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We present a probabilistic model that uses both prosodic and lexical cues for the automatic seg- 
mentation of speech into topically coherent units. We propose two methods for combining lexical 
and prosodic information using hidden Markov models and decision trees. Lexical information is 
obtained from a speech recognizer, and prosodic features are extracted automatically from speech 
waveforms. We evaluate our approach on the Broadcast News corpus, using the DARPA-TDT 
evaluation metrics. Results show that the prosodic model alone is competitive with word-based 
segmentation methods. Furthermore, we achieve a significant reduction in error by combining 
the prosodic and word-based knowledge sources. 

1. Introduction 

Topic segmentation is the task of automatically dividing a stream of text or speech into 
topically homogeneous blocks. That is, given a sequence of (written or spoken) words, 
the aim of topic segmentation is to find the boundaries where topics change. Figure 1 
gives an example of a topic change boundary from a broadcast news transcript. Topic 
segmentation is an important task for various language understanding applications, 
such as information extraction and retrieval, and text summarization. In this paper, 
we present our work on automatic detection of topic boundaries from speech input 
using both prosodic and lexical information. 

Other automatic topic segmentation systems have focused on written text and 
have depended mostly on lexical information. This is problematic when segmenting 
speech. First, relying on word identities can propagate automatic speech recognizer 
errors to the topic segmenter. Second, speech lacks typographic cues, as shown in 
Figure 1: there are no headers, paragraphs, sentence punctuation marks, or capitalized 
letters. Speech itself, on the other hand, provides an additional, nonlexical knowledge 
source through its durational, intonational, and energy characteristics, i.e., its prosody. 

Prosodic cues are known to be relevant to discourse structure in spontaneous 
speech (cf. Section 2.3) and can therefore be expected to play a role in indicating topic 
transitions. Furthermore, prosodic cues, by their nature, are relatively unaffected by 
word identity, and should therefore improve the robustness of lexical topic segmenta- 
tion methods based on automatic speech recognition. 
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• .. tens of thousands of people are homeless in northern china tonight after a powerful 
earthquake hit an earthquake registering six point two on the richter scale at least forty 
seven people are dead few pictures available from the region but we do know tem- 
peratures there will be very cold tonight minus seven degrees <TOPIC_CHANGE> 
peace talks expected to resume on monday in belfast northern ireland former u. s. sen- 
ator george mitchell is representing u. s. interests in the talks but it is another american 
center senator rather who was the focus of attention in northern ireland today here's 
a. b. c.'s richard gizbert the senator from america's best known irish catholic family 
is in northern ireland today to talk about peace and reconciliation a peace process 
does not mean asking unionists or nationalists to change or discard their identity or 
aspirations...  

Figure 1 
An example of a topic boundary in a broadcast news transcript. 

Topic segmentat ion research based on prosodic informat ion has generally relied 
on hand-coded  cues (with the notable exception of Hirschberg and Nakatani  [1998]), 
or has not  combined prosodic information with lexical cues (Litman and Passon- 
neau  [1995] is one example where  lexical information was combined wi th  hand-coded  
prosodic features for a related task). Therefore, the work  presented here is the first 
that combines automatic extraction of both  lexical and prosodic information for topic 
segmentation.  

The general f ramework  for combining lexical and prosodic cues for tagging speech 
with various kinds of "h idden"  structural information is a further  deve lopment  of 
our  earlier work  on sentence segmentat ion and disfluency detection for spontaneous  
speech (Shriberg, Bates, and Stolcke 1997; Stolcke and Shriberg 1996; Stolcke et al. 
1998), conversational dialogue tagging (Stolcke et al. 2000), and information extraction 
from broadcast  news (Hakkani-T~ir et al. 1999). 

In the next  section, we review previous  work  on topic segmentation.  In Section 3, 
we describe our  prosodic and language models  as well  as methods  for combining 
them. Section 4 reports  our  experimental  procedures  and results. We close wi th  some 
general discussion (Section 5) and conclusions (Section 6). 

2. Previous Work 

Work on topic segmentat ion is generally based on two broad  classes of cues. On the 
one hand,  one can exploit the fact that topics are correlated wi th  topical  conten t -word  
usage, and that global shifts in word  usage are indicative of changes in topic. Quite 
independently,  discourse cues, or linguistic devices such as discourse markers,  cue 
phrases, syntactic constructions, and prosodic signals are employed  by  speakers (or 
writers) as generic indicators of endings or beginnings of topical segments. Interest- 
ingly, most  previous  work  has explored either one or the other  type of cue, but  only 
rarely both. In automatic segmentat ion systems, word  usage cues are often captured 
by  statistical language model ing and information retrieval techniques. Discourse cues, 
on the other hand,  are typically mode led  wi th  rule-based approaches or classifiers 
der ived by  machine learning techniques (such as decision trees). 

2.1 Approaches Based on Word Usage 
Most automatic topic segmentat ion work  based on text sources has explored topical 
word  usage cues in one form or other. Kozima (1993) used mutual  similarity of words  
in a sequence of text as an indicator of text structure. Reynar (1994) presented a me thod  
that finds topically similar regions in the text by  graphically model ing the distr ibution 
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of word repetitions. The method of Hearst (1994, 1997) uses cosine similarity in a word 
vector space as an indicator of topic similarity. 

More recently, the U.S. Defense Advanced Research Projects Agency (DARPA) 
initiated the Topic Detection and Tracking (TDT) program to further the state of the 
art in finding and following new topics in a stream of broadcast news stories. One 
of the tasks in the TDT effort is segmenting a news stream into individual stories. 
Several of the participating systems rely essentially on word usage: Yamron et al. 
(1998) model topics with unigram language models and their sequential structure with 
hidden Markov models (HMMs). Ponte and Croft (1997) extract related word sets for 
topic segments with the information retrieval technique of local context analysis, and 
then compare the expanded word sets. 

2.2 Approaches Based on Discourse and Combined Cues 
Previous work on both text and speech has found that cue phrases or discourse parti- 
cles (items such as now or by the way), as well as other lexical cues, can provide valuable 
indicators of structural units in discourse (Grosz and Sidner 1986; Passonneau and Lit- 
man 1997, among others). 

In the TDT framework, the UMass HMM approach described in Allan et al. (1998) 
uses an HMM that models the initial, middle, and final sentences of a topic segment, 
capitalizing on discourse cue words that indicate beginnings and ends of segments. 
Aligning the HMM to the data amounts to segmenting it. 

Beeferman, Berger, and Lafferty (1999) combined a large set of automatically se- 
lected lexical discourse cues in a maximum entropy model. They also incorporated 
topical word usage into the model by building two statistical language models: one 
static (topic independent) and one that adapts its word predictions based on past 
words. They showed that the log likelihood ratio of the two predictors behaves as an 
indicator of topic boundaries, and can thus be used as an additional feature in the 
exponential model classifier. 

2.3 Approaches Using Prosodic Cues 
Prosodic cues form a subset of discourse cues in speech, reflecting systematic dura- 
tion, pitch, and energy patterns at topic changes and related locations of interest. A 
large literature in linguistics and related fields has shown that topic boundaries (as 
well as similar entities such as paragraph boundaries in read speech, or discourse- 
level boundaries in spontaneous speech) are indicated prosodically in a manner that 
is similar to sentence or utterance boundaries--only stronger. Major shifts in topic 
typically show longer pauses, an extra-high F0 onset or "reset," a higher maximum 
accent peak, greater range in F0 and intensity (Brown, Currie, and Kenworthy 1980; 
Grosz and Hirschberg 1992; Nakajima and Allen 1993; Geluykens and Swerts 1993; 
Ayers 1994; Hirschberg and Nakatani 1996; Nakajima and Tsukada 1997; Swerts 1997) 
and shifts in speaking rate (Brubaker 1972; Koopmans-van geinum and van Donzel 
1996; Hirschberg and Nakatani 1996). Such cues are known to be salient for human 
listeners; in fact, subjects can perceive major discourse boundaries even if the speech 
itself is made unintelligible via spectral filtering (Swerts, Geluykens, and Terken 1992). 

