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Chinese is written without using spaces or other word delimiters. Although a text may be thought 
of as a corresponding sequence of words, there is considerable ambiguity in the placement of 
boundaries. Interpreting a text as a sequence of words is beneficial for some information retrieval 
and storage tasks:for example,full-text search, word-based compression, and keyphrase extraction. 
We describe a scheme that infers appropriate positions for word boundaries using an adaptive 
language model that is standard in text compression. It is trained on a corpus of presegmented text, 
and when applied to new text, interpolates word boundaries so as to maximize the compression 
obtained. This simple and general method performs well with respect to specialized schemes for 
Chinese language segmentation. 

1. Introduction 

Languages such as Chinese and Japanese are written without using any spaces or 
other word delimiters (except for punctuation marks)--indeed, the Western notion 
of a word boundary is literally alien (Wu 1998). Nevertheless, words are present in 
these languages, and Chinese words often comprise several characters, typically two, 
three, or four--five-character words also exist, but they are rare. Many characters can 
stand alone as words in themselves, while on other occasions the same character is 
the first or second character of a two-character word, and on still others it participates 
as a component of a three- or four-character word. This phenomenon causes obvious 
ambiguities in word segmentation. 

Readers unfamiliar with Chinese can gain an appreciation of the problem of mul- 
tiple interpretations from Figure 1, which shows two alternative interpretations of the 
same Chinese character sequence. The text is a joke that relies on the ambiguity of 
phrasing. Once upon a time, the story goes, a man set out on a long journey. Before 
he could return home the rainy season began, and he had to take shelter at a friend's 
house. But he overstayed his welcome, and one day his friend wrote him a note: the 
first line in Figure 1. The intended interpretation is shown in the second line, which 
means "It is raining, the god would like the guest to stay. Although the god wants 
you to stay, I do not!" On seeing the note, the visitor took the hint and prepared to 
leave. As a joke he amended the note with the punctuation shown in the third line, 
which leaves three sentences whose meaning is totally different--"The rainy day, the 
staying day. Would you like me to stay? Sure!" 
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A sentence in Chinese 

Interpretation 1 

Interpretation 2 

Figure 1 
A Chinese sentence with ambiguity of phrasing. 

A sentence in Chinese 

Interpretation 1 

Interpretation 2 

Figure 2 
An example that can be segmented in two different ways. 

physics theory s ch oot 

evidence I products I barber I study 
\ / J J 

~ - -  science ~ - -  credit 
p r i c e 9  N~bodY t - ~  reason ! , ~  subject 

image ... understand ,.. student ... 

physics 
/ 

\ 
physicist 

Figure 3 
Example of treating each character in a query as a word. 

This example relies on ambiguity of phrasing, but  the same kind of problem can 
arise wi th  word  segmentation. Figure 2 shows a more prosaic example. For the or- 
dinary sentence of the first line, there are two different interpretations depending on 
the context of the sentence: "I like New Zealand flowers" and "I like fresh broccoli" 
respectively. 

The fact that machine-readable Chinese text is invariably stored in unsegmented 
form causes difficulty in applications that use the word  as the basic unit. For example, 
search engines index documents  by storing a list of the words they contain, and allow 
the user to retrieve all documents  that contain a specified combination of query terms. 
This presupposes that the documents  are segmented into words. Failure to do so, and 
treating every character as a word in itself, greatly decreases the precision of retrieval 
since large numbers  of extraneous documents  are returned that contain characters, but  
not words, from the query. 

Figure 3 illustrates what  happens when  each character in a query is treated as a 
single-character word. The intended query is "physics" or "physicist." The first charac- 
ter returns documents  about such things as "evidence," "products," "body, .... image," 
"prices"; while the second returns documents  about "theory, . . . .  barber," and so on. 
Thus many  documents  that are completely irrelevant to the query will be returned, 
causing the precision of information retrieval to decrease greatly. Similar problems 
occur in word-based compression, speech recognition, and so on. 
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It is true that most search engines allow the user to search for multiword phrases 
by enclosing them in quotation marks, and this facility could be used to search for 
multicharacter words in Chinese. This, however, runs the risk of retrieving irrelevant 
documents in which the same characters occur in sequence but with a different in- 
tended segmentation. More importantly, it imposes on the user an artificial requirement 
to perform manual segmentation on each full-text query. 

Word segmentation is an important prerequisite for such applications. However, 
it is a difficult and ill-defined task. According to Sproat et al. (1996) and Wu and Fung 
(1994), experiments show that only about 75% agreement between native speakers is 
to be expected on the "correct" segmentation, and the figure reduces as more people 
become involved. 

This paper describes a general scheme for segmenting text by inferring the position 
of word boundaries, thus supplying a necessary preprocessing step for applications 
like those mentioned above. Unlike other approaches, which involve a dictionary of 
legal words and are therefore language-specific, it works by using a corpus of already- 
segmented text for training and thus can easily be retargeted for any language for 
which a suitable corpus of segmented material is available. To infer word boundaries, a 
general adaptive text compression technique is used that predicts upcoming characters 
on the basis of their preceding context. Spaces are inserted into positions where their 
presence enables the text to be compressed more effectively. This approach means 
that we can capitalize on existing research in text compression to create good models 
for word segmentation. To build a segmenter for a new language, the only resource 
required is a corpus of segmented text to train the compression model. 

The structure of this paper is as follows: The next section reviews previous work 
on the Chinese segmentation problem. Then we explain the operation of the adaptive 
text compression technique that will be used to predict word boundaries. Next we 
show how space insertion can be viewed as a problem of hidden Markov modeling, 
and how higher-order models, such as the ones used in text compression, can be 
employed in this way. The following section describes several experiments designed 
to evaluate the success of the new word segmenter. Finally we discuss the application 
of language segmentation in digital libraries. 

