instead of mnisi. This form was added 
overtly. 

After these final additions, wtoch and mnich ended up with the Acc.Sg./Gen.Sg. 
forms *wtosa and *mnisa instead of wtocha and mnicha (i.e., the alternation was overgen- 
eralized again). Overtly adding the correct Acc.Sg. form wtocha solved this problem 
for both words and all forms were now correct. 

6.4 Paradigm 4 
Paradigm 4 was for nonalternating inanimate masculine nouns with genitive singular 
in -a and no vowel shifts. The following declension for bicz was provided as the 

81 



Computational Linguistics Volume 27, Number 1 

primary example: 

Case 
Nom. 
Acc. 
Gen. 
Dat. 
Loc. 
Instr. 

Number 
Singular Plural 
bicz bicze 
bicz bicze 
bicza biczy 
biczowi biczom 
biczu biczach 
biczem biczami 

A spelling rule of Polish comes into play in this paradigm: letters that take a 
diacritic word-finally or when followed by a consonant are spelled with no diacritic 
plus an -i when followed by a vowel. For instance: ~+u --* niu, ~+owi --* niowi, d+u --* 
ciu, d+owi --+ ciowi. Some, but not all, word-final letters in this paradigm have diacritics. 

In addition, in this paradigm, Gen.Sg. endings depend on the final consonant: they 
can be -6w (for j, ch, szcz), -i (for L ~, ~) or -y (for cz, sz, rz, ~). In many instances, more 
than one form is possible, but this test covers only the most common form for each 
stem-final consonant. 

The citation forms in this paradigm broke down into 10 groups based on the final 
consonant. The Nom.Sg., Gen.Pl., and Instr.P1. forms were provided for the 9 groups 
(the tenth is the primary example, for which all forms were provided). Eight of the 
10 groups were handled correctly after the first run. The spelling-rule related to -i 
required some extra forms to be learned correctly. Otherwise, everything came out as 
predicted. Supplementary testing included the citation forms klawisz, b~bel, strumie~, 
tach, cyrkularz; all inflectional forms were produced correctly. 

7. Performance  Issues  

Generating a morphological analyzer once the descriptive data is given can be carried 
out very fast. Each paradigm can be processed within tens of seconds on a fast work- 
station, including the few tens of iterations of rule learning from the examples. A new 
version of the analyzer can be generated within minutes and tested rapidly on any test 
data. Thus, none of the processes described in this paper constitutes a bottleneck in the 
elicitation process. Figure 5 provides some relevant information from the runs of the 
first paradigm in Polish described above. The top graph shows, for different runs, the 
number of distinct rules generated from the aligned segmented form--surface-form 
pairs generated from the examples provided, using a rule format with at most five 
symbols in each of the left and right contexts. The bottom graph shows, for differ- 
ent runs, the total number of rules generated and generalized--again, with the same 
context size as above. 

There are a few interesting things about these graphs. As expected, when more 
examples are added, the number of rules and the number of iterations needed for 
convergence usually increases. All curves have a steeper initial segment and a steeper 
final segment. The steep initial segments result from the initial selection of rules that 
fix the largest number of "errors" between the segmented and surface forms. Once 
those rules are found, the curves flatten as a number of morphographemic rules are 
selected, each dealing with a very small number of errors. Finally, when all the mor- 
phographemic changes are accounted for, the segmentation rules kick in and each such 
rule fixes a large number of segmentation "errors," so that a few general rules deal 
with all such cases. 
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Rules generated  in each i t e r a t i o n  o f  the learner  i n  s e q u e n t i a l  runs 
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Figure 5 
Rule statistics for processing Paradigm 1. 

8. S u m m a r y  and  C o n c l u s i o n s  

We have presented the highlights of our approach for automatically generating finite- 
state morphological analyzers from information elicited from human informants. Our 
approach uses transformation-based learning to induce morphographemic rules from 
examples and combines these rules with the lexicon information elicited to compile 
the morphological analyzer. There are other opportunities for using machine learning 
in this process. For instance, one of the important issues in wholesale acquisition of 
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open-class items is that of determining which parad igm a given citation form belongs 
to. From the examples given dur ing the acquisition phase, it is possible to induce a 
classifier that can per form this selection to aid the language informant.  

We believe that we have presented a viable approach to the automatic generat ion 
of a natural  language processor. Since this approach involves a h u m a n  informant  
working in an elicit-generate-test loop, the noise and opaqueness  of other induct ion 
schemes can be avoided.  

We also feel that the task of analyzing a set of incorrectly generated forms and 
automatically offering a diagnosis of what  may  have gone wrong  and what  addit ional  
examples can be suppl ied as remedies is, in itself, an impor tant  aspect of this work.  
Al though we have only scratched the surface of this topic here, we consider it a fruitful 
extension of the work  described in this paper. 
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