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Parallel texts (bitexts) have properties that distinguish them from other kinds of parallel data. 
First, most words translate to only one other word. Second, bitext correspondence is typically 
only partial--many words in each text have no clear equivalent in the other text. This article 
presents methods for biasing statistical translation models to reflect these properties. Evalua- 
tion with respect to independent human judgments has confirmed that translation models biased 
in this fashion are significantly more accurate than a baseline knowledge-free model. This arti- 
cle also shows how a statistical translation model can take advantage of preexisting knowledge 
that might be available about particular language pairs. Even the simplest kinds of language- 
specific knowledge, such as the distinction between content words and function words, are 
shown to reliably boost translation model performance on some tasks. Statistical models that 
reflect knowledge about the model domain combine the best of both the rationalist and empiricist 
paradigms. 

1. Introduction 

The idea of a computer  system for translating from one language to another  is almost 
as old as the idea of computer  systems. Warren Weaver wrote  about  mechanical  trans- 
lation as early as 1949. More recently, Brown et al. (1988) suggested that it m ay  be 
possible to construct machine translation systems automatically. Instead of codifying 
the hum a n  translation process from introspection, Brown and his colleagues proposed  
machine learning techniques to induce models  of the process from examples of its in- 
pu t  and output.  The proposal  generated much  excitement, because it held the promise 
of automating a task that forty years of research have proven  very  labor-intensive and 
error-prone. Yet very  few other researchers have taken up  the cause, part ly because 
Brown et al.'s (1988) approach was quite a departure  from the parad igm in vogue  at 
the time. 

Formally, Brown et al. (1988) built  statistical models  of translational equivalence 
(or t ranslat ion models  1, for short). In the context of computat ional  linguistics, trans- 
lational equivalence is a relation that holds between two expressions with the same 
meaning,  where  the two expressions are in different languages. Empirical estimation 
of statistical translation models  is typically based on parallel texts or b i texts - -pai rs  
of texts that are translations of each other. As with all statistical models,  the best 
translation models  are those whose parameters  correspond best with the sources of 
variance in the data. Probabilistic translation models  whose  parameters  reflect univer- 
sal propert ies of translational equivalence a n d / o r  existing knowledge about  particular 

* D1-66F, 610 Opperman Drive, Eagan, MN 55123. E-marl: dan.melamed@westgroup.com 
1 The term translation model, which is standard in the literature, refers to a mathematical relationship 

between two data sets. In this context, the term implies nothing about the process of translation 
between natural languages, automated or otherwise. 
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languages and language pairs benefit from the best of both the empiricist and ratio- 
nalist traditions. 

This article presents three such models, along with methods for efficiently esti- 
mating their parameters. Each new method is designed to account for an additional 
universal property of translational equivalence in bitexts: 

. 

. 

. 

Most word tokens translate to only one word token. I approximate this 
tendency with a one-to-one assumption. 

Most text segments are not translated word-for-word. I build an explicit 
noise model. 

Different linguistic objects have statistically different behavior in 
translation. I show a way to condition translation models on different 
word classes to help account for the variety. 

Quantitative evaluation with respect to independent human judgments has shown 
that each of these three estimation biases significantly improves translation model ac- 
curacy over a baseline knowledge-free model. However, these biases will not produce 
the best possible translation models by themselves. Anyone attempting to build an op- 
timal translation model should infuse it with all available knowledge sources, includ- 
ing syntactic, dictionary, and cognate information. My goal here is only to demonstrate 
the value of some previously unused kinds of information that are always available for 
translation modeling, and to show how these information sources can be integrated 
with others. 

A review of some previously published translation models follows an introduction 
to translation model taxonomy. The core of the article is a presentation of the model 
estimation biases described above. The last section reports the results of experiments 
designed to evaluate these innovations. 

Throughout this article, I shall use CA££/~GT4A/~C letters to denote entire text 
corpora and other sets of sets, CAPITAL letters to denote collections, including se- 
quences and bags, and italics for scalar variables. I shall also distinguish between 
types and tokens by using bold font for the former and plain font for the latter. 

2. Translation Model Decomposition 

There are two kinds of applications of translation models: those where word order 
plays a crucial role and those where it doesn't. Empirically estimated models of trans- 
lational equivalence among word types can play a central role in both kinds of appli- 
cations. 

Applications where word order is not essential include 

• cross-language information retrieval (e.g., McCarley 1999), 

• multilingual document filtering (e.g., Oard 1997), 

• computer-assisted language learning (e.g., Nerbonne et al. 1997), 

• certain machine-assisted translation tools (e.g., Macklovitch 1994; 
Melamed 1996a), 

• concordancing for bilingual lexicography (e.g., Catizone, Russell, and 
Warwick 1989; Gale and Church 1991), 
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• corpus linguistics (e.g., Svartvik 1992), 

• "crummy" machine translation (e.g., Church and Hovy 1992; Resnik 
1997). 

For these applications, empirically estimated models have a number of advantages 
over handcrafted models such as on-line versions of bilingual dictionaries. Two of 
the advantages are the possibility of better coverage and the possibility of frequent 
updates by nonexpert users to keep up with rapidly evolving vocabularies. 

A third advantage is that statistical models can provide more accurate information 
about the relative importance of different translations. Such information is crucial for 
applications such as cross-language information retrieval (CLIR). In the vector space 
approach to CLIR, the query vector Q' is in a different language (a different vector 
space) from the document vectors D. A word-to-word translation model T can map QI 
into a vector Q in the vector space of D. In order for the mapping to be accurate, T must 
be able to encode many levels of relative importance among the possible translations 
of each element of QI. A typical bilingual dictionary says only what the possible 
translations are, which is equivalent to positing a uniform translational distribution. 
The performance of cross-language information retrieval with a uniform T is likely to 
be limited in the same way as the performance of conventional information retrieval 
without term-frequency information, i.e., where the system knows which terms occur 
in which documents, but not how often (Buckley 1993). 

Applications where word order is crucial include speech transcription for trans- 
lation (Brousseau et al. 1995), bootstrapping of OCR systems for new languages (Philip 
Resnik and Tapas Kanungo, personal communication), interactive translation 
(Foster, Isabelle, and Plamondon 1996), and fully automatic high-quality machine 
translation (e.g., A1-Onaizan et al. 1999). In such applications, a word-to-word trans- 
lation model can serve as an independent module in a more complex sequence-to- 
sequence translation model. 2 The independence of such a module is desirable for two 
reasons, one practical and one philosophical. The practical reason is illustrated in 
this article: Order-independent translation models can be accurately estimated more 
efficiently in isolation. The philosophical reason is that words are an important epis- 
temological category in our naive mental representations of language. We have many 
intuitions (and even some testable theories) about what words are and how they be- 
have. We can bring these intuitions to bear on our translation models without being 
distracted by other facets of language, such as phrase structure. For example, the 
translation models presented in the last two chapters of Melamed (to appear) cap- 
ture the intuitions that words can have multiple senses and that spaces in text do not 
necessarily delimit words. 