Our system for segmenting Chinese text is available on the World Wide Web at 
http://www.nzdl.org/cgi-bin/congb. It takes GB-encoded input text, which can be cut 
from a Chinese document and pasted into the input window. 1 Once the segmenter has 
been invoked, the result is rewritten into the same window. 

2. Previous Methods for Segmenting Chinese 

The problem of segmenting Chinese text has been studied by researchers for many 
years; see Wu and Tseng (1993) for a detailed survey. Several different algorithms 
have been proposed, which, generally speaking, can be classified into dictionary-based 
and statistical-based methods, although other techniques that involve more linguistic 
information, such as syntactic and semantic knowledge, have been reported in the - 
natural language processing literature. 

Cheng, Young, and Wong (1999) describe a dictionary-based method. Given a 
dictionary of frequently used Chinese words, an input string is compared with words 
in the dictionary to find the one that matches the greatest number of characters of the 

1 To enable proper viewing, and input, of GB-encoded characters, an appropriate version of Netscape 
Communicator or Internet Explorer must be used. 
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input. This is called the maximum forward match heuristic. An alternative is to work 
backwards through the text, resulting in the maximum backward match heuristic. 
It is easy to find situations where these fail. To use an English example, forward 
matching fails on the input "the red . . . "  (it is misinterpreted as "there d . . .  "), while 
backward matching fails on text ending " . . .  his car" (it is misinterpreted as " . . .  hi 
scar'). Analogous failures occur with Chinese text. 

Dai, Khoo, and Loh (1999) use statistical methods to perform text segmentation. 
They concentrate on two-character words, because two characters is the most com- 
mon word length in Chinese. Several different notions of frequency of characters and 
bigrams are explored: relative frequency, document frequency, weighted document 
frequency, and local frequency. They also look at both contextual and positional in- 
formation. Contextual information is found to be the single most important factor 
that governs the probability that a bigram forms a word; incorporating the weighted 
document frequency can improve the model significantly. In contrast, the positional 
frequency is not found to be helpful in determining words. 

Ponte and Croft (1996) introduce two models for word segmentation: word-based 
and bigram models. Both utilize probabilistic automata. In the word-based method, a 
suffix tree of words in the lexicon is used to initialize the model. Each node is associated 
with a probability, which is estimated by segmenting training text using the longest 
match strategy. This makes the segmenter easy to transplant to new languages. The 
bigram model uses the lexicon to initialize probability estimates for each bigram, and 
the probability with which each bigram occurs, and uses the Baum-Welch algorithm 
(Rabiner 1989) to update the probabilities as the training text is processed. 

Hockenmaier and Brew (1998) present an algorithm, based on Palmer's (1997) ex- 
periments, that applies a symbolic machine learning technique--transformation-based 
error-driven learning (Brill 1995)--to the problem of Chinese word segmentation. Us- 
ing a set of rule templates and four distinct initial-state annotators, Palmer concludes 
that the learning technique works well. Hockenmaier and Brew investigate how per- 
formance is influenced by different rule templates and corpus size. They use three 
rule templates: simple bigram rules, trigram rules, and more elaborate rules. Their 
experiments indicate that training data size has the most significant influence on per- 
formance. Good performance can be acquired using simple rules only if the training 
corpus is large enough. 

Lee, Ng, and Lu (1999) have recently introduced a new segmentation method for 
a Chinese spell-checking application. Using a dictionary with single-character word 
occurrence frequencies, this scheme first divides text into sentences, then into phrases, 
and finally into words using a small number of word combinations that are conditioned 
on a heuristic to avoid delay during spell-checking. When compared with forward 
maximum matching, the new method resolves more than 10% more ambiguities, but 
enjoys no obvious speed advantage. 

The way in which Chinese characters are used in names differs greatly from the 
way they are used in ordinary text, and some researchers, notably Sproat et al. (1996), 
have established special-purpose recognizers for Chinese names (and translated for- 
eign names), designed to improve the accuracy of automatic segmenters by treating 
names specially. 2 Chinese names always take the form family name followed by given 
name. Whereas family names are limited to a small group of characters, given names 
can consist of any characters. They normally comprise one or two characters, but 

2 In English there are significant differences between the frequency distribution of letters in names and 
in words--for example, compare the size of the T section of a telephone directory with the size of the T 
section of a dictionary--but such differences are far more pronounced in Chinese. 
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three-character names have arisen in recent years to ensure uniqueness when the fam- 
ily name is popular--such as Smith or Jones in English. Sproat et al. (1996) implement 
special recognizers not only for Chinese names and transliterated foreign names, but 
for components of morphologically obtained words as well. The approach we present 
is not specially tailored for name recognition, but because it is fully adaptive it is likely 
that it would yield good performance on names if lists of names were provided as 
supplementary training text. This has not yet been tested. 

3. Language Modeling using PPM 

Statistical language models are well developed in the field of text compression. Com- 
pression methods are usually divided into symbolwise and dictionary schemes (Bell, 
Cleary, and Witten, 1990). Symbolwise methods, which generally make use of adap- 
tively generated statistics, give excellent compression--in fact, they include the best 
known methods. Although dictionary methods such as the Ziv-Lempel schemes per- 
form less well, they are used in practical compression utilities like Unix compress and 
gzip because they are fast. 

In our work we use the prediction by partial matching (PPM) symbolwise com- 
pression scheme (Cleary and Witten 1984), which has become a benchmark in the 
compression community. It generates "predictions" for each input symbol in turn. 
Each prediction takes the form of a probability distribution that is provided to an 
encoder. The encoder is usually an arithmetic coder; the details of coding are of no 
relevance to this paper. 

PPM is an n-gram approach that uses finite-context models of characters, where 
the previous few (say three) characters predict the upcoming one. The conditional 
probability distribution of characters, conditioned on the preceding few characters, 
is maintained and updated as each character of input is processed. This distribution, 
along with the actual value of the preceding few characters, is used to predict each up- 
coming symbol. Exactly the same distributions are maintained by the decoder, which 
updates the appropriate distribution as each character is received. This is what we 
call adaptive modeling: both encoder and decoder maintain the same models--not  
by communicating the models directly, but by updating them in precisely the same 
way. 

Rather than using a fixed context length (three was suggested above), the PPM 
method chooses a maximum context length and maintains statistics for this and all 
shorter contexts. The maximum is five in most of the experiments below, and statistics 
are maintained for models of order 5, 4, 3, 2, 1, and 0. These are not stored separately; 
they are all kept in a single trie structure. 

PPM incorporates a simple and highly effective method to combine the predictions 
of the models of different order--often called the problem of "backoff." To encode 
the next symbol, it starts with the maximum-order model (order 5). If that model 
contains a prediction for the upcoming character, the character is transmitted according 
to the order 5 distribution. Otherwise, both encoder and decoder escape down to 
order 4. There are two possible situations. If the order 5 context--that is, the preceding 
five-character sequence--has not been encountered before, then escape to order 4 is 
inevitable, and both encoder and decoder can deduce that fact without requiring any 
communication. If not, that is, if the preceding five characters have been encountered 
in sequence before but not followed by the upcoming character, then only the encoder 
knows that an escape is necessary. In this case, therefore, it must signal this fact to the 
decoder by transmitting an escape event--and space must be reserved for this event 
in every probability distribution that the encoder and decoder maintain. 
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Table 1 
PPM model after processing the string t o b e o r n o t t o b e ;  c = count, p = prediction 
probability. 

Order 2 Order 1 Order 0 
Prediction c p Prediction c p Prediction c p 

be --~ o 1 1/2 b --* e 2 3/4 
e s c  1 1/2 ~ e s c  1 1/4 

eo ~ r 1 1/2 e ~ o 1 1/2 
---* e s c  1 1/2 --* e s c  1 1/2 

no --* t 1 1/2 n --. o 1 1/2 
--* e s c  1 1/2 --* ¢ s c  1 1/2 

ob --~ e 2 3/4 o ~ b 2 3/8 
--* e s c  1 1/4 ---* r 1 1/8 

or --* n 1 1/2 --~ t 1 1/8 
e s c  1 1/2 --* e s c  3 3/8 

ot --* t 1 1 / 2  r --* n 1 1/2 
--* e s c  1 1/2 --* e s c  1 1/2 

rn --* o 1 1/2 t --~ o 2 1/2 
e s c  1 1/2 ---* t 1 1/6 

to ---* b 2 3/4 --~ e s c  2 1/3 
---* e s c  1 1/4 

tt ---* o 1 1/2 
- *  e s c  1 1/2 

--~ b 2 3/26 
--. e 2 3/26 
--. n 1 1/26 
--* o 4 7/26 
--* r 1 1/26 

t 3 5/26 
--* e s c  6 3/13 

Order -1  
Prediction c p 

--* A 1 1 / I A  I 

Once any necessary escape event has been transmitted and received, both encoder 
and decoder agree that the upcoming  character will be coded by  the order 4 model.  Of 
course, this may  not be possible either, and further escapes may  take place. Ultimately, 
the order 0 model  may  be reached; in this case the character can be transmitted if it is 
one that has occurred before. Otherwise, there is one further escape (to an order - 1  
model), and the s tandard ASCII representation of the character is sent. 

The only remaining question is how to calculate the probabilities from the c o u n t s - -  
a simple matter once we have resolved how much  space to allocate for the escape 
probability. There has been much  discussion of this question, and several different 
methods  have been proposed.  Our  experiments calculate the escape probability in a 
particular context as 

la 

n 

where n is the number  of times that context has appeared and d is the number  of 
different symbols that have directly followed it (Howard  1993). The probability of a 
character that has occurred c times in that context is 

1 
C - -  -- 2 

n 

Since there are d such characters, and their counts sum to n, it is easy to confirm that 
the probabilities in the distribution (including the escape probability) sum to 1. 

To illustrate the PPM model ing technique, Table i shows the model  after the string 
t o b e o r n o t t o b e  has been processed. In this illustration the max imum model  order is 2 
(not 5 as stated above), and each prediction has a count  c and a prediction probability 
p. The probability is determined from the counts associated with the prediction using 
the formula that we discuss above. IAI is the size of the alphabet, and it is this that 
determines the probability for each unseen character. 
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The model in Table 1 is used as follows: Suppose the character following tobe- 
ornottobe is o. Since the order 2 context is be, and the upcoming symbol has already 
been seen once in this context, the order 2 model is used for encoding in this case, 
and the encoding probability is 1/2. Thus the symbol o would be encoded in 1 bit. If 
the next character, instead of o, were t, this has not been seen in the current order 2 
context (which is still be). Consequently an order 2 escape event is coded (probability 
1/2, again in the be context), and the context is truncated to e. Checking the order 1 
model, the upcoming character t has not been seen in this context, so an order I escape 
event is coded (probability 1/2 in the e context) and the context is truncated to the 
null context, corresponding to the order 0 model. The character t is finally encoded in 
this model, with probability 5/26. Thus three encodings occur for this one character, 
with probabilities 1/2, 1/2, and 5/26 respectively, which together amount to just over 
5 bits of information. If the upcoming character had been x instead of t, a final level of 
escape, this time to order 0, would have occurred (probability 3/13), and the x would 
be encoded with a probability of 1/256 (assuming that the alphabet has 256 characters) 
for a total of just over 10 bits. 