Work in automatic extraction and computational modeling of these characteristics 
has been more limited, with most of the work in computational prosody modeling 
dealing with boundaries at the sentence level or below. However, there have been 
some studies of discourse-level boundaries in a computational framework. They differ 
in various ways, such as type of data (monologue or dialogue, human-human or 
human-computer), type of features (prosodic and lexical versus prosodic only), which 
features are considered available (e.g., utterance boundaries or no boundaries), to 
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what extent features are automatically extractable and normalizable, and the machine 
learning approach used. Because of these vast difference, the overall results cannot be 
compared directly to each other or to our work, but we describe three of the approaches 
briefly here. 

An early study by Litman and Passonneau (1995) used hand-labeled prosodic 
boundaries and lexical information, but applied machine learning to a training corpus 
and tested on unseen data. The researchers combined pause, duration, and hand-coded 
intonational boundary information with lexical information from cue phrases (such as 
and and so). Additional knowledge sources included complex relations, such as coref- 
erence of noun phrases. Work by Swerts and Ostendorf (1997) used prosodic features 
that in principle could be extracted automatically, such as pitch range, to classify ut- 
terances from human-computer task-oriented dialogue into two categories: initial or 
noninitial in the discourse segment. The approach used CART-style decision trees to 
model the prosodic features, as well as various lexical features that, in principle, could 
also be estimated automatically. In this case, utterances were presegmented, so the task 
was to classify segments rather than find boundaries in continuous speech; some of the 
features included, such as type of boundary tone, may not be easy to extract robustly 
across speaking styles. Finally, Hirschberg and Nakatani (1998) proposed a prosody- 
only front end for tasks such as audio browsing and playback, which could segment 
continuous audio input into meaningful information units. They used automatically 
extracted pitch, energy, and "other" features (such as the cross-correlation value used 
by the pitch tracker in determining the estimate of F0) as inputs to CART-style trees, 
and aimed to predict major discourse-level boundaries. They found various effects of 
frame window length and speakers, but  concluded overall that prosodic cues could 
be useful for audio browsing applications. 

3. The Approach 

Topic segmentation in the paradigm used in this study and others (Allan et al. 1998) 
proceeds in two phases. In the first phase, the input is divided into contiguous strings 
of words assumed to belong to the same topic. We refer to this step as chopping. For ex- 
ample, in textual input, the natural units for chopping are sentences (as can be inferred 
from punctuation and capitalization), since we can assume that topics do not change in 
mid sentence. 1 For continuous speech input, the choice of chopping criteria is less obvi- 
ous; we compare several possibilities in our experimental evaluation. Here, for simplic- 
ity, we will use "sentence" to refer to units of chopping, regardless of the criterion used. 

In the second phase, the sentences are further grouped into contiguous stretches 
belonging to one topic, i.e., the sentence boundaries are classified into topic bound-  
aries and nontopic boundaries. 2 Topic segmentation is thus reduced to a boundary 
classification problem. We will use B to denote the string of binary boundary classi- 
fications. Furthermore, our two knowledge sources are the (chopped) word sequence 
W and the stream of prosodic features F. Our approach aims to find the segmentation 
B with highest probability given the information in W and F 

argmax P( BI W, F ) (1) 
B 

using statistical modeling techniques. 

1 Similarly, it is sometimes assumed for topic segmentation purposes that topics change only at 
paragraph boundaries (Hearst 1997). 

2 We do not consider the problem of detecting recurring, discontinuous instances of the same topic, a 
task known as topic tracking in the TDT paradigm (Doddington 1998). 
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In the following subsections, we first describe the prosodic model of the depen- 
dency between prosody F and topic segmentation B; then, the language model relating 
words W and B; and finally, two approaches for combining the models. 

3.1 Prosodic Modeling 
The job of the prosodic model is to estimate the posterior probability (or, alternatively, 
likelihood) of a topic change at a given word boundary, based on prosodic features ex- 
tracted from the data. For the prosodic model to be effective, one must devise suitable, 
automatically extractable features. Feature values extracted from a corpus can then be 
used in training probability estimators and to select a parsimonious subset of features 
for modeling purposes. We discuss each of these steps in turn in the following sections. 

3.1.1 Features. We started with a large collection of features capturing two major 
aspects of speech prosody, similar to our previous work (Shriberg, Bates, and Stolcke 
1997): 

Duration features: duration of pauses, duration of final vowels and final 
rhymes, and versions of these features normalized both for phone 
durations and speaker statistics. 3 

Pitch features: fundamental frequency (F0) patterns preceding and 
following the boundary, F0 patterns across the boundary, and pitch 
range relative to the speaker's baseline. We processed the raw F0 
estimates (obtained with ESPS signal processing software from Entropic 
Research Laboratory [1993]), with robustness-enhancing techniques 
developed by S6nmez et al. (1998). 

We did not use amplitude- or energy-based features since exploratory work showed 
these to be much less reliable than duration and pitch and largely redundant given the 
above features. One reason for omitting energy features is that, unlike duration and 
pitch, energy-related measurements vary with channel characteristics. Since channel 
properties vary widely in broadcast news, features based on energy measures can 
correlate with shows, speakers, and so forth, rather than with the structural locations 
in which we were interested. 

We included features that, based on the descriptive literature, should reflect breaks 
in the temporal and intonational contour. We developed versions of such features that 
could be defined at each interword boundary, and that could be extracted by com- 
pletely automatic means (no human labeling). Furthermore, the features were designed 
to be as independent of word identities as possible, for robustness to imperfect recog- 
nizer output. A brief characterization of the informative features for the segmentation 
task is given with our results in Section 4.6. Since the focus here is on computational 
modeling we refer the reader to a companion paper (Shriberg et al. 2000) for a detailed 
description of the acoustic processing and prosodic feature extraction. 

3.1.2 Decision Trees. Any of a number of probabilistic classifiers (such as neural net- 
works, exponential models, or naive Bayes networks) could be used as posterior prob- 
ability estimators. As in past prosodic modeling work (Shriberg, Bates, and Stolcke 
1997), we chose CART-style decision trees (Breiman et al. 1984), as implemented by 

3 The rhyme is the part of a syllable that comprises the nuclear phone (typically a vowel) and any 
following phones. This is the part of the syllable most typically affected by lengthening. 

35 



Computational Linguistics Volume 27, Number 1 

the IND package (Buntine and Caruana 1992), because of their ability to model feature 
interactions, to deal with missing features, and to handle large amounts of training 
data. The foremost reason for our preference for decision trees, however, is that the 
learned models can be inspected and diagnosed by human investigators. This ability 
is crucial for understanding what features are used and how, and for debugging the 
feature extraction process itself. 4 

Let Fi be the features extracted from a window around the ith potential topic 
boundary (chopping boundary), and let Bi be the boundary type (boundary/no-bound- 
ary) at that position. We trained decision trees to predict the ith boundary type, i.e., to 
estimate P(]3ilFi, W). The decision is only weakly conditioned on the word sequence 
W, insofar as some of the prosodic features depend on the phonetic alignment of the 
word models (which we will denote with Wt). We can thus expect the prosodic model 
estimates to be robust to recognition errors. The decision tree paradigm also allows us 
to add, and automatically select, other (nonprosodic) features that might be relevant 
to the task. 