The independence of a word-to-word translation module in a sequence-to-sequence 
translation model can be effected by a two-stage decomposition. The first stage is based 
on the observation that every sequence L is just an ordered bag, and that the bag B 
can be modeled independently of its order O. For example, the sequence (abc I consists 
of the bag {c,a, b} and the ordering relation {(b,2), (a, 1), (c,3)}. If we represent each 
sequence L as a pair (B, O), then 

Pr(L) - Pr(B,O) (1) 

-- Pr(B)-Pr(OIB ). (2) 

2 "Sentence-to-sentence" might be a more transparent term than "sequence-to-sequence," but all the 
models that I'm aware of apply equally well to sequences of words that are not sentences. 
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Now, let L1 and L2 be two sequences and let A be a one-to-one mapping between 
the elements of L1 and the elements of L2. Borrowing a term from the operations 
research literature, I shall refer to such mappings as assignments. 3 Let .4 be the set of 
all possible assignments between L1 and L2. Using assignments, we can decompose 
conditional and joint probabilities over sequences: 

Pr(LIIL2) = ~ Pr(L1,A[L2) (3) 
AG.4 

Pr(L,,L2) = ~ Pr(L1, A, L2) (4) 
ACA 

where 

Pr(L,,A]L2) - Pr(B1,01,AIL2) (5) 

= Pr(B1,AIL2) • Pr(OI[B1, A, L2) (6) 

Pr(L1,A, L2) ~ Pr(B,, O1, A ,  B2, 02) (7) 

= Pr(B1, A, B2). Pr(O1, O2IB1,A, B2) (8) 

Summing bag pair probabilities over all possible assignments, we obtain a bag-to-bag 
t r a n s l a t i o n  m o d e l :  

Pr(B1, B2) = ~ Pr(B,, A, B2) (9) 
AEA 

The second stage of decomposition takes us from bags of words to the words 
that they contain. The following bag pair generation process illustrates how a word- 
to-word translation model can be embedded in a bag-to-bag translation model for 
languages £1 and £2: 

. 

2. 

3. 

Generate a bag size /.4 1 is also the assignment size. 

Generate l language-independent concepts C1,. . . ,  C1. 

From each concept Ci, 1 < i < I, generate a pair of word sequences (ffi, rTi) 
from £~ x £~, according to the distribution t rans(G ~), to lexicalize the 
concept in the two languages. 5 Some concepts are not lexicalized in some 
languages, so one of ffi and rTi may be empty. 

A pair of bags containing m and n nonempty word sequences can be generated by a 
process where l is anywhere between 1 and m + n. 

For notational convenience, the elements of the two bags can be labeled so that 
B1 - {u~,.. . , t~} and B 2 ~ {V~ . . . . .  ~ } ,  where some of the 1/'s and "?'s may be 
empty. The elements of an assignment, then, are pairs of bag element labels: A -- 
{(h,jl) . . . . .  (h, jl)}, where each i ranges o v e r  {IJ  1 . . . . .  11l}, eachj  ranges over {v~ . . . . .  x~}, 

3 Assignments are different from Brown, Della Pietra, Della Pietra, and Mercer's (1993) alignments in 
that assignments can range over pairs of arbitrary labels, not necessarily sequence position indexes. 
Also, unlike alignments, assignments must be one-to-one. 

4 The exact nature of the bag size distribution is immaterial for the present purposes. 
5 Since they are put  into bags, ffi and r7 i could just as well be bags instead of sequences. I make them 

sequences only to be consistent with more sophisticated models that account for noncompositional 
compounds (e.g. Melamed, to appear, Chapter 8). 
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each i is distinct, and each j is distinct. The label pairs in a given assignment can be 
generated in any order, so there are I! ways to generate an assignment of size I. 6 It 
follows that the probability of generating a pair of bags (B1, B2) with a particular 
assignment A of size l is 

Pr(B1,A, B2]I,C, trans) : Pr(1). I! n E Pr(C)trans('fi'vilC)" 
(i,j) ff A CCC 

(lO) 

The above equation holds regardless of how we represent concepts. There are 
many plausible representations, such as pairs of trees from synchronous tree adjoining 
grammars (Abeill6 et al. 1990; Shieber 1994; Candito 1998), lexical conceptual struc- 
tures (Dorr 1992) and WordNet synsets (Fellbaum 1998; Vossen 1998). Of course, for a 
representation to be used, a method must exist for estimating its distribution in data. 
A useful representation will reduce the entropy of the trans distribution, which is con- 
ditioned on the concept distribution as shown in Equation 10. This topic is beyond the 
scope of this article, however. I mention it only to show how the models presented 
here may be used as building blocks for models that are more psycholinguistically 
sophisticated. 

To make the translation model estimation methods presented here as general as 
possible, I shall assume a totally uninformative concept representation--the trans dis- 
tribution itself. In other words, I shall assume that each different pair of word sequence 
types is deterministically generated from a different concept, so that trans(.1i,~i]C) is 
zero for all concepts except one. Now, a bag-to-bag translation model can be fully 
specified by the distributions of l and trans. 

Pr(B1,A, B2]I, trans) = Pr(l). I! H trans(~,~j) 
(i,j) CA 

(11) 

The probability distribution trans (.1, ~) is a word-to-word translation model. Unlike 
the models proposed by Brown et al. (1993b), this model is symmetric, because both 
word bags are generated together from a joint probability distribution. Brown and his 
colleagues' models, reviewed in Section 4.3, generate one half of the bitext given the 
other ha l l  so they are represented by conditional probability distributions. A sequence- 
to-sequence translation model can be obtained from a word-to-word translation model 
by combining Equation 11 with order information as in Equation 8. 