It is clear from Table 1 that, in the context tobeornottobe, if the next character is o it 
will be encoded by the order 2 model. Hence if an escape occurs down to order 1, the 
next character cannot be o. This makes it unnecessary to reserve probability space for 
the occurrence of o in the order 1 (or order 0 or order -1) models. This idea, which 
is called exclusion, can be exploited to improve compression. A character that occurs 
at one level is excluded from all lower-order predictions, allowing a greater share 
of the probability space to be allocated to the other characters in these lower-order 
models (Bell, Cleary, and Witten 1990). For example, if the character b were to follow 
tobeornottobe it would be encoded with probabilities (1/2,1/2, 3/26), without exclusion, 
leading to a coding requirement of 5.1 bits. However, if exclusion was exploited, both 
encoder and decoder will recognize that escape from order 1 to order 0 is inevitable 
because the order 1 model adds no characters that were not already predicted by 
the order 2 model. Thus the coding probabilities will be (1/2,1, 3/18) with exclusion, 
reducing the total code space for b to 3.6 bits. An important special case of the exclusion 
policy occurs at the lowest-level model: for example, the x at the end of the previous 
paragraph would finally be encoded with a probability of 1/250 rather than 1/256 
because characters that have already occurred can never be predicted in the order -1  
context. 

One slight further improvement to PPM is incorporated in the experiments: de- 
terministic scaling (Teahan 1998). Although it probably has negligible effect on our 
overall results, we record it here for completeness. Experiments show that in deter- 
ministic contexts, for which d = 1, the probability that the single character that has 
occurred before reappears is greater than the 1 - 1/(2n) implied by the above esti- 
mator. Consequently, in this case the probability is increased in an ad hoc manner to 
1 - 1/(6n). 

4. Using a Hidden Markov Model to Insert Spaces 

Inserting spaces into text can be viewed as a hidden Markov modeling problem. Being 
entirely adaptive, the method works regardless of what language it is used with. For 
pedagogical purposes, we will explain it with English text. 

Between every pair of characters lies a potential space. Figure 4(a) illustrates the 
model for the fragment tobeornottobe. It contains one node for each letter in the text 
and one for each possible intercharacter space (represented as dots • in the figure). 
Any given assignment of word boundaries to this text fragment will correspond to 
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(a) 

/ ' , , / \ / \ / \ / \ / '  
t " 0 " ~ " - ' - - ~  b - e  ~ o  = r ." 

/ \ / \ / \ / \ / \ / \ / \  
- " - " ~ n  = o = t ' ~ t = o ~ b = e 

/ \ / \ / \ / \ / \ / '  
t D o ~ b  - e  = o ' = r - 

(b) 
\ / \ / \  I \ / \  i \ / \ / \  

- - - ~ n  i, o . - , - . . - , - = - , ~  t =- t ~ o ' = b ~ • ~ . 

Figure 4 
Hidden Markov Model for Space Insertion. 

t ' - - ~ "  • 0 - " "  o " - " "  ° b ~ b " - "  ° e - * "  e " ~  • o ~ o " " -  • r " - ' ~ r  o ~  • n - - '=  

t " t o  ," o b  '= b e  = e o  ~ o r  .~ r n  - ~ , - -  

(a) 
o?C"?C' ?C o7.2  7C" \ 

." n o  , -  o t  = t t  ,= t o  ,= o b  . -  b e - - - , - .  

t = t o  " o b  = b e  = e o  " - o r  L r n - - - ~  

Co) 

n , - ' - , o  - - ' ~ ' o o ~ , t  ~ t , , ' ~ - t  ~ t , ~ o o ~ o . ' e ~ o b ~ o o  

= n o  • o t  ~ t ' (  ~ t o  ~ o b  = b e  ' , - ' ~ ' ,  

Figure 5 
Hidden Markov model for space insertion using an order 1 model. 

a path through the model from beginning (at the left) to end (at the right). Of all 
possible paths, we seek the one that gives the best compression according to the PPM 
text compression method, suitably primed with English text. This path is the correct 
path, corresponding to the text to be or not to be, shown in bold in Figure 4(b). 

4.1 Markov Modeling with Context 
Figure 4 can easily be converted into a Markov model for a given order of PPM. 
Suppose we use order 1: then we rewrite Figure 4(a) so that the states are bigrams, 
as shown in Figure 5(a). The interpretation of each state is that it corresponds to the 
last character of the string that labels the state. The very first state, labeled t, has no 
prior context--in PPM terms, that character will be transmitted by escaping down to 
order 0 (or -1). Again, the bold arrows in Figure 5(b) shows the path corresponding 
to the string with spaces inserted correctly. 
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/ , .  ---@ __ j G  / , . - -  .o 
' ' -  z -@ / "  "° '@ ' 

, . . . @  "-, / @  "-  
O t o  

to ,,,,, @ 

(a) (b) (c) 

Figure 6 
Growing a tree for order 1 modeling of tobeornottobe. 

Similar models could be written for higher-order versions of PPM. For example, 
with an order 3 model, states would be labeled by strings of length four (except for 
the first few states, where the context would be truncated because they occur at the 
beginning of the string). And each state would  have variants corresponding to all 
different ways of inserting space into the four-character string. For example, the states 
corresponding to the sixth character of tobeornottobe would include beor and eeor, as 
well as ,eor, eoer and eo•r. It is not hard to see that the number of states corresponding 
to a particular character of the input string increases with model order according to 
the Fibonnacci series. Figure 5(a) shows two  states per symbol for order 1, there are 
three states per symbol for order 2, five for order 3, eight for order 4, thirteen for 
order 5, and so on. 

4.2 The Space Insertion Algorithm 
Given a hidden Markov model like the one in Figure 5(a), where probabilities are 
supplied for each edge according to an order I compression model, the space insertion 
problem is tantamount to finding the sequence of states through the model, from 
beginning to end, that maximizes the total probability--or, equivalently, that minimizes 
the number of bits required to represent the text according to that model. The following 
Viterbi-style algorithm can be used to solve this problem. Beginning at the initial state, 
the procedure traces through the model, recording at each state the highest probability 
of reaching that state from the beginning. Thus the two descendants of the start node, 
nodes to and te, are assigned the probability of o and e, conditioned in each case on 
t being the prior character, respectively. As more arcs are traversed, the associated 
probabilities are multiplied: thus the node eo receives the product of the probability 
of • conditioned on t and of o conditioned on e. When the node ob is reached, it is 
assigned the greater of the probabilities associated with the two incoming transitions, 
and so on throughout the model. This is the standard dynamic programming technique 
of storing with each state the result of the best way of reaching that state, and using 
this result to extend the calculation to the next state. To find the optimal state sequence 
is simply a matter of recording with each state which incoming transition is associated 
with the greatest probability, and traversing that path in the reverse direction once the 
final node is reached. 

These models can be generated dynamically by proceeding to predict each char- 
acter in turn. Figure 6(a) shows the beginning of the tree that results. First, the initial 
node t is expanded into its two children, te and to. Then, these are expanded in turn. 
The first has one child, eo, because a space cannot be followed by another space. The 
second has two, o• and oh. Figure 6(b) shows the further expansion of the •o node. 
However, the two children that are created already exist in the tree, and so the existing 
versions of these nodes are used instead, as in Figure 6(c). If this procedure is con- 
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...•.j/t 
, ~  • o o ° ~ , b  b - ~ , e  e . ~ - o  o ~ - r  r ° ' - ' ~ ' °  n / 

null = t = t o  = o b  • b e  - e o  = o r  = r n ~  

f - - -G 
n "  = ' o o  o "~ ' . "  * t  t . ~ , t  t , ~ ° o  o ' ~ "  o b  b ' - = ' o e  

\ 

= n o  - o t  - t t  =- t o  = o b  .-  b e  - - ~  

Figure 7 
The space insertion procedure as implemented. 

tinued, the graph structure of Figure 5(a) will be created. During creation, probability 
values can be assigned to the nodes, and back pointers inserted to record the best path 
to each node. 

The illustration in Figure 6 is for an order I model, but exactly the same procedure 
applies for higher-order PPM models. 

4.3 Implementation of the Space Insertion Algorithm 
Our implementation uses a slight variant of the above procedure for finding the opti- 
mal place to insert spaces. At each stage, we consider the possibility of adding either 
the next character, or the next character followed by a space. This generates the struc- 
ture shown in Figure 7. Starting with the null string, both t and to are generated as 
successor states. From each of these states, either o or oe can be added, and these yield 
the next states shown. The procedure continues, growing the trellis structure using 
an incremental strategy similar to that illustrated in Figure 6, but modified to take 
into account the new growth strategy of adding either the next character or the next 
character followed by a space. 

The search strategy we use is a variant of the stack algorithm for sequential de- 
coding (Anderson and Mohan 1984). As new nodes are generated, an ordered list is 
maintained of the best paths generated so far. Only the best path is extended. The 
metric used to evaluate a path is the number of bits required for the segmentation 
sequence it represents, when compressed by the PPM model. 

It is necessary to delete paths from the list in order to make room for newly 
generated ones. We remove all paths that were more than m nodes shorter than the 
best path so far, where m is the order of the PPM model (5 in our experiments). We 
reasoned that it is extremely unlikely--at least for natural language sequences--that 
such a path would ever grow to outperform the current best path, because it already 
lags behind in code length despite the fact that m further letters must be encoded. 

5. Experimental Evaluation 

Before describing experiments to assess the success of the new word segmentation 
method, we first discuss measures that are used to evaluate the accuracy of automatic 
segmentation. We then examine the application of the new segmentation method to 
English text, and show how it achieves results that significantly outperform the state of 
the art. Next we describe application to a manually segmented corpus of Chinese text; 
again, excellent results are achieved. In a further experiment where we apply a model 
generated from the corpus to a new, independent, test file, performance deteriorates 
considerably--as one might expect. We then apply the method to a different corpus, 
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and investigate how well the model  transfers f rom one corpus to another. We end with 
a discussion of how the results vary  with the order  of the compression model  used to 
drive the segmenter. 

5.1 Measuring the Quality of Segmentation 
We use three measures to evaluate the accuracy of automatic segmentation: recall, 
precision, and error rate. All evaluations use hand-segmentat ion as the gold stan- 
dard, which the automatic me thod  strives to attain. To define them, we use the terms 

N 
e 
c 

n = c + e  

Number  of words  occurring in the hand-segmenta t ion 
Num ber  of words  incorrectly identified by  the automatic me thod  
Number  of words  correctly identified by  the automatic me thod  
Number  of words  identified by  the automatic method  

Recall and precision are s tandard information retrieval measures used to assess the 
quality of a retrieval system in terms of how many  of the relevant documents  are 
retr ieved (recall) and how many  of the retr ieved documents  are relevant (precision): 

c 
recall - N '  

c 
precision - 

1/" 

The overall error rate can be defined as 

error r a t e =  --  
N" 

This in principle can give misleading resul t s - -an  extreme condition is where  the auto- 
matic me thod  only identifies a single word,  leading to a very  small error rate of 1/N 
despite the fact that all words  but  one are misidentified. However ,  in all our  exper- 
iments extreme conditions do not  occur because n is always close to N and we find 
that the error rate is a useful overall indicator of the quality of segmentation. We also 
used the F-measure to compare  our  results with others: 

F-measure = 
2 x Precision x Recall 

Precision + Recall 

If the automatic me thod  produces  the same number  of words  as the hand-segmentat ion,  
recall and precision both  become equal to one minus the error rate. A perfect  segmenter  
will have an error rate of zero and recall and precision of 100%. 

All these measures can be calculated automatically from a machine-segmented 
text, along with the hand-segmented  gold standard. Both texts are identical except for 
the points where  spaces are inserted: thus we record just the start and end positions of 
each word  in both  versions. For example,  "A BC AED F" in the machine-segmented 
version is m a ppe d  to (1,1) (2,3) (4,6) (7,7), and "A BC A ED F" in the hand-segmented  
version becomes (1,1) (2,3) (4,4) (5,6) (7,7). The number  of correctly and incorrectly 
segmented words  is counted by  comparing these two sets of positions, indicated by  
matched and mismatched pairs, respect ively-- three  correct and two incorrect, in this 
example. 

5.2 Application to English Text 
It may  be helpful  for non-Chinese readers to briefly illustrate the success of the space 
insertion me thod  by  showing its application to English text. The first part  of Table 2 
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Table 2 
Segmenting words in English text. 

Original text 

Without spaces 

PPM method 

USeg method 

the unit of New York-based Loews Corp that makes Kent cigarettes stopped 
using crocidolite in its Micronite cigarette filters in 1956. 

TheunitofNewYork-basedLoewsCorpthatmakesKentcigarettesstoppedusing- 
crocidoliteinitsMicronitecigarettefiltersin1956. 

the unit of New York-based LoewsCorp that makes Kent cigarettes stopped 
using croc idolite in its Micronite cigarette filters in 1956. 

the unit of New York-based Loews Corp that makes Kent cigarettes stopped 
using c roc id o lite inits Micron it e cigarette filters in 1956. 

shows the original text, with spaces in the proper places. The second shows the text 
with spaces removed, used as input to the segmentation procedure. The third shows 
the output of the PPM-based method described above, while the fourth shows, for 
comparison, the output of a word-based method for predicting the position of spaces, 
USeg (Ponte and Croft 1996). 

For this experiment (first reported by Teahan et al. [1998]), PPM was trained on 
the million-word Brown corpus (Kucera and Francis 1967). USeg was trained on a far 
larger corpus containing 1 Gb of data from the Tipster collection (Broglio, Callan, and 
Croft 1994). Both were tested on the same 500 Kb extract from the Wall Street Journal. 
The recall and precision for PPM were both 99.52%, while the corresponding figures 
for Useg were 93.56% and 90.03%, respectively. This result is particularly noteworthy 
because PPM had been trained on only a small fraction of the amount of text needed 
for the word-based scheme. 

The same example was used by Ponte and Croft (1996), and the improved perfor- 
mance of the character-based method is evident even in this small example. Although 
the word Micronite does not occur in the Brown Corpus, it was correctly segmented 
using PPM. Likewise, inits was correctly split into in and its. PPM makes just two 
mistakes. First, a space was not inserted into LoewsCorp because the single "word" 
requires only 54.3 bits to encode, whereas Loews Corp requires 55.0 bits. Second, an 
extra space was added to crocidolite because that reduced the number of bits required 
from 58.7 to 55.3. 

5.3 Application to a Corpus of Chinese Text 
Our first series of experiments used part of Guo Jin's Mandarin Chinese PH corpus, 
containing one million words of newspaper stories from the Xinhua news agency of PR 
China written between January 1990 and March 1991. It is represented in the standard 
GB coding scheme. 

Table 3 shows the distribution of word lengths in the corpus. Single-character 
words are the most frequent; these and bigrams together constitute almost 94% of 
words. Nearly half the characters appear as constituents of two-character words. 
Some published figures for Chinese language statistics indicate that this corpus may 
overrepresent single-character words and underrepresent bigrams--for example, Liu 
(1987) gives figures for modern Chinese of 5%, 75%, 14%, and 6% for one-character, 
two-character, three-character, and longer words, respectively. However, it has been ar- 
gued that considering the inherent uncertainty in Chinese word segmentation, general- 
purpose segmentation algorithms should segment aggressively rather than conserva- 
tively (Wu 1998); consequently this corpus seems appropriate for our use. 
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Table 3 
Distribution of word length in 
the corpus. 

Length Words Characters 

1 55.6% 36.2% 
2 38.2% 49.9% 
3 4.2% 8.2% 
4 1.6% 4.0% 
5 0.2% 0.8% 

Over 5 0.2% 0.9% 

Table 4 
Results for five 500-word segments from the Chinese corpus 
(manually checked figures in parentheses). 

File Error rate Recall Precision F-measure 

1 1.2% (1.0%) 98.4% (98.6%) 98.8% (99.0%) 98.6% (98.8%) 
2 3.6% (3.0%) 96.4% (96.8%) 96.4% (97.0%) 96.4% (96.9%) 
3 4.2% (4.0%) 95.0% (95.8%) 95.8% (96.0%) 95.4% (95.9%) 
4 6.4% (5.2%) 91.0% (92.2%) 93.4% (94.7%) 92.2% (93.4%) 
5 6.6% (5.0%) 86.2% (90.4%) 92.9% (94.8%) 89.4% (92.5%) 

Table 4 shows the results for five 500-word test files from the corpus. We took 
part of the corpus that was not used for training, divided it into 500-word segments, 
removed all spaces, and randomly chose five segments as test files. The results show 
an error rate varying from 1.2% to 6.6%. The resulting F-measures indicate that the new 
algorithm performs better than the one described in Hockenmaier  and Brew (1998), 
who report an F-measure of 87.9 using trigram rules. This is particularly significant 
because the two algorithms use training and test data from the same source. 

The results were also verified by checking them manually. This produces slightly 
different results, for two reasons. Firstly, human  judgment  sometimes accepts a seg- 
mentation as correct even though it does not correspond exactly with the corpus ver- 

sion. For example, the last word in ~ -~/~ ~ , ~ , ~  is counted as correct even though 

in the corpus it is written q2~ ~ ~ .  Secondly, improper segmentations such as 

" ~  , ~ , , ~  and ~'~ JJl ' l~ occur in the corpus. When the program makes the same 
mistakes, it counts as correct in automatic checking, but incorrect in manual  checking. 
These two kinds of error virtually canceled each other: when  checked manually, file 3, 
for example, has five fewer errors for the first reason and six more for the second rea- 
son, giving error counts of 21 and 20 for automatic and manual  checking, respectively. 

5.4 Appl i ca t ion  to I n d e p e n d e n t  C h i n e s e  Text Files 
In a second test, models from this corpus were evaluated on completely separate 
data provided by the Institute of Computat ional  Linguistics of Peking University. This 
contained 39 sentences (752 characters), some of which are compound sentences. Since 
no presegmented version was available, all checking was manual.  

This test is interesting because it includes several sentences that are easily mis- 
understood,  three of which are shown in Figure 8. In the first, which reads "I have 
learned a lot from it," the second and third characters combine into ' from it' and the 
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Figure 8 
Three examples of easily misunderstood sentences. 

Table 5 
Error rate (mean and sd) for 1,000-word files from PH 
and Rocling corpora. 

Training 
PH corpus Rocling corpus 

Testing PH files 42 + 10.23 169.2 i 19.70 
Rocling files 133.4 4- 19.58 44.8 -4- 10.83 

fourth and fifth characters combine into 'have learned.' However, the third and fourth 
characters taken together mean 'middle school,' which does not occur in the meaning 
of the sentence. In the second and third sentences, the first three characters are the 
same. In the second, "physics is very hard to learn," the second and third characters 
should be separated by a space, so that the third character can combine with the fol- 
lowing two characters to mean 'to learn.' However, in the third, "physics is one kind 
of science," the first three characters make a single word meaning 'physics.' 

The error rate, recall and precision for this test material are 10.8%, 93.4%, and 
89.6%, respectively. Performance is significantly worse than that of Table 4, because of 
the nature of the test file. Precision is distinctly lower than recall--recall fares better 
because many relevant words are still retrieved, whereas precision suffers because the 
automatic segmenter placed too many word boundaries compared with the manual 
judgment. 

Two aspects of the training data have a profound influence on the model's accu- 
racy. First, some errors are obviously caused by deficiencies in the training data, such 
as improperly segmented common words and names. Second, some errors stem from 
the topics covered by the corpus. It is not surprising that the error rate increases when 
the training and testing text represent different topic areas--such as training on news 
text and testing on medical text. 

5.5 Application to the Rocling Corpus 
The Rocling Standard Segmentation Corpus contains about two million presegmented 
words, represented in the Big5 coding scheme. We converted it to GB, used one million 
words for training, and compared the resulting model to that generated from the PH 
data, also trained on one million words. Both models were tested on 10 randomly 
chosen 1,000-word segments from each corpus (none of this material was used in 
training). 

The results are shown in Table 5, in terms of the mean and standard deviation (sd) 
of the errors. When the training and testing files come from the same corpus, results 
are good, with around 42 (for PH) and 45 (for Rocling) errors per thousand words. 
Not surprisingly, performance deteriorates significantly when the PH model is used 
to segment the Rocling test files or vice versa. 

Several differences between the corpora influence performance. Many English 
words are included in Rocling, whereas in PH only a few letters are used to rep- 
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Figure 9 
Effect of the amount of training data on the performance for each test file. 

Table 6 
Error rate (mean and sd) for different amounts of training data. 

0.5M words 1M words 1.5M words 2M words 

Error 63.3 + 13.69 44.8 + 10.83 38.8 + 8.60 35.1 -}- 6.74 

resent certain items. Percentages are represented as 90% or ~tL-~% in Rocling, instead 

of - ~ 3 \ Z ~ L ' ~  in the PH corpus. Quotat ion marks also differ: [ ] in Rocling but  .... 
in PH. In addition, as is only to be expected in any large collection of natural  language, 
typographical  errors occur in both  corpora. 

The overall result indicates that our  algori thm is robust. It performs well so long 
as the training and testing data come from the same source. 

5.6 Effect of the Amount of Training Data 
For the Rocling corpus, we exper imented with different amounts  of training data. Four 
models  were trained with successively larger amounts  of data, 0.5M, 1M, 1.5M, and 2M 
words,  each training file being an extension of the text in the preceding training file. 
The four models  were tested on the 10 randomly-chosen 1,000-word Rocling segments 
used before. 

The results for the individual  test files, in terms of error rate per thousand words,  
are shown in Figure 9 and summar ized  in Table 6. Larger training sets generally give 
smaller error, which is only to be expec ted- -a l though  the results for some individual  
test files flatten out  and show no further  improvement  with larger training files, and 
in some cases more training data actually increases the number  of errors. Overall, the 
error rate is reduced by  about  25% for each doubl ing of the training data. 

5.7 Models of Different Order 
We have exper imented with compression models  of different orders on the PH corpus. 
General ly speaking, compression of text improves as model  order  increases, up  to 
a point  de termined by  the logari thm of the size of the training text. Typically, little 
compression is gained by  going beyond  order  5 models.  For segmentation,  we observe 
m any  errors when  a model  of order  1 is used. For order  3 models,  most  words  are 
segmented with the same error rate as for order  5 models,  though some words  are 
missed when  order  2 models  are used. 

Figure 10 shows some cases where  the order  3 and order  5 models  p roduce  dif- 
ferent results. Some order  5 errors are corrected by  the order  3 model,  though others 
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Order 3 model result Order 5 model result 

Figure 10 
Results obtained when using order 3 and order 5 models. 

appear even with the lower-order model. For example, both results in the first row 
are incorrect: no space should be inserted in this case, and the four characters should 
stand together. However, the order 3 result is to be preferred to the order 5 result 
because both two-character words do at least make sense individually, whereas the 
initial three characters in the order 5 version do not represent a word at all. In the 
second row, the order 5 result is incorrect because the second component does not 
represent a word. In the order 3 result, the first word, containing two characters, is a 
person's name. The second word could also be correct as it stands, though it would be 
equally correct if a space had been inserted between the two bigrams. On the whole, 
we find that the order 3 model gives the best results overall, although there is little 
difference between orders 3, 4, and 5. 

6. Applications in a Digital Library 

Word segmentation forms a valuable component of any Chinese digital library sys- 
tem. It improves full-text retrieval in two ways: higher-precision searching (that is, 
fewer false matches), and the ability to incorporate relevance ranking. This increases 
the effectiveness of full-text search and helps to provide users with better feedback. 
For example, one study concludes that the performance of an unsegmented character- 
based query is about 10% worse than that of the corresponding segmented query 
(Broglio, Callan, and Croft 1996). Many emerging digital library technologies also pre- 
suppose word segmentation--for example, text summarization, document clustering, 
and keyphrase extraction all rely on word frequencies. These would not work well 
on unsegmented text because character frequencies do not generally reflect word fre- 
quencies. 

Once the source text in a digital library exceeds a few megabytes, full-text in- 
dexes are needed to process queries in a reasonable time (Witten, Moffat, and Bell 
1999). Full-text indexing was developed using languages where word boundaries are 
notated (principally English), and the techniques that were developed rely on word- 
based processing. Although some techniques--for example stemming (Frakes 1992) 
and casefolding--are not applicable to Chinese information retrieval, many are. Ex- 
amples include heuristics for relevance ranking, and query expansion using a language 
thesaurus. 

Of course, full-text indexes can be built from individual characters rather than 
words. However, these will suffer from the problem of low precision--searches will 
return many irrelevant documents, where the same characters are used in contexts 
different from that of the query. To reduce false matches to a reasonable level, auxiliary 
indexes (for example, sentence indexes) will have to be created. These will be much 
larger than regular word-based indexes of paragraphs or documents, and will still not 
be as accurate. 

Information retrieval systems often rank the results of each search, giving pref- 
erence to documents that are more relevant to the query by placing them nearer the 
beginning of the list. Relevance metrics are based on the observation that infrequent 
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words are more importantthan common ones and should therefore rate more highly. 
Word segmentation is essential for this purpose, because the relationship between the 
frequency of a word and the frequency of the characters that appear within it is often 
very weak. Without word segmentation, the precision of the result set will be reduced 
because relevant documents are less likely to be close to the top of the list. 

For example, the word ~ [ ]  ("to go abroad") is an infrequent word that appears 

only twenty times in the PH corpus. But its two characters occur frequently: ~ ("to 

go out") 13,531 times; and [ ]  ("country") 45,010 times. In fact ~ is the second most 
frequent character in the corpus, appearing in 443 separate words. Character-based 
ranking would place little weight on these two characters, even though they are ex- 

tremely important if the query is ~ .  The word -~ ("also") is another frequent 
character, appearing 4,553 times in the PH corpus. However, in 4,481 of those cases it 
appears by itself and contributes little to the meaning of the text. If a query contained 

both of these words, far more weight would be given to "~ than to the individual 

characters in ~ ~ .  
Word counts also give feedback on the effectiveness of a query. They help users 

judge whether their query was too wide or too narrow, and provide information on 
which of the terms are most appropriate. 

Word-based processing is essential to a number of emergent new technologies in 
the digital library field. Statistical approaches are enjoying a resurgence in natural 
language analysis (Klavans and Resnik 1997): examples include text summarization, 
document clustering, and keyphrase extraction. All of these statistical approaches are 
based on words and word frequencies. For instance, keywords and keyphrases for a 
document can be determined automatically based on features such as the frequency 
of the phrase in the document relative to its frequency in an independent corpus of 
like material, and its position of occurrence in the document (Frank et al. 1999). A 
decomposition of text into its constituent words is an essential prerequisite for the 
application of such techniques. 

7. Conc lus ions  

The problem of word segmentation of Chinese text is important in a variety of con- 
texts, particularly with the burgeoning interest in digital libraries and other systems 
that store and process text on a massive scale. Existing techniques are either linguisti- 
cally based, using a dictionary of words, or rely on hand-crafted segmentation rules, 
or use adaptive models that have been specifically created for the purpose of Chinese 
word segmentation. We have developed an alternative based on a general-purpose 
character-level model of text--the kind of models used in the very best text compres- 
sion schemes. These models are formed adaptively from training text. 

The advantage of using character-level models is that they do not rely on a dic- 
tionary and therefore do not necessarily fail on unusual words. In effect, they can fall 
back on general properties of language statistics to process novel text. The advantage 
of basing models on a corpus of training text is that particular characteristics of the 
text are automatically taken into account in language statistics--as exemplified by the 
significant differences between the models formed for the PH and Rocling corpora. 

Encouraging results have been obtained using the new scheme. Our results com- 
pare very favorably with the results of Hockenmaier and Brew (1998) on the PH 
corpus; unfortunately no other researchers have published quantitative results on a 
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s tandard corpus. Further work  is needed  to analyze the results of the Rocling corpus 
in more  detail. 

The next step is to use automatically segmented text to investigate the digital li- 
brary  applications we have described: information retrieval, text summarizat ion,  doc- 
ument  clustering, and keyphrase  extraction. 
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