3.1.3 Feature Selection. The greedy nature of the decision tree learning algorithm 
implies that larger initial feature sets can give worse results than smaller subsets. Fur- 
thermore, it is desirable to remove redundant features for computational efficiency 
and to simplify the interpretation of results. For this purpose we developed an itera- 
rive feature selection "wrapper" algorithm (John, Kohavi, and Pfleger 1994) that finds 
useful, task-specific feature subsets. The algorithm combines elements of a brute-force 
search with previously determined heuristics about good groupings of features. The 
algorithm proceeds in two phases: In the first phase, the number of features is reduced 
by leaving out one feature at a time during tree construction. A feature whose removal 
increases performance is marked as to be avoided. The second phase then starts with 
the reduced feature set and performs a beam search over all possible subsets to max- 
imize tree performance. 

We used entropy reduction in the overall tree (after cross-validation pruning) as a 
metric for comparing alternative feature subsets. Entropy reduction is the difference in 
entropy between the prior class distribution and the posterior distribution estimated 
by the tree, as measured on a held-out set; it is a more fine-grained metric than 
classification accuracy, and is also more relevant to the model combination approach 
described later. 

3.1.4 Training Data. To train the prosodic model, we automatically aligned and ex- 
tracted features from 70 hours (about 700,000 words) of the Linguistic Data Consortium 
(LDC) 1997 Broadcast News (BN) corpus. Topic boundary information determined by 
human labelers was extracted from the SGML markup that accompanies the word 
transcripts of this corpus. The word transcripts were aligned automatically with the 
acoustic waveforms to obtain pause and duration information, using the SRI Broadcast 
News recognizer (Sankar et al. 1998). 

3.2 Lexical Modeling 
Lexical information in our topic segmenter is captured by statistical language models 
(LMs) embedded in an HMM. The approach is an extension of the topic segmenter 

4 Interpreting large trees can be a daunting task. However, the decision questions near the tree root are 
usually interpretable, or, when nonsensical, usually indicate problems with the data. Furthermore, as 
explained in Section 4.6, we have developed simple statistics that give an overview of feature usage 
throughout the tree. 
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Figure 2 
Structure of the basic HMM developed by Dragon for the TDT Pilot Project. The labels on the 
arrows indicate the transition probabilities. TSP represents the topic switch penalty. 

developed by Dragon Systems for the TDT2 effort (Yamron et al. 1998), which was 
based purely on topical word distributions. We extend it to also capture lexical and 
(as described in Section 3.3) prosodic discourse cues. 

3.2.1 Model Structure. The overall structure of the model is that of an HMM (Rabiner 
and Juang 1986) in which the states correspond to topic clusters Tj, and the obser- 
vations are sentences (or chopped units) W1 . . . . .  WN. The resulting HMM, depicted 
in Figure 2, forms a complete graph, allowing for transitions between any two topic 
clusters. Note that it is not necessary that the topic clusters correspond exactly to the 
actual topics to be located; for segmentation purposes, it is sufficient that two adjacent 
actual topics are unlikely to be mapped to the same induced cluster. The observation 
likelihoods for the HMM states, P(WilTj), represent the probability of generating a 
given sentence Wi in a particular topic cluster Tj. 

We automatically constructed 100 topic cluster LMs, using the multipass k-means 
algorithm described in Yamron et al. (1998). Since the HMM emissions are meant to 
model the topical usage of words, but not topic-specific syntactic structures, the LMs 
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consist of unigram distributions that exclude stopwords (high-frequency function and 
closed-class words). To account for unobserved words, we interpolate the topic-cluster- 
specific LMs with the global unigram LM obtained from the entire training data. The 
observation likelihoods of the HMM states are then computed from these smoothed 
unigram LMs. 

All HMM transitions within the same topic cluster are given probability one, 
whereas all transitions between topics are set to a global topic switch penalty (TSP) 
that is optimized on held-out training data. The TSP parameter allows trading off 
between false alarms and misses. Once the HMM is trained, we use the Viterbi al- 
gorithm (Viterbi 1967; Rabiner and Juang 1986) to search for the best state sequence 
and corresponding segmentation. Note that the transition probabilities in the model 
are not normalized to sum to one; this is convenient and permissible since the out- 
put of the Viterbi algorithm depends only on the relative weight of the transition 
weights. 

We augmented the Dragon segmenter with additional states and transitions to 
also capture lexical discourse cues. In particular, we wanted to model the initial and 
final sentences in each topic segment, as these often contain formulaic phrases and 
keywords used by broadcast speakers (From Washington,  this is . . . .  A n d  n o w  . . .  ). We 
added two additional states, BEGIN and END, to the HMM (Figure 3) to model these 
sentences. Likelihoods for the BEGIN and END states are obtained as the unigram 
language model probabilities of the initial and final sentences, respectively, of the 
topic segments in the training data. Note that a single BEGIN and END state are 
shared for all topics. Best results were obtained by making traversal of these states 
optional in the HMM topology, presumably because some initial and final sentences 
are better modeled by the topic-specific LMs. 

The resulting model thus effectively combines the Dragon and UMass HMM topic 
segmentation approaches described in Allan et al. (1998). In preliminary experiments, 
we observed a 5% relative reduction in segmentation error with initial and final states 
over the baseline HMM topology of Figure 2. Therefore, all results reported later use an 
HMM topology with initial and final states. Note that, since the topic-initial and topic- 
final states are optional, our training of the model is suboptimal. Instead of labeling all 
topic-initial and topic-final training sentences as data for the corresponding state, we 
would expect further improvements by training the HMM in unsupervised fashion 
using the Baum-Welch algorithm (Baum et al. 1970; Rabiner and Juang 1986). 

3.2.2 Training Data. Topic unigram language models were trained from the pooled 
TDT Pilot and TDT2 training data (Cieri et al. 1999), covering transcriptions of broad- 
cast news from January 1992 through June 1994 and from January 1998 through Febru- 
ary 1998, respectively. These corpora are similar in style, but do not overlap with the 
1997 LDC BN corpus from which we selected our prosodic training data and the eval- 
uaton test set. For training the language models, we removed stories with fewer than 
300 and more than 3,000 words, leaving 19,916 stories with an average length of 538 
words (including stopwords). 

3.3 Model Combination 
We are now in a position to describe how lexical and prosodic information can be 
combined for topic segmentation. As discussed before, the LMs in the HMM capture 
topical word usage as well as lexical discourse cues at topic transitions, whereas a 
decision tree models prosodic discourse cues. We expect that these knowledge sources 
are largely independent, so their combination should yield significantly improved 
performance. 
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Figure 3 
Structure of an HMM with topic BEGIN and END states. TSP represents the topic switch 
penalty. 

Below we present two approaches for building a combined statistical model that 
performs topic segmentation using all available knowledge sources. For both ap- 
proaches it is convenient to associate a "boundary" pseudotoken with each potential 
topic boundary (i.e., with each sentence boundary). Correspondingly, we introduce into 
the HMM new states that emit these boundary tokens. No other states emit boundary 
tokens; therefore each sentence boundary must align with one of the boundary states 
in the HMM. As shown in Figure 4, there are two boundary states for each topic 
cluster, one representing a topic transition and the other representing a topic-internal 
transition between sentences. Unless otherwise noted, the observation likelihoods for 
the boundary states are set to unity. 

The addition of boundary states allows us to compute the model's prediction of 
topic changes as follows: Let B1,.. •, Bc denote the topic boundary states and, similarly, 
let N1, . . . ,  Nc denote the nontopic boundary states, where C is the number of topic 
clusters. Using the forward-backward algorithm for HMMs (Rabiner and Juang 1986), 
we can compute P(qi = BflW) and P(qi = NjlW), the posterior probabilities that one 
of these states is occupied at boundary i. The model's prediction of a topic boundary 
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TSP 

TSP 

TSP 

Figure 4 
Structure of the final HMM with fictitious boundary states used for combining language and 
prosodic models. In the figure, states B1, B2, . . . ,  B100 represent the presence of a topic 
boundary, whereas states N1, N2 , . . . ,  N100 represent topic-internal sentence boundaries. TSP 
is the topic switch penalty. 

is s imply the sum over  the corresponding state posteriors: 

c 
PHMM(Bi ~- yes]W) = ~ P ( q i  = B j lW)  (2) 

j=l 
c 

PHMM(Bi = n o l W  ) = ~_~P(qi  = N j l W )  
j=l 

= 1 - PHMM(Bi = yes[W) (3) 
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3.3.1 Model  Combinat ion  in the Dec i s ion  Tree. Decision trees allow the training of 
a single classifier that takes both lexical and prosodic features as input, provided we 
can compactly encode the lexical information for the decision tree. We compute the 
posterior probability PHMM(Bi = yeslW) as shown above, to summarize the HMM's 
belief in a topic boundary based on all available lexical information W. The posterior 
value is then used as an additional input feature to the prosodic decision tree, which is 
trained in the usual manner. During testing, we declare a topic boundary whenever the 
tree's overall posterior estimate PDT(BilFi, W) exceeds some threshold. The threshold 
may be varied to trade off false alarms for miss errors, or to optimize an overall cost 
function. 

Using HMM posteriors as decision tree features is similar in spirit to the knowl- 
edge source combination approaches used by Beeferman, Berger, and Lafferty (1999) 
and Reynar (1999), who also used the output of a topical word usage model as in- 
put to an overall classifier. In previous work (Stolcke et al. 1998) we used the present 
approach as one of the knowledge source combination strategies for sentence and 
disfluency detection in spontaneous speech. 

3.3.2 Model  Combinat ion  in the HMM. An alternative approach to knowledge source 
combination uses the HMM as the top-level model. In this approach, the prosodic 
decision tree is used to estimate likelihoods for the boundary states of the HMM, thus 
integrating the prosodic evidence into the HMM's segmentation decisions. 

More formally, let Q =- (rl, ql . . . . .  ri, qi,...,rN, qN) be a state sequence through 
the HMM. The model is constructed such that the states ri representing topic (or 
BEGIN/END) clusters alternate with the states qi representing boundary decisions. 
As in the baseline model, the likelihoods of the topic cluster states Tj account for the 
lexical observations: 

P(Wi]ri ~- Tj) = P(WilTj) (4) 

as estimated by the unigram LMs. Now, in addition, we let the likelihood of the 
boundary state at position i reflect the prosodic observation Fi. Recall that, like Wi, Fi 
refers to complete sentence units; specifically, Fi denotes the prosodic features of the 
ith boundary between such units. 

P(Fi]qi = Bj, W) = P(Fi]Bi = yes,  W) 

P(Fi[qi = Nj, W) = P(FiIBi = no, W) j 
for all j = 1 . . . .  , C (5) 

Using this construction, the product of all state likelihoods will give the overall like- 
lihood, accounting for both lexical and prosodic observations: 

N N 

1-[ P(Wilri) I I  P(Filqi, W) = P(W, FIQ ) (6) 
i=1 i=1 

Applying the Viterbi algorithm to the HMM will thus return the most likely segmen- 
tation conditioned on both words and prosody, which is our goal. 

Although decomposing the likelihoods as shown allows prosodic observations to 
be conditioned on the words W, we use only the phonetic alignment information Wt 
from the word sequence W in our prosodic models, ignoring the word identities, so 
as to make them more robust to recognition errors. 

The likelihoods P(FilBi, Wt) for the boundary states can now be obtained from the 
prosodic decision tree. Note that the decision tree estimates posteriors PDT(Bil]2i, Wt). 
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These can be converted to likelihoods using Bayes rule as in 

P(Fi[Bi, Wt) = P(FilWt)PDT (BilEG Wt) 
P(BiIWt) 

(7) 

The term P(FilWt) is a constant for all decisions Bi and can thus be ignored when 
applying the Viterbi algorithm. Next, we approximate P(BilWt) ,~ P(Bi), justified by the 
fact that the Wt contains information about start and end times of phones and words, 
but not directly about word identities. Instead of explicitly dividing the posteriors, 

1 we prefer to downsample the training set to make P(Bi = yes) = P(Bi = no) = ~. 
A beneficial side effect of this approach is that the decision tree models the lower- 
frequency events (topic boundaries) in greater detail than if presented with the raw, 
highly skewed class distribution. 

As is often the case when combining probabilistic models of different types, it is 
advantageous to weight the contributions of the language models and the prosodic 
trees relative to each other. We do so by introducing a tunable model combination 
weight (MCW), and by using PDT(FilBi, Wt) MCW as  the effective prosodic likelihoods. 
The value of MCW is optimized on held-out data. 

4. Experiments and Results 

To evaluate our topic segmentation models, we carried out experiments in the TDT 
paradigm. We first describe our test data and the evaluation metrics used to compare 
model performance, then give the results we obtained with individual knowledge 
sources, followed by the results of the combined models. 

4.1 Test Data 
We evaluated our system on three hours (6 shows, about 53,000 words) of the 1997 
LDC BN corpus. The threshold for the model combination in the decision tree and 
the topic switch penalty were optimized on the larger development training set of 
104 shows, which includes the prosodic model training data. The MCW for the model 
combination in the HMM was optimized using a smaller held-out set of 10 shows of 
about 85,000 words total size, separate from the prosodic model training data. 

We used two test conditions: forced alignments using the true words, and recog- 
nized words as obtained by a simplified version of the SRI Broadcast News recognizer 
(Sankar et al. 1998), with a word error rate of 30.5%. 

Our aim in these experiments was to use fully automatic recognition and pro- 
cessing wherever possible. For practical reasons, we departed from this strategy in 
two areas. First, for word recognition, we used the acoustic waveform segmentations 
provided with the corpus (which also included the location of non_news material, such 
as commercials and music). Since current BN recognition systems perform this seg- 
mentation automatically with very good accuracy and with only a few percentage 
points penalty in word error rate (Sankar et al. 1998), we felt the added complication 
in experimental setup and evaluation was not justified. 

Second, for prosodic modeling, we used information from the corpus markup 
concerning speaker changes and the identity of frequent speakers (e.g., news anchors). 
Automatic speaker segmentation and labeling is possible, although not without errors 
(Przybocki and Martin 1999). Our use of speaker labels was motivated by the fact 
that meaningful prosodic features may require careful normalization by speaker, and 
unreliable speaker information would have made the analysis of prosodic feature 
usage much less meaningful. 
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4.2 Evaluation Metrics 
We have adopted the evaluation paradigm used by the TDT2--Topic Detection and 
Tracking Phase 2 (Doddington 1998) program, allowing fair comparisons of various 
approaches both within this study and with respect to other recent work. Segmentation 
accuracy was measured using TDT evaluation software from NIST, which implements 
a variant of an evaluation metric suggested by Beeferman, Berger, and Lafferty (1999). 

The TDT segmentation metric is different from those used in most previous topic 
segmentation work, and therefore merits some discussion. It is designed to work on 
data streams without any potential topic boundaries, such as paragraph or sentence 
boundaries, being given a priori. It also gives proper partial credit to segmentation 
decisions that are close to actual boundaries; for example, placing a boundary one 
word from an actual boundary is considered a lesser error than if the hypothesized 
boundary is off by, say, 100 words. 

The evaluation metric reflects the probability that two positions in the corpus 
probed at random and separated by a distance of k words are correctly classified as 
belonging to the same story or not. If the two words belong to the same topic segment, 
but are erroneously claimed to be in different topic segments by the segmenter, then 
this will increase the system's false alarm probability. Conversely, if the two words are 
in different topic segments, but are erroneously marked to be in the same segment, 
this will contribute to the miss probability. The false alarm and miss rates are defined 
as averages over all possible probe positions with distance k. 

Formally, miss and false alarm rates are computed as 5 

PMis, = Y~s ~N--~lk d~yp (i, i + k) x (1 - dS~¢f (i, i + k)) (8) 

E E N s - k l ' '  ( i , i+k) )  s i=1 , l - d ~ ¢ i  
v " N ~ - k  (1  • s • • 

PFalseAla~m -- -- Y'~s A..M=I \ --  dShyp( l" i + k)) x d~ef(Z, ~ + k) (9) 
v-,N~-k as (i i + k) 

E s  Z.~i=l ~ r e f  \ " 

where the summation is over all broadcast shows s and word positions i in the test 
corpus and where 

d  sli,,={i if words i and j in show s are deemed by sys to 
be within the same story 
otherwise 

Here sys can be ref to denote the reference (correct) segmentation, or hyp to denote the 
segmenter's decision. 

An analogous metric is defined for audio sources, where segmentation decisions 
(same or different topic) are probed at a time-based distance A: 

-T~ - A  -s - 
PMiss = GsJt=o ahyp(t,t+A) x (1-d~¢f(t,t+A))dt (10) 

~ '  ~ G - A ( 1  s Jr=0 - d S c d ( t , t + A ) ) d t  

f • - a ( .  PFa,,¢A,a .... = Gsat=O , l  - d ~ y p ( t , t + A ) )  x d~¢ / ( t , t+A)d t  (11) 
- G - A  - s  - ~s J,=o a~z(t , t+n)dt  

5 The definitions are those from Doddington  (1998), but  have been simplified and edi ted for clarity. 
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Table 1 
Segmentation error rates for various chopping criteria, using true words of the larger 
development data set. 

Chopping Criterion P Miss P FalseA larm C Seg 
FIXED 0.5688 0.0639 0.2153 
TURN 0.6737 0.0436 0.2326 
SENTENCE 0.5469 0.0557 0.2030 
PAUSE 0.5111 0.0688 0.2002 

where  the integration is over  the entire dura t ion of all stories of the shows in the test 
corpus, and where  

if times tl and t2 in show s are deemed  by  sys to 
be within the same story 
otherwise 

We used the same parameters  as used in the official TDT2 evaluation: k = 50 
and A = 15 seconds. Furthermore,  again following NIST's evaluat ion procedure,  we 
combine miss and false alarm rates into a single segmenta t ion  cost metric 

Cseg : CMiss X PMiss X P~eg + CFalseAlarm X PFalseAlarm × (1 - P~¢9) (12) 

where  the CMis~ = 1 is the cost of a miss, CFalseAlarm : 1 is the cost of a false alarm, 
and Pseg = 0.3 is the a priori  probabili ty of a segment  being within an interval of k 
words  or A seconds on the TDT2 training corpus. 6 

4.3 Chopping 
Unlike wri t ten text, the ou tpu t  of the automatic speech recognizer contains no sentence 
boundaries .  Therefore, chopping text into (pseudo)sentences is a nontrivial  problem 
w h e n  processing speech. Some presegmentat ion into roughly  sentence-length units is 
necessary since otherwise the observations associated wi th  H MM states would  com- 
prise too few words  to give robust  likelihoods of topic choice, causing poor  perfor- 
mance. 

We investigated chopping criteria based on a fixed number  of words  (FIXED), at 
speaker changes (TURN), at pauses (PAUSE), and, for reference, at actual sentence 
boundar ies  (SENTENCE) obtained from the transcripts. Table 1 gives the error rates 
for the four conditions, using the true word  transcripts of the larger deve lopment  
data set. For the PAUSE condition, we empirically de termined  an optimal m in im u m  
pause  dura t ion threshold to use. Specifically, we considered pauses exceeding 0.575 
of a second as potential  topic boundar ies  in this (and all later) experiments.  For the 
FIXED condition, a block length of 10 words  was found to work  best. 

We conclude that a simple prosodic feature, pause durat ion,  is an excellent criterion 
for the chopping  step, giving comparable  or better  performance than s tandard sentence 
boundaries .  Therefore, we used pause durat ion as the chopping criterion in all further  
experiments.  

6 Another  parameter  in the NIST evaluation is the deferral period,  i.e., the amount  of look-ahead before 
a segmentat ion decision is made.  In all our experiments ,  we  al lowed unlimited deferral, effectively 
until the end of the news  show being processed. 
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Table 2 
Summary of error rates with the language model only (LM), the prosody model only (PM), the 
combined decision tree (CM-DT), and the combined HMM (CM-HMM). (a) shows word-based 
error metrics, 00) shows time-based error metrics. In both cases a "chance" classifier that labels 
all potential boundaries as nontopic would achieve 0.3 weighted segmentation cost. 

(a) Error Rates on Forced Alignments Error Rates on Recognized Words 

Model PMiss PFalseAlarm Cseg PMiss PFalseAlarm Cseg 
Chance 1.0 0.0 0.3 1.0 0.0 0.3 
LM 0.4847 0.0630 0.1895 0.4978 0.0577 0.1897 
PM 0.4130 0.0596 0.1657 0.4125 0.0705 0.1731 
CM-DT 0.4677 0.0260 0.1585 0.4891 0.0146 0.1569 
CM-HMM 0.3339 0.0536 0.1377 0.3748 0.0450 0.1438 

(b) Error Rates on Forced Alignments Error Rates on Recognized Words 

M o d e l  PMiss PFalseAlarm Cseg PMiss PFalseAlarm Cseg 
Chance 1.0 0.0 0.3 1.0 0.0 0.3 
LM 0.5260 0.0490 0.1921 0.5361 0.0415 0.1899 
PM 0.3503 0.0892 0.1675 0.3846 0.0737 0.1669 
CM-DT 0.5136 0.0210 0.1688 0.5426 0.0125 0.1715 
CM-HMM 0.3426 0.0496 0.1375 0.3746 0.0475 0.1456 

4.4 Source-Specific Model Tuning 
As ment ioned earlier, the segmentat ion models  contain global parameters  (the topic 
transition penal ty  of the HMM and the posterior  threshold for the combined decision 
tree) to trade false alarms for miss errors. Optimal settings for these parameters  depend  
on characteristics of the source, in particular on the relative f requency of topic changes. 
Since broadcast  news programs come from identified sources, it is useful and legitimate 
to optimize these parameters  for each show t y p e .  7 W e  therefore opt imized the global 
parameter  for each model  to minimize the segmentat ion cost on the training corpus 
(after training all other model  parameters  in a source- independent  fashion). 

Compared  to a baseline using source- independent  global TSP and threshold, the 
source-dependent  models  showed between 5% and 10% relative error reduction. All 
results repor ted below use the source-dependent  approach. 

4.5 Segmentation Results 
Table 2 shows the results for both individual  knowledge  sources (words and prosody),  
as well as for the combined models  (decision tree and HMM). It is wor th  not ing 
that the prosody-only  results were obtained by  running the combined H MM wi thout  
language model  likelihoods; this approach gave better performance than using the 
prosodic decision trees directly as classifiers. 

Both word-  and time-based metrics are given; they exhibit generally very  similar 
results. Another  dimension of the evaluation is the use of correct word  transcripts 
(forced alignments) versus automatically recognized words.  Again, results along this 
dimension are very  similar, with some exceptions noted  below. 

Compar ing  the individual  knowledge  sources, we observe that p rosody  alone does 
somewhat  better than the word-based HMM alone. The types of errors made  differ 

7 Shows in the 1997 BN corpus come from eight sources: ABC World News Tonight, CNN Headline 
News, CNN Early Prime, PRI The World, CNN Prime News, CNN The World Today, C-SPAN Public 
Policy, and C-SPAN Washington Journal. Six of these occurred in the test set. 
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consistently: the prosodic model  has a higher  false alarm rate, while the word-LMs 
have more miss errors. The prosodic model  shows more  false alarms because regular 
sentence boundar ies  often show characteristics similar to those of topic boundaries.  It 
also suggests that bo th  models  could be combined by  letting the prosodic model  select 
candidate  topic boundar ies  that would  then be filtered using lexical information. 

The combined models  generally improve on the individual  knowledge  sources, s 
In the word-based evaluation, the combined decision tree (DT) reduced  overall seg- 
mentat ion cost by  19% over  the language model  on true words  (17% on recognized 
words).  The combined HMM gave even better  results: 27% and 24% improvement  in 
the error rate over  the language model  for true and recognized words,  respectively. 

Looking again at the b reakdown of errors, we can see that the two model  combina- 
tion approaches work  quite differently: the combined DT has about  the same miss rate 
as the LM, but  a lower false alarms rate. The combined HMM, by  contrast, combines 
a miss rate as low as (or lower than) that of the prosodic model  with the lower false 
alarm rate of the LM, suggesting that the functions of the two knowledge  sources are 
complementary,  as discussed above. Furthermore,  the different error pat terns of the 
two combinat ion approaches suggest  that further  error reductions could be achieved 
by  combining the two hybr id  models.  9 

The trade-off be tween false alarms and miss probabilities is shown in more  de- 
tail in Figure 5, which plots the two error metrics against each other. Note that the 
false alarm rate does not  reach one because the segmenter  is constrained by  the chop- 
ping algorithm: the pause criterion prevents  the segmenter  f rom hypothes iz ing  topic 
boundar ies  everywhere .  

4.6 Decision Tree for the Prosody-Only Model 
Feature subset selection was run  wi th  an initial set of 73 potential  features, which the 
algori thm reduced to a set of 7 non redundan t  features helpful  for the topic segmen- 
tation task. The full decision tree learned is shown in Figure 6. We can identify four 
different kinds of features used in the tree, listed below. For each feature type, we give 
the feature names found  in the tree and the relative feature usage, an approximate  
measure of feature importance (Shriberg, Bates, and Stolcke 1997). Relative feature 
usage is computed  as the relative frequency with which features of a given type are 
queried in the tree, over  a held-out  test set. 

. 

. 

Pause duration (PhU_DUR, 42.7% usage). This feature is the dura t ion of 
the nonspeech interval occurring at the boundary.  The importance of 
pause durat ion is underes t imated  here  because, as explained earlier, 
pause durat ions are already used dur ing  the chopping process, so that 
the decision tree is applied only to boundar ies  exceeding a certain 
duration.  Separate experiments  using boundar ies  below our  chopping 
threshold show that the tree also distinguishes shorter pause durat ions 
for segmentat ion decisions. 

FO differences across the boundary (FOK_LRd~EAN_KBASELN and 
FOK_WRD_DIFF_MNMI~_NG, 35.9% usage). These features compare  the mean  

8 The exception is the time-based evaluation of the combined decision tree. We found that the posterior 
probability threshold optimized on the training set works poorly on the test set for this model 
architecture and the time-based evaluation. The threshold that is optimal on the test set achieves 
Csea = 0.1651. Section 4.7 gives a possible explanation for this result. 

9 Such a combination of combined models was suggested by one of the reviewers; we hope to pursue it 
in future research. 
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Figure 5 
False alarm versus miss probabilities (word-based metrics) for automatic topic segmentation 
from known words (forced alignments). The segmenters used were a words-only HMM (LM), 
a prosody-only HMM (PM), a combined decision tree (CM-DT), and a combined HMM 
(CM-HMM). 

. 

F0 of the word preceding the boundary (measured from voiced regions 
within that word) to either the speaker's estimated baseline F0 
(FOK_LR_MEAN_KBASELN) or to the mean F0 of the word following the 
boundary (FOK_WRD_DIFF_.MNMN_N). Both features were computed based on 
a log-normal scaling of F0. Other measures (such as minimum or 
maximum F0 in the word or preceding window) as well as other 
normalizations (based on F0 toplines, or non-log-based scalings) were 
included in the initial feature set, but were not selected in the 
best-performing tree. The baseline feature captures a pitch range effect, 
and is useful at boundaries where the speaker changes (since range here 
is compared only within-speaker). The second feature captures the 
relative size of the pitch change at the boundary, but of course is not 
meaningful at speaker boundaries. 

Turn features (TURN_F and TURN_TIME, 14.6% usage). These features 
reflect the change of speakers. TURN_F indicates whether a speaker 
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. 

change occurred at the boundary, while TURN_TIME measures the time 
passed since the start of the current turn. 

Gender (GEN, 6.8% usage). This feature indicates the speaker gender 
right before a potential boundary. 

Inspection of the tree reveals that the purely prosodic features (pause duration and 
F0 differences) are used as the prosody literature suggests. The longer the observed 
pause, the more likely a boundary corresponds to a topic change. Also, the closer a 
speaker comes to his or her F0 baseline, or the larger the difference to the F0 following 
a boundary, the more likely a topic change occurs. These features thus correspond 
to the well-known phenomena of boundary tones and pitch reset that are generally 
associated with sentence boundaries (Vaissi6re 1983). We found these indicators of 
sentences boundaries to be particularly pronounced at topic boundaries. 

While turn and gender features are not prosodic features per se, they do interact 
closely with them since prosodic measurements must be informed by and carefully 
normalized for speaker identity and gender, and it is therefore natural to include them 
in a prosodic classifier. 1° Not surprisingly, we find that turn boundaries are positively 
correlated with topic boundaries, and that topic changes become more likely the longer 
a turn has been going on. 

Interestingly, speaker gender is used by the decision tree for several reasons. One 
reason is stylistic differences between males and females in the use of F0 at topic 
boundaries. This is true even after proper normalization, e.g., equatIng the gender- 
specific nontopic boundary distributions. In addition, we found that nontopic pauses 
(i.e., chopping boundaries) are more likely to occur in male speech. It could be that 
male speakers in BN are assigned longer topic segments on average, or that male 
speakers are more prone to pausing in general, or that male speakers dominate the 
spontaneous speech portions, where pausing is naturally more frequent. The details 
of this gender effect await further study. 

4.7 Decision Tree for the Combined Model 
Figure 7 depicts the decision tree that combines the HMM language model topic deci- 
sions with prosodic features (see Section 3.3.1). Again, we list the features used with 
their relative feature usages. 

1. Language model  posterior (POST_TOPIC, 49.3% usage). This is the 
posterior probability P(Bi = yeslW) computed from the HMM. 

2. Pause duration (PAU_DUR, 49.3% usage). This feature is the same as 
described for the prosody-only model. 

3. FO differences across the boundary (FOK_WRD_DIFF_HILO_N and 
FOK_LR_MEAN_KBASELN, 1.4% usage). These features are similar to those 
found for the prosody-only tree. The only difference is that for the first 
feature, the comparison of FO values across the boundary is done by 
taking the maximum FO of the previous word and the minimum FO of 
the following word, rather than the mean for both cases. 

10 For example, the features that measure F0 differences across boundaries do not make sense if the 
speaker changes at the boundary. Accordingly, we made such features undefined for the decision tree 
at turn boundaries. 
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POST_TOPIC >= -0.083984 

r PAU_DUR >= 1058.3 PAU_DUR <82.5 ~PAU_DUR >= 82.5 

KBASELN < 0 . 1 9 7 7 ~ R  MEAN KBASELN >= 0.19777 

~_WRD_DIFF_HILO_N < - 0 . 0 2 4 9 8 ~ R D  DIFF HILO N >=-0.024989 

Figure 7 
The decision tree of the combination model. 

The decision tree found for the combined task is smaller and uses fewer features 
than the one trained with prosodic features only, for two reasons. First, the LM poste- 
rior feature is found to be highly informative, superseding the selection of many of the 
low-frequency features previously found. Furthermore, as explained in Section 3.3.2, 
the prosody-only tree was trained on a downsampled dataset that equalizes the priors 
for topic and nontopic boundaries, as required for integration into the HMM. A wel- 
come side effect of this procedure is that it forces the tree to model the less frequent 
class (topic boundaries) in much greater detail than if the tree were trained on the raw 
class distribution, as is the case here. 

Because of its small size, the tree in Figure 7 is particularly easy to interpret. The 
top-level split is based on the LM posterior. The right branch handles cases where 
words are highly indicative of a topic boundary. However, for short pauses, the tree 
queries further prosodic features to prevent false alarms. Specifically, short pauses 
must be accompanied both by an F0 close to the speaker's baseline and by a large 
F0 reset to be deemed topic boundaries. Conversely, if the LM posteriors are low (left 
top-level branch), but the pause is very long, the tree still outputs a topic boundary. 

4.8 Comparison of Model Combination Approaches 
Results indicate that the model combination approach using an HMM as the top-level 
model works better than the combined decision tree. While this result deserves more 
investigation, we can offer some preliminary insights. 

We found it difficult to set the posterior probability thresholds for the combined 
decision tree in a robust way. As shown by the CM-DT curve in Figure 5, there is a 
large jump in the false alarm/miss trade-off for the combined tree, in contrast to the 
combined HMM approach, which controls the trade-off by a changing topic switch 
penalty. This occurs because posterior probabilities from the decision tree do not vary 
smoothly; rather, they vary in steps corresponding to the leaves of the tree. The dis- 
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Table 3 
Segmentation error rates with the language model only (LM), the combined HMM using all 
prosodic features (CM-HMM-all), the combined HMM using only pause duration and turn 
features (CM-HMM-pause-turn), and using only pause duration, turn, and gender features 
(CM-HMM-pause-turn-gender). 

Model C~ex 
LM 0.1895 
CM-HMM-pause-turn 0.1519 
CM-HMM-pause-turn-gender 0.1511 
CM-HMM-all 0.1377 

continuous character of the thresholded variable makes it hard to estimate a threshold 
on the training data that performs robustly on the test data. This could account for 
the poor result on the time-based metrics for the combined tree (where the threshold 
optimized on the training data was far from optimal on the test set; see footnote 8). 
The same phenomenon is reflected in the fact that the prosody-only tree gave better 
results when embedded in an HMM without LM likelihoods than when used by itself 
with a posterior threshold. 

4.9 Contributions of Different Feature Types 
We saw in Section 4.6 that pause duration is by far the single most important feature in 
the prosodic decision tree. Furthermore, speaker changes are queried almost as often 
as the F0-related features. Pause durations can be obtained using standard speech rec- 
ognizers, and are in fact used by many current TDT systems (see Section 4.10). Speaker 
changes are not prosodic features per se, and would be detected independently from 
the prosodic features proper. To determine if prosodic measurements beyond pause 
and speaker information improve topic segmentation accuracy, we tested systems that 
consisted of the HMM with the usual topic LMs, plus a decision tree that had ac- 
cess only to various subsets of pause- and speaker-related features, without using 
any of the F0-based features. Decision tree and HMM were combined as described in 
Section 3.3.2. 

Table 3 shows the results of the system using only topic language models (LM) 
as well as combined systems using all prosodic features (CM-HMM-all), only pause 
duration and turn features (CM-HMM-pause-turn), and using only pause duration, 
turn, and gender features (CM-HMM-pause-turn-gender). These results show that by 
using only pause duration, turn, and gender features, it is indeed possible to obtain 
better results (20% reduced segmentation cost) than with the lexical model alone, with 
gender making only a minor contribution. However, we also see that a substantial 
further improvement (9% relative) is obtained by adding F0 features to the prosodic 
model. 

4.10 Results Compared to Other Approaches 
Because our work focused on the use of prosodic information and required detailed 
linguistic annotations (such as sentence punctuation, turn boundaries, and speaker 
labels), we used data from the LDC 1997 BN corpus to form the training set for the 
prosodic models and the (separate) test set used for evaluation. This choice was crucial 
for the research, but unfortunately complicates a quantitative comparison of our results 
to other TDT segmentation systems. The recent TDT2 evaluation used a different set 
of broadcast news data that postdated the material we used, and was generated by 
a different speech recognizer (although with a similar word error rate) (Cieri et al. 
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Table 4 
Word-based segmentation error rates for different corpora. Note that a hand-transcribed 
(forced alignment) version of the TDT2 test set was not available. 

Error Rates on Forced Alignments Error Rates on Recognized Words 
Test Set PMis~ PFalseAlarm Cseg PMiss PFalseAlarrn Cseg 
TDT2 NA NA NA 0.5509 0.0694 0.2139 
BN'97 0.4685 0.0817 0.1978 0.5128 0.0683 0.2017 

1999). Nevertheless we have attempted to calibrate our results with respect to these 
TDT2 results, n We have not tried to compare our results to research outside the TDT 
evaluation framework. In fact, other evaluation methodologies differ too much to allow 
meaningful quantitative comparisons across publications. 

We wanted to ensure that the TDT2 evaluation test set was comparable in seg- 
mentation difficulty to our test set drawn from the 1997 BN corpus, and that the TDT2 
metrics behaved similarly on both sets. To this end, we ran an early version of our 
words-only segmenter on both test sets. As shown in Table 4, not only are the results 
on recognized words quite close, but the optimal false alarm/miss trade-off is similar 
as well, indicating that the two corpora have roughly similar topic granularities. 

While the full prosodic component of our topic segmenter was not applied to the 
TDT2 test corpus, we can compare the performance of a simplified version of SRI's 
segmenter to other evaluation systems (Fiscus et al. 1999). The two best-performing 
systems in the evaluation were those of CMU (Beeferman, Berger, and Lafferty 1999) 
with Cse9 = 0.1463, and Dragon (Yamron et al. 1998; van Mulbregt et al. 1999) with 
Cse9 = 0.1579. The SRI system achieved Cs~g = 0.1895. All systems in the evaluation, 
including ours, used only information from words and pause durations determined 
by a speech recognizer. 

A good reference to calibrate our performance is the Dragon system, from which 
we borrowed the lexical HMM segmentation framework. Dragon made adjustments 
in its lexical modeling that account for the improvements relative to the basic HMM 
structure on which our system is based. As described by van Mulbregt et al. (1999), 
a significant segmentation error reduction was obtained from optimizing the number 
of topic clusters (kept fixed at 100 in our system). Second, Dragon introduced more 
supervision into the model training by building separate LMs for segments that had 
been hand-labeled as not related to news (such as sports and commercials) in the TDT2 
training corpus, which also resulted in substantial improvements. Finally, Dragon used 
some of the TDT2 training data for tuning the model to the specifics of the TDT2 
corpus. 

In summary, the performance of our combined lexical-prosodic system with Cs¢9 = 
0.1438 is competitive with the best word-based systems reported to date. More impor- 
tantly, since we found the prosodic and lexical knowledge sources to complement each 
other, and since Dragon's improvements for TDT2 were confined to a better modeling 
of the lexical information, we would expect that adding these improvements to our 
combined segmenter would lead to a significant improvement in the state of the art. 

11 Since our study was conducted, a third round of TDT benchmarks (TDT3) has taken place (NIST 1999). 
However, for TDT3, the topic segmentation evaluation metric was modified and the most recent results 
are thus not directly comparable with those from TDT2 or the present study, 
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5. D i scuss ion  

Results so far indicate that prosodic information provides an excellent source of in- 
formation for automatic topic segmentation, both by itself and in conjunction with 
lexical information. Pause duration, a simple prosodic feature that is readily available 
as a by-product of speech recognition, proved highly effective in the initial chopping 
phase, and was the most important feature used by prosodic decision trees. Additional, 
pitch-based prosodic features are also effective as features in the decision tree. 

The results obtained with recognized words (at 30% word error rate) did not differ 
greatly from those obtained with correct word transcripts. No significant degradation 
was found with the words-only segmentation model, while the best combined model 
exhibited about a 5% error increase with recognized words. The lack of degradation 
on the words-only model may be partly due to the fact that the recognizer generally 
outputs fewer words than contained in the correct transcripts, biasing the segmenter 
toward a lower false alarm rate. Still, part of the appeal of prosodic segmentation is 
that it is inherently robust to recognition errors. This characteristic makes it even more 
attractive for use in domains with higher error rates due to poor acoustic conditions or 
more conversational speaking styles. It is especially encouraging that the prosody-only 
segmenter achieved competitive performance. 

It was fairly straightforward to modify the original Dragon HMM segmenter (Yam- 
ron et al. 1998), which is based purely on topical word usage, to incorporate discourse 
cues, both lexical and prosodic. The addition of these discourse cues proved highly 
effective, especially in the case of prosody. The alternative knowledge source combi- 
nation approach, using HMM posterior probabilities as decision tree inputs, was also 
effective, although less so than the HMM-based approach. Note that the HMM-based 
integration, as implemented here, makes more stringent assumptions about the in- 
dependence of lexical and prosodic cues. The combined decision tree, on the other 
hand, has some ability to model dependencies between lexical and prosodic cues. The 
fact that the HMM-based combination approach gave the best results is thus indirect 
evidence that lexical and prosodic knowledge sources are indeed largely independent. 

Apart from the question of probabilistic independence, it seems that lexical and 
prosodic models are also complementary in the errors they make. This is manifested 
in the different distributions of miss and false alarm errors discussed in Section 4.5. 
It is also easy to find examples where the two models make complementary errors. 
Figure 8 shows two topic boundaries that are missed by one model but not the other. 

Several aspects of our model are preliminary or suboptimal in nature and can be 
improved. Even when testing on recognized words, we used parameters optimized 
on forced alignments. This is suboptimal but convenient, since it avoids the need to 
run word recognition on the relatively large training set. Since results on recognized 
words are very similar to those on true words, we can conclude that not much was lost 
with this expedient. Also, we have not yet optimized the chopping stage relative to 
the combined model (only relative to the words-only segmenter). The use of prosodic 
features other than pause duration for chopping should further improve the overall 
performance. 

The improvement obtained with source-dependent topic switch penalties and 
posterior thresholds suggests that more comprehensive source-dependent modeling 
would be beneficial. In particular, both prosodic and lexical discourse cues are likely 
to be somewhat source specific (e.g., because of different show formats and different 
speakers). Given enough training data, it is straightforward to train source-dependent 
models. 
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(a) •.. we have a severe thunderstorm watch two severe thunderstorm watches 
and a tornado watch in effect the tornado watch in effect back here in eastern 
colorado the two severe thunderstorm watches here indiana over into ohio 
those obviously associated with this line which is already been producing 
some hail i'll be back in a moment we'll take a look at our forecast weather 
map see if we can cool it off in the east will be very cold tonight minus seven 
degrees <TOPIC_CHANGE> 

LM probability: 0.018713 
PM probability: 0.937276 

karen just walked in was in the computer and found out for me that national 
airport in washington d. c. did hit one hundred degrees today it's a record 
high for them it's going to be uh hot again tomorrow but it will begin to 
cool off the que question is what  time of day is this cold front going to move 
by your house if you want to know how warm it's going to be tomorrow 
comes through early in the day won ' t  be that hot at all midday it'll still be 
into the nineties but not as hot as it was today comes through late in the day 
you'll  still be in the upper nineties but some relief is on the way . . .  

(b) . . .  you know the if if the president has been unfaithful to his wife and at 
this point you know i simply don' t  know any of the facts other than the 
bits and pieces that we hear and they're simply allegations at this point but 
being unfaithful to your wife isn't necessarily a crime lying in an affidavit is 
a crime inducing someone to lie in an affidavit is a crime but that occurred 
after this apparent taping so i'll tell you there are going to be extremely 
thorny legal issues that will have to be sorted out white house spokesman 
mike mccurry says the administration will cooperate in starr's investigation 
<TOPIC_CHANGE> 

LM probability: 1•000000 
PM probability: 0.134409 

cubans have been waiting for this day for a long time after months of plan- 
ning and preparation pope john paul the second will make his first visit to 
the island nation this afternoon it is the first pilgrimage ever by a pope to 
cuba judy fortin joins us now from havana with more . . . .  

Figure 8 
Examples of true topic boundaries where lexical and prosodic models make opposite 
decisions• (a) The prosodic model correctly predicts a topic change, the LM does not. (b) The 
LM predicts a topic change, the prosodic model does not. 

6. C o n c l u s i o n  

We h a v e  p r e sen t ed  a probabi l is t ic  a p p r o a c h  to topic  s e g m e n t a t i o n  of  speech,  c o m b i n i n g  
b o t h  lexical and  p rosod ic  cues. Topical  w o r d  u sage  a n d  lexical d i scourse  cues are 
r epresen ted  b y  l a n g u a g e  mode l s  e m b e d d e d  in an  H M M .  Prosod ic  d i scourse  cues,  
such  as p a u s e  dura t ions  a nd  p i tch  resets, are m o d e l e d  b y  a dec is ion  tree b a s e d  on  
au tomat ica l ly  ext rac ted  acoust ic  features  a nd  a l ignments .  Lexical and  p rosod ic  fea tures  
can  be  c o m b i n e d  ei ther  in the H M M  or in the dec is ion  tree f r amework .  

O u r  topic  s e g m e n t a t i o n  m o d e l  w a s  eva lua t ed  on  b roadcas t  n e w s  speech,  and  
f o u n d  to give compet i t ive  p e r f o r m a n c e  ( a round  14% error  acco rd ing  to the  w e i g h t e d  
TDT2 s e g m e n t a t i o n  cost  metric).  Notably ,  the s e g m e n t a t i o n  accu racy  of the p r o s o d i c  
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mode l  alone is compet i t ive  wi th  a word-based  segmenter ,  and  a combined  p r o s o d i c /  
lexical H M M  achieves a substantial  error reduct ion over  the individual  knowledge  
sources. 
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