3. The One-to-One Assumption 

The most general word-to-word translation model trans(.1, ~), where ,i and ¢¢ range 
over sequences in £1 and £2, has an infinite number of parameters. This model can 
be constrained in various ways to make it more practical. The models presented in 
this article are based on the one-to-one assumption: Each word is translated to at 
most one other word. In these models, .1 and ¢¢ may consist of at most one word each. 
As before, one of the two sequences (but not both) may be empty. I shall describe 
empty sequences as consisting of a special NULL word, so that each word sequence 
will contain exactly one word and can be treated as a scalar. Henceforth, I shall write u 
and v instead of 11 and ~¢. Under the one-to-one assumption, a pair of bags containing m 

6 The number of permutations is smaller when either bag contains two or more identical elements, but 
this detail will not affect the estimation algorithms presented here. 
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and n nonempty words can be generated by a process where the bag size I is anywhere 
between max(m, n) and m + n. 

The one-to-one assumption is not as restrictive as it may appear: The explanatory 
power of a model based on this assumption may be raised to an arbitrary level by 
extending Western notions of what words are to include words that contain spaces 
(e.g., in English) or several characters (e.g., in Chinese). For example, I have shown 
elsewhere how to estimate word-to-word translation models where a word can be a 
noncompositional compound consisting of several space-delimited tokens (Melamed, 
to appear). For the purposes of this article, however, words are the tokens generated 
by my tokenizers and stemmers for the languages in question. Therefore, the models 
in this article are only a first approximation to the vast complexities of translational 
equivalence between natural languages. They are intended mainly as stepping stones 
towards better models. 

4. Previous Work 

4.1 Models of Co-occurrence 
Most methods for estimating translation models from bitexts start with the following 
intuition: Words that are translations of each other are more likely to appear in cor- 
responding bitext regions than other pairs of words. Following this intuition, most 
authors begin by counting the number of times that word types in one half of the 
bitext co-occur with word types in the other half. Different co-occurrence counting 
methods stem from different models of co-occurrence. 

A model of co-occurrence is a Boolean predicate, which indicates whether a given 
pair of word tokens co-occur in corresponding regions of the bitext space. Different 
models of co-occurrence are possible, depending on the kind of bitext map that is avail- 
able, the language-specific information that is available, and the assumptions made 
about the nature of translational equivalence. All the translation models reviewed and 
introduced in this article can be based on any of the co-occurrence models described 
by Melamed (1998a). For expository purposes, however, I shall assume a boundary- 
based model of co-occurrence throughout this article. A boundary-based model of 
co-occurrence assumes that both halves of the bitext have been segmented into s seg- 
ments, so that segment Ui in one half of the bitext and segment Vi in the other half 
are mutual translations, 1 < i < s. 

Under the boundary-based model of co-occurrence, there are several ways to com- 
pute co-occurrence counts cooc(u, v) between word types u and v. In the models of 
Brown, Della Pietra, Della Pietra, and Mercer (1993), reviewed in Section 4.3, 

s 

COOC(R, V) = ~ ei(u) .j~(V), (12) 
i=1 

where ei and j5 are the unigram frequencies of u and v, respectively, in each aligned 
text segment i. For most translation models, this method produces suboptimal results, 
however, when ei(u) > 1 and )~(v) > 1. I argue elsewhere (Melamed 1998a) that 

cooc(u, v) = ~ min[ei(u),j~(v)] (13) 
i=1 

is preferable, and this is the method used for the models introduced in Section 5. 
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He 

II 
Figure 1 

nods his head 

I " 
hoche la tete 

nods and hoche often co-occur, as do nods and head. The direct association between nods and 
hoche, and the direct association between nods and head give rise to an indirect association 
between hoche and head. 

4.2 Nonprobabilistic Translation Lexicons 
Many researchers have proposed greedy algorithms for estimating nonprobabilistic 
word-to-word translation models, also known as translation lexicons (e.g., Catizone, 
Russell, and Warwick 1989; Gale and Church 1991; Fung 1995; Kumano and Hirakawa 
1994; Melamed 1995; Wu and Xia 1994). Most of these algorithms can be summarized 
as follows: 

1. Choose a similarity function S between word types in £1 and word types 
in £2. 

2. Compute association scores S(u,v) for a set of word type pairs 
(U, V) C (£1 X £2) that occur in training data. 

3. Sort the word pairs in descending order of their association scores. 

4. Discard all word pairs for which S(u, v) is less than a chosen threshold. 
The remaining word pairs become the entries in the translation lexicon. 

The various proposals differ mainly in their choice of similarity function. Almost all 
the similarity functions in the literature are based on a model of co-occurrence with 
some linguistically motivated filtering (see Fung [1995] for a notable exception). 

Given a reasonable similarity function, the greedy algorithm works remarkably 
well, considering how simple it is. However, the association scores in Step 2 are typ- 
ically computed independently of each other. The problem with this independence 
assumption is illustrated in Figure 1. The two word sequences represent correspond- 
ing regions of an English/French bitext. If nods and hoche co-occur much more often 
than expected by chance, then any reasonable similarity metric will deem them likely 
to be mutual translations. Nods and hoche are indeed mutual translations, so their ten- 
dency to co-occur is called a direct association. Now, suppose that nods and head often 
co-occur in English. Then hoche and head will also co-occur more often than expected 
by chance. The dashed arrow between hoche and head in Figure i represents an indirect 
association, since the association between hoche and head arises only by virtue of the 
association between each of them and nods. Models of translational equivalence that 
are ignorant of indirect associations have "a tendency. . ,  to be confused by collocates" 
(Dagan, Church, and Gale 1993,5). 

Paradoxically, the irregularities (noise) in text and in translation mitigate the prob- 
lem. If noise in the data reduces the strength of a direct association, then the same 
noise will reduce the strengths of any indirect associations that are based on this direct 
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Table 1 
Variables used to describe translation models. 

(U, V) = the two halves of the bitext 
(U, V) = a pair of aligned text segments in (/d, V) 
e(u) = the unigram frequency of u in U 
f(v) = the unigram frequency of v in V 
cooc(u, v) = the number of times that u and v co-occur 
trans(vlu ) = the probability that a token of u will be translated as a token of v 

association. On the other hand,  noise can reduce the strength of an indirect associa- 
tion wi thout  affecting any direct associations. Therefore, direct associations are usually 
stronger than indirect associations. If all the entries in a translation lexicon are sorted 
by  their association scores, the direct associations will be ve ry  dense near the top of 
the list, and sparser towards  the bottom. 

Gale and Church (1991) have shown that entries at the ve ry  top of the list can 
be over 98% correct. Their algori thm gleaned lexicon entries for about  61% of the 
word  tokens in a sample of 800 English sentences. To obtain 98% precision, their 
algori thm selected only entries for which it had  high confidence that the association 
score was high. These would  be the word  pairs that co-occur most  frequently. A 
r andom sample of 800 sentences from the same corpus showed  that 61% of the word  
tokens, where  the tokens are of the most  frequent  types, represent  4.5% of all the word  
types. 

A similar strategy was employed  by  Wu and Xia (1994) and by  Fung (1995). 
Fung sk immed off the top 23.8% of the noun-noun  entries in her lexicon to achieve a 
precision of 71.6%. Wu and Xia have repor ted  automatic acquisition of 6,517 lexicon 
entries f rom a 3.3-million-word corpus, with a precision of 86%. The first 3.3 million 
word  tokens in an English corpus from a similar genre contained 33,490 different word  
types, suggesting a recall of roughly  19%. Note, however,  that Wu and Xia chose to 
weight  their precision estimates by  the probabilities at tached to each entry: 

For example,  if the translation set for English word  detect has the 
two correct Chinese candidates with 0.533 probabil i ty and with 0.277 
probability, and the incorrect translation with 0.190 probability, then 
we count  this as 0.810 correct translations and 0.190 incorrect transla- 
tions. (Wu and Xia 1994, 211) 

This is a reasonable evaluat ion method,  but  it is not  comparable  to methods  that 
s imply count  each lexicon entry as either right or wrong  (e.g., Daille, Gaussier, and 
Lang6 1994; Melamed 1996b). A weighted precision estimate pays  more at tention to 
entries that are more frequent  and hence easier to estimate. Therefore, weighted pre- 
cision estimates are generally higher  than unweighted  ones. 

4.3 Reestimated Sequence-to-Sequence Translation Models  
Most probabilistic translation model  reestimation algori thms publ ished to date are 
variations on the theme proposed  by  Brown et al. (1993b). These models  involve con- 
ditional probabilities, but  they can be compared  to symmetric  models  if the latter are 
normal ized by  the appropriate  marginal  distribution. I shall review these models  using 
the notat ion in Table 1. 
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4.3.1 Models  Using On ly  Co-occurrence Informat ion.  Brown and his colleagues em- 
ploy the expectat ion-maximization (EM) algori thm (Dempster, Laird, and Rubin 1977) 
to estimate the parameters  of their Model  1. On iteration i, the EM algori thm reesti- 
mates the model  parameters  transi(v]u) based on their estimates f rom iteration i -  1. 
In Model  1, the relationship between the new parameter  estimates and the old ones is 

transi_l(VlU ) • e(u) -f(v)  
transi(vlu) = z ~_, 

(u,v)e(u,v) ~u,eutransi-l(VlU') 
(14) 

where z is a normalizing f ac to r .  7 

It is instructive to consider the form of Equation 14 when  all the translation prob- 
abilities trans(v[u) for a particular u are initialized to the same constant p, as Brown 
et al. (1993b, 273) actually do: 

transl(v]u) : z E p.e(u) . f (v)  (15) 
(u,v)c(u,v) p. ]U[ 

: z E e(u) . f (v)  (16) 
(u,v)e(u,v) pU] 

The initial translation probabili ty transl(v]u) is set proport ional  to the co-occurrence 
count  of u and v and inversely proport ional  to the length of each segment  U in which 
u occurs. The intuition behind the numera tor  is central to most  bitext-based translation 
models: The more  often two words  co-occur, the more likely they are to be mutual  
translations. The intuit ion behind the denominator  is that the co-occurrence count  of 
u and v should be discounted to the degree that v also co-occurs with other words  in 
the same segment pair. 

N ow consider how Equation 16 would  behave if all the text segments on each 
side were of the same length, s so that each token of v co-occurs with exactly c words  
(where c is constant): 

transl(vlu ) : z E e ( u ) . f ( v )  (17) 
c (u,v) c (u,v) 

z ~ e(u) . f (v)  (18) 
c 

(u,v) e(u,v) 

The normalizing coefficient z is constant over  all words.  The only difference between 
Equations 16 and 18 is that the former discounts co-occurrences proport ional ly  to the 
segment  lengths. When information about  segment lengths is not  available, the only 
information available to initialize Model  1 is the co-occurrence counts. This p roper ty  
makes Model  1 an appropriate  baseline for comparison to more  sophisticated models  
that use other information sources, both in the work of Brown and his colleagues and 
in the work  described here. 

7 This expression is obtained by substituting Brown, Della Pietra, Della Pietra, and Mercer's (1993) 
Equation 17 into their Equation 14. 

8 Or, equivalently, if the notion of segments were dispensed with altogether, as under  the distance-based 
model of co-occurrence (Melarned 1998a). 
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4.3.2 Word Order Correlation Biases. In any bitext, the positions of words relative to 
the true bitext map correlate with the positions of their translations. The correlation is 
stronger for language pairs with more similar word order. Brown et al. (1988) intro- 
duced the idea that this correlation can be encoded in translation model parameters. 
Dagan, Church, and Gale (1993) expanded on this idea by replacing Brown et al.'s 
(1988) word alignment parameters, which were based on absolute word positions in 
aligned segments, with a much smaller set of relative offset parameters. The much 
smaller number of parameters allowed Dagan, Church, and Gale's model to be effec- 
tively trained on much smaller bitexts. Vogel, Ney, and Tillmann (1996) have shown 
how some additional assumptions can turn this model into a hidden Markov model, 
enabling even more efficient parameter estimation. 

It cannot be overemphasized that the word order correlation bias is just knowledge 
about the problem domain, which can be used to guide the search for the optimum 
model parameters. Translational equivalence can be empirically modeled for any pair 
of languages, but some models and model biases work better for some language pairs 
than for others. The word order correlation bias is most useful when it has high 
predictive power, i.e., when the distribution of alignments or offsets has low entropy. 
The entropy of this distribution is indeed relatively low for the language pair that both 
Brown and his colleagues and Dagan, Church, and Gale were working with--French 
and English have very similar word order. A word order correlation bias, as well as 
the phrase structure biases in Brown et al.'s (1993b) Models 4 and 5, would be less 
beneficial with noisier training bitexts or for language pairs with less similar word 
order. Nevertheless, one should use all available information sources, if one wants to 
build the best possible translation model. Section 5.3 suggests a way to add the word 
order correlation bias to the models presented in this article. 

4.4 Reestimated Bag-to-Bag Translation Models 
At about the same time that I developed the models in this article, Hiemstra (1996) 
independently developed his own bag-to-bag model of translational equivalence. His 
model is also based on a one-to-one assumption, but it differs from my models in that 
it allows empty words in only one of the two bags, the one representing the shorter 
sentence. Thus, Hiemstra's model is similar to the first model in Section 5, but it has 
a little less explanatory power. Hiemstra's approach also differs from mine in his use 
of the Iterative Proportional Fitting Procedure (IPFP) (Deming and Stephan 1940) for 
parameter estimation. 

The IPFP is quite sensitive to initial conditions, so Hiemstra investigated a num- 
ber of initialization options. Choosing the most advantageous, Hiemstra has published 
parts of the translational distributions of certain words, induced using both his method 
and Brown et al.'s (1993b) Model 1 from the same training bitext. Subjective compar- 
ison of these examples suggests that Hiemstra's method is more accurate. Hiemstra 
(1998) has also evaluated the recall and precision of his method and of Model 1 on a 
small hand-constructed set of link tokens in a particular bitext. Model 1 fared worse, 
on average. 

5. Parameter Estimation 

This section describes my methods for estimating the parameters of a symmetric word- 
to-word translation model from a bitext. For most applications, we are interested in 
estimating the probability trans(u,v) of jointly generating the pair of words (u,v). 
Unfortunately, these parameters cannot be directly inferred from a training bitext, 
because we don't know which words in one half of the bitext were generated together 
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with which words in the other half. The observable features of the bitext are only the 
co-occurrence counts cooc(u, v) (see Section 4.1). 

Methods for estimating translation parameters from co-occurrence counts typically 
involve l ink counts links(u, v), which represent hypotheses about the number  of times 
that u and v were generated together, for each u and v in the bitext. A l ink token is 
an ordered pair of word tokens, one from each half of the bitext. A l ink type is an 
ordered pair of word types. The link counts links(u, v) range over link types. We can 
always estimate trans(u, v) by normalizing link counts so that Y]~u,v trans(u, v) = 1: 

trans(u, v) = links(u, v) 
Y~-u,,v, links(u', v') 

(19) 

For estimation purposes, it is convenient to also employ a separate set of non- 
probabilistic parameters score(u, v), which represent the chances that u and v can ever 
be mutual  translations, i.e., that there exists some context where tokens u and v are 
generated from the same concept. The relationship between score(u, v) and trans(u, v) 
can be more or less direct, depending on the model  and its estimation method. Each 
of the models presented below uses a different score formulation. 

All m y  methods  for estimating the translation parameters trans(u,v) share the 
following general outline: 

. 

. 

. 

. 

. 

Initialize the score parameters to a first approximation, based only on the 
co-occurrence counts. 

Approximate the expected link counts links(u, v), as a function of the 
score parameters and the co-occurrence counts. 

Estimate trans(u, v), by normalizing the link counts as in Equation 19. If 
less than .0001 of the trans(u, v) distribution changed from the previous 
iteration, then stop. 

Reestimate the parameters score(u, v), as a function of the link counts 
and the co-occurrence counts. 

Repeat from Step 2. 

Under certain conditions, a parameter estimation process of this sort is an instance of 
the expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977). As 
explained below, meeting these conditions is computationally too expensive for my  
models. 9 Therefore, I employ some approximations, which lack the EM algorithm's 
convergence guarantee. 

The maximum likelihood approach to estimating the unknown parameters is to 
find the set of parameters ~) that maximize the probability of the training bitext (U, V). 

~) = arg rn~x Pr(U, VIO ) (20) 

The probability of the bitext is a sum over the distribution ~4 of possible assignments: 

Pr(U, Vie) = ~ Pr(U,A, Vie). (21) 
AE.,4 

9 For example, the expectation in Step 2 would need to be computed exactly, rather than merely 
approximated. 
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The munber of possible assignments grows exponentially with the size of aligned 
text segments in the bitext. Due to the parameter interdependencies introduced by 
the one-to-one assumption, we are unlikely to find a method for decomposing the 
assignments into parameters that can be estimated independently of each other as in 
Brown et al. [1993b, Equation 26]). Barring such a decomposition method, the MLE 
approach is infeasible. This is why we must make do with approximations to the EM 
algorithm. 

In this situation, Brown et al. (1993b, 293) recommend "evaluating the expectations 
using only a single, probable alignment." The single most probable assignment Ama~ 
is the maximum a posteriori (MAP) assignment: 

Amax = ar~maxPr(U,A, VIO ) (22) 
-- AE~4 

= ar~maxPr(l) • l! I I  trans(ui, vj) (23) 
-- AE,,4 (i,j) cA 

= argmaxl°g  [ Pr(1)'l! I I -  AG,4 (i,j)EAtrans(ui'vJ)] (24) 

= argmax {log[Pr(l) • 1!] + v  AC~4 (i,j) ~ E A  logtrans(ui, vj)} (25) 

To simplify things further, let us assume that Pr(l) • I! is constant, so that 

Amax = argmax ~ logtrans(ui, vj). (26) 
AE~4 (i,j) cA 

If we represent the bitext as a bipartite graph and weight the edges by log trans(u, v), 
then the right-hand side of Equation 26 is an instance of the weighted maximum 
matching problem and Ama~ is its solution. For a bipartite graph G = (V1 U V2, E), 
with v = IV1 U V21 and e = IEI, the lowest currently known upper bound on the 
computational complexity of this problem is O(ve + v 2 log v) (Ahuja, Magnati, and 
Orlin 1993, 500). Although this upper bound is polynomial, it is still too expensive 
for typical bitexts. 1° Subsection 5.1.2 describes a greedy approximation to the MAP 
approximation. 

5.1 Method A: The Competitive Linking Algorithm 
5.1.1 Step 1: Initialization. Almost every translation model estimation algorithm ex- 
ploits the well-known correlation between translation probabilities and co-occurrence 
counts. Many algorithms also normalize the co-occurrence counts cooc(u,v) by the 
marginal frequencies of u and v. However, these quantities account for only the three 
shaded cells in Table 2. The statistical interdependence between two word types can 
be estimated more robustly by considering the whole table. For example, Gale and 
Church (1991, 154) suggest that "~b 2, a X2-1ike statistic, seems to be a particularly 
good choice because it makes good use of the off-diagonal cells" in the contingency 
table. 

10 A t  l ea s t  fo r  m y  c u r r e n t  v e r y  ine f f i c i en t  i m p l e m e n t a t i o n .  
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Table 2 
A co-occurrence contingency table. 

u -~u Total 
v cooc( u,v) 

~v cooc(u,~v) cooc(-~u,-~v) cooc(.,~v) 

Total cooc(-,u,.) II cooc(.,.) 

In informal experiments described elsewhere (Melamed 1995), I found that the 
G 2 statistic suggested by Dunning (1993) slightly outperforms ¢2. Let the cells of the 
contingency table be named as follows: 

Now, 

Ilul ul 
v a b 

~v c d 

B(a[a + b, pl)B(c[c + d, p2) (27) 
G2(u,v) = -2 log  B(al a + b,p)B(c[c + d,p) 

where B(kln, p) = (nk)pk(1--p)n--k are binomial probabilities. The statistic uses maximum 
likelihood estimates for the probability parameters: Pl = ~'a p2 = 74-d'c P -  a+b+c+a'a+c 
G 2 is easy to compute because the binomial coefficients in the numerator and in the 
denominator cancel each other out. All my methods initialize the parameters score(u, v) 
to G2(u,v), except that any pairing with NULL is initialized to an infinitesimal value. 
I have also found it useful to smooth the co-occurrence counts, e.g., using the Simple 
Good-Turing smoothing method (Gale and Sampson 1995), before computing G 2. 

5.1.2 Step 2: Estimation of Link Counts. To further reduce the complexity of esti- 
mating link counts, I employ the competitive linking algorithm, which is a greedy 
approximation to the MAP approximation: 

1. Sort all the score(u, v) from highest to lowest. 

2. For each score(u, v), in order: 

(a) 

(b) 

If u (resp., v) is NULL, consider all tokens of v (resp., u) in the 
bitext linked to NULL. Otherwise, link all co-occurring token 
pairs (u, v) in the bitext. 
The one-to-one assumption implies that linked words cannot be 
linked again. Therefore, remove all linked word tokens from 
their respective halves of the bitext. 

The competitive linking algorithm can be viewed as a heuristic search for the most 
likely assignment in the space of all possible assignments. The heuristic is that the 
most likely assignments contain links that are individually the most likely. The search 
proceeds by a process of elimination. In the first search iteration, all the assignments 
that do not contain the most likely link are discarded. In the second iteration, all 
the assignments that do not contain the second most likely link are discarded, and 
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so on until only one assignment remains, u The algorithm greedily selects the most 
likely links first, and then selects less likely links only if they don't conflict with 
previous selections. The probability of a link being rejected increases with the number 
of links that are selected before it, and thus decreases with the link's score. In this 
problem domain, the competitive linking algorithm usually finds one of the most 
likely assignments, as I will show in Section 6. Under an appropriate hashing scheme, 
the expected running time of the competitive linking algorithm is linear in the size of 
the input bitext. 

The competitive linking algorithm and its one-to-one assumption are potent weap- 
ons against the ever-present sparse data problem. They enable accurate estimation 
of translational distributions even for words that occur only once, as long as the 
surrounding words are more frequent. In most translation models, link scores are 
correlated with co-occurrence frequency. So, links between tokens u and v for which 
score(u, v) is highest are the ones for which there is the most evidence, and thus also the 
ones that are easiest to predict correctly. Winner-take-all link assignment methods, such 
as the competitive linking algorithm, can prevent links based on indirect associations 
(see Section 4.2), thereby leveraging their accuracy on the more confident links to 
raise the accuracy of the less confident links. For example, suppose that ul and u2 
co-occur with vl and v2 in the training data, and the model estimates score(u1, vl) -- 
.05, score (ul, v2) = .02, and score(u2, v2) = .01. According to the one-to-one assumption, 
(Ul, v2) is an indirect association and the correct translation of v2 is u2. To the extent that 
the one-to-one assumption is valid, it reduces the probability of spurious links for the 
rarer words. The more incorrect candidate translations can be eliminated for a given 
rare word, the more likely the correct translation is to be found. So, the probability of 
a correct match for a rare word is proportional to the fraction of words around it that 
can be linked with higher confidence. This fraction is largely determined by two bitext 
properties: the distribution of word frequencies, and the distribution of co-occurrence 
counts. Melamed (to appear) explores these properties in greater depth. 

5.1.3 Step 3: Reestimation of the Model Parameters. Method A reestimates the score 
parameters as the logarithm of the trans parameters. The competitive linking algorithm 
only cares about the relative magnitudes of the various score(u, v). However, Equation 26 
is a sum rather than a product, so I scale the trans parameters logarithmically, to be 
consistent with its probabilistic interpretation: 

scoreA(u, v) = log trans(u, v) (28) 

5.2 Method B: Improved Estimation Using an Explicit Noise Model 
Yarowsky (1993, 271) has shown that "for several definitions of sense and collocation, 
an ambiguous word has only one sense in a given collocation with a probability of 
90-99%." In other words, a single contextual clue can be a highly reliable indicator of 
a word's sense. One of the definitions of "sense" studied by Yarowsky was a word 
token's translation in the other half of a bitext. For example, the English word sentence 
may be considered to have two senses, corresponding to its French translations peine 
(judicial sentence) and phrase (grammatical sentence). If a token of sentence occurs in 
the vicinity of a word like jury or prison, then it is far more likely to be translated 
as peine than as phrase. "In the vicinity of" is one kind of collocation. Co-occurrence 

11 The competi t ive linking algori thm can be generalized to s top searching before the number  of possible 
ass ignments  is reduced to one, at which  point  the link counts can be computed  as probabilistically 
weighted  averages over the remaining assignments.  I use this me thod  to resolve ties. 
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Figure 2 
The ratio links(u, v)/cooc(u, v), for several values of cooc(u, v). 

in bitext space is another  kind of collocation. If each word ' s  translation is treated as 
a sense tag (Resnik and Yarowsky 1997), then "translational" collocations have the 
unique proper ty  that the collocate and the word  sense are one and the same! 

Method B exploits this proper ty  under  the hypothesis  that "one sense per  collo- 
cation" holds for translational collocations. This hypothesis  implies that if u and v 
are possible mutual  translations, and a token u co-occurs with a token v in the bitext, 
then with very  high probabili ty the pair (u, v) was generated from the same concept 
and should be linked. To test this hypothesis,  I ran one iteration of Method A on 
300,000 aligned sentence pairs from the Canadian Hansards  bitext. I then plot ted the 

links(u,v) ratio ~ for several values of cooc(u, v) in Figure 2. The curves show that the ratio 
links(u,v) cooc(u,v) tends to be either very  high or very  low. This bimodal i ty  is not  an artifact 
of the competi t ive linking process, because in the first iteration, linking decisions are 
based only on the initial similarity metric. 

Information about  how often words  co-occur wi thout  being linked can be used to 
links(u,v) bias the estimation of translation model  parameters.  The smaller the ratio cooc(u,v), the 

more  likely it is that u and v are not mutual  translations, and that links posited be tween 
tokens of u and v are noise. The bias can be implemented  via auxiliary parameters  
that model  the curve illustrated in Figure 2. The competi t ive linking algori thm creates 
all the links of a given type independent ly  of each other. 12 So, the distribution of 
the number  links(u, v) of links connecting word  types u and v can be mode led  by  a 
binomial distribution with parameters  cooc(u, v) and p(u, v). p(u, v) is the probabili ty 

12 Except for the case w h e n  mul t ip le  tokens  of the  same  word  type occur near  each other, wh ich  I hereby 
sweep  u n d e r  the  carpet. 
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Table 3 
Variables used to describe Method B. 

links (u, v) 

B(kIn, p) 

.~+ 

T 
K 
N 

= the number of times that u and v are hypothesized to 
co-occur as mutual translations 

= probability of k being generated from a binomial distribution 
with parameters n and p 

= probability of a link given mutual translations 
= probability of a link given not mutual translations 
= probability of a link 
= probability of mutual translations 
= total number of links in the bitext 
= total number of co-occurrences in the bitext 

that  u and  v will be l inked w h e n  they co-occur. There is never  enough  data to robust ly  
est imate each p pa rame te r  separately. Instead,  I shall mode l  all the p 's  wi th  just two 
parameters .  For u and  v that  are mu tua l  translations, p(u, v) will average  to a relatively 
high probability, which  I will call ~+. for u and  v that  are not  mu tua l  translations, 
p(u, v) will average  to a relatively low probability, which  I will call ) , - .  ~+ and  ,k- 

links(u,v) correspond to the two peaks  of the distr ibution cooc(u,v), which  is i l lustrated in Figure 2. 

The two pa ramete r s  can also be in terpreted as the rates of true and  false positives. If 
the translat ion in the bitext is consistent and  the translat ion mode l  is accurate,  then 
~+ will be close to one and  ,~- will be  close to zero. 

To find the mos t  likely values  of the auxil iary pa ramete r s  ,k + and  )~-, I adop t  the 
s tandard  me thod  of m a x i m u m  likelihood estimation,  and  find the values  that  maxi-  
mize  the probabi l i ty  of the link f requency distributions,  under  the usual  independence  
assumpt ions:  

Pr(linkslm°del) = H Pr(links(u, v)Icooc(u, v), ~+, ,k-) (29) 
tlIV 

Table 3 summar izes  the variables  involved  in this auxil iary es t imat ion process. 
The factors on the r ight -hand side of Equat ion 29 can be wri t ten explicitly wi th  

the help of a mixture  coefficient. Let ~- be  the probabi l i ty  that  an arbi t rary  co-occurring 
pair  of w o r d  types  are mu tua l  translations. Let B(kln, p) denote  the probabi l i ty  that  k 
links are observed  out  of n co-occurrences,  where  k has a b inomial  distr ibution wi th  
pa ramete r s  n and  p. Then the probabi l i ty  that  word  types  u and  v will be  l inked 
links(u, v) t imes out  of cooc(u, v) co-occurrences is a mixture  of two binomials:  

Pr(links(u, v)Icooc(u, v), ,k +, )~-) = TB(links(u, v)Icooc(u, v), )~+) 

+ (1 - ~-)B(links(u,v)lcooc(u,v ),A-). (30) 

One more  variable al lows us to express -r in te rms of A + and  ~ - :  Let )~ be the 
probabi l i ty  that  an arbi t rary co-occuring pair  of word  tokens  will be  linked, regardless  
of whe ther  they are mu tua l  translations. Since ~- is constant  over  all word  types,  it 
also represents  the probabi l i ty  that  an arbi t rary co-occurring pair  of w o r d  tokens are 
mutua l  translations. Therefore, 

= ~-~+ + (1 - T))~-. (31) 

), can also be es t imated empirically. Let K be the total n u m b e r  of links in the bitext 
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Figure 3 
Pr(linkslmodel), as given in Equation 29, has only one global maximum in the region of 
interest, where 1 > ),+ > ,~ > ,~- > 0. 

and let N be the total number  of word  token pair co-occurrences: 

K = Z links(u, v), (32) 
u , v  

N = ~ cooc(u, v). (33) 
U,V 

By definition, 
A = K/N. (34) 

Equating the r ight-hand sides of Equations 31 and 34 and rearranging the terms, we 
get: 

K / N -  A- (35) 

Since r is now a function of )~+ and )~-, only the latter two variables represent  degrees 
of f reedom in the model.  

In the preceding equations, either u or v can be NULL. However ,  the number  
of times that a word  co-occurs with NULL is not  an observable feature of bitexts. 
To make sense of co-occurrences with N U L L ,  we can view co-occurrences as potential 
links and cooc(u, v) as the max imum number  of times that tokens of u and v might  
be linked. From this point  of view, cooc(u, NULL) should be set to the unigram fre- 
quency of u, since each token of u represents one potential  link to NULL. Similarly for 
cooc( NULL, V). These co-occurrence counts should be su m m ed  together with all the 
others in Equation 33. 

The probabili ty function expressed by  Equations 29 and 30 m ay  have m an y  local 
maxima. In practice, these local maxima are like pebbles on a mountain,  invisible at 
low resolution. I computed  Equation 29 over  various combinations of A + and A- after 
one iteration of Method A over  300,000 aligned sentence pairs f rom the Canadian 
Hansard  bitext. Figure 3 illustrates that the region of interest in the parameter  space, 
where  1 > A + > )~ > )~- > 0, has only one dominant  global maximum.  This global 
m ax i mum  can be found by  s tandard hill-climbing methods,  as long as the step size is 
large enough to avoid getting stuck on the pebbles. 
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Given estimates for A + and A-, we can compute B(links(u,v)[cooc(u,v), A +) and 
B(links(u, v)[cooc(u, v), A-) for each occurring combination of links and cooc values. 
These are the probabilities that links (u, v) links were generated out of cooc(u, v) possible 
links by a process that generates correct links and by a process that generates incorrect 
links, respectively. The ratio of these probabilities is the likelihood ratio in favor of the 
types u and v being possible mutual translations, for all u and v: 

B(links(u, v)[cooc(u, v), A +) 
scoreB(u, v) = log B(links(u, v)Icooc(u, v), A-)" (36) 

Method B differs from Method A only in its redefinition of the score function in 
Equation 36. The auxiliary parameters A + and A- and the noise model that they 
represent can be employed the same way in translation models that are not based on 
the one-to-one assumption. 

5.3 Method C: Improved Estimation Using Preexisting Word Classes 
In Method B, the estimation of the auxiliary parameters A + and A- depends only on 
the overall distribution of co-occurrence counts and link frequencies. All word pairs 
that co-occur the same number of times and are linked the same number of times are 
assigned the same score. More accurate models can be induced by taking into account 
various features of the linked tokens. For example, frequent words are translated less 
consistently than rare words (Catizone, Russell, and Warwick 1989). To account for 
these differences, we can estimate separate values of A + and A- for different ranges of 
cooc(u, v). Similarly, the auxiliary parameters can be conditioned on the linked parts 
of speech. A kind of word order correlation bias can be effected by conditioning the 
auxiliary parameters on the relative positions of linked word tokens in their respective 
texts. Just as easily, we can model link types that coincide with entries in an on-line 
bilingual dictionary separately from those that do not (cf. Brown et al. 1993). When 
the auxiliary parameters are conditioned on different link classes, their optimization 
is carried out separately for each class: 

B (links (u, v)[cooc(u, v), A +) 
scorec(u, vlZ = class(u, v)) = log B(links(u, v)[cooc(u, v), A z)" (37) 

Section 6.1.1 describes the link classes used in the experiments below. 

6. Evaluation 

6.1 Evaluation at the Token Level 
This section compares translation model estimation methods A, B, and C to each other 
and to Brown et al.'s (1993b) Model 1. To reiterate, Model 1 is based on co-occurrence 
information only; Method A is based on the one-to-one assumption; Method B adds the 
"one sense per collocation" hypothesis to Method A; Method C conditions the auxiliary 
parameters of Method B on various word classes. Whereas Methods A and B and 
Model 1 were fully specified in Section 4.3.1 and Section 5, the latter section described 
a variety of features on which Method C might classify links. For the purposes of 
the experiments described in this article, Method C employed the simple classification 
in Table 4 for both languages in the bitext. All classification was performed by table 
lookup; no context-aware part-of-speech tagger was used. In particular, words that 
were ambiguous between open classes and closed classes were always deemed to be in 
the closed class. The only language-specific knowledge involved in this classification 
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Table 4 
Word classes used by Method C for the experiments described in this article. 
Link classes were constructed by taking the cross-product of the word classes. 

Class Code Description 

EOS 
EOP 
SCM 
SYM 
NU 
C 
F 

End-Of-Sentence punctuation 
End-Of-Phrase punctuation, such as commas and colons 
Subordinate Clause Markers, such as " and ( 
Symbols, such as ~ and * 
the NULL word, in a class by itself 
Content words: nouns, adjectives, adverbs, non-auxiliary verbs 
all other words, i.e., function words 

method  is the list of function words  in class F. Certainly, more  sophisticated word  
classification methods  could produce  better models,  but  even the simple classification 
in Table 4 should suffice to demonstra te  the method ' s  potential. 

6.1.1 Exper iment  1. Until now, translation models  have been evaluated either sub- 
jectively (e.g. White and O'Connell  1993) or using relative metrics, such as perplex- 
ity with respect to other models  (Brown et al. 1993b). Objective and more  accurate 
tests can be carried out  using a "gold standard."  I hired bilingual annotators to link 
roughly 16,000 corresponding words  between on-line versions of the Bible in French 
and English. This bitext was selected to facilitate widespread use and standardiza- 
tion (see Melamed [1998c] for details). The entire Bible bitext comprised 29,614 verse 
pairs, of which 250 verse pairs were hand-l inked using a specially developed anno- 
tation tool. The annotat ion style guide (Melamed 1998b) was based on the intuitions 
of the annotators,  so it was not  biased towards any particular translation model.  The 
annotat ion was replicated five times by  seven different annotators.  

Each of the four methods  was used to estimate a word- to-word  translation model  
from the 29,614 verse pairs in the Bible bitext. All methods  were deemed  to have 
converged when  less than .0001 of the translational probabili ty distribution changed 
from one iteration to the next. The links assigned by  each of methods  A, B, and C in the 
last iteration were normal ized into joint probabili ty distributions using Equation 19. I 
shall refer to these joint distributions as Model  A, Model  B, and Model  C, respectively. 
Each of the joint probabili ty distributions was further  normal ized into two conditional 
probabili ty distributions, one in each direction. Since Model  1 is inherently directional, 
its conditional probabili ty distributions were est imated separately in each direction, 
instead of being der ived from a joint distribution. 

The four models '  predictions were compared to the gold s tandard annotations. 
Each model  guessed one translation (either stochastically or deterministically, depend-  
ing on the task) for each word  on one side of the gold s tandard bitext. Therefore, 
precision = recall here, and I shall refer to the results simply as "percent  correct." The 
accuracy of each model  was averaged over  the two directions of translation: English to 
French and French to English. The five-fold replication of annotations in the test data 
enabled computat ion of the statistical significance of the differences in model  accuracy. 
The statistical significance of all results in this section was measured  at the c~ -- .05 
level, using the Wilcoxon signed ranks test. Al though the models  were evaluated on 
part  of the same bitext on which they were trained, the evaluations were with respect 
to the translational equivalence relation h idden  in this bitext, not  with respect to any 
of the bitext's visible features. Such testing on training data is s tandard practice for 
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unsupervised learning algorithms, where the objective is to compare several methods. 
Of course, performance would degrade on previously unseen data. 

In addition to the different translation models, there were two other independent 
variables in the experiment: method of translation and whether function words were 
included. Some applications, such as query translation for CLIR, don't care about func- 
tion words. To get a sense of the relative effectiveness of the different translation model 
estimation methods when function words are taken out of the equation, I removed 
from the gold standard all link tokens where one or both of the linked words were 
closed-class words. Then, I removed all closed-class words (including nonalphabetic 
symbols) from the models and renormalized the conditional probabilities. 

The method of translation was either single-best or whole distribution. Single- 
best translation is the kind that somebody might use to get the gist of a foreign- 
language document. The input to the task was one side of the gold standard bitext. 
The output was the model's single best guess about the translation of each word in 
the input, together with the input word. In other words, each model produced link 
tokens consisting of input words and their translations. For some applications, it is 
insufficient to guess only the single most likely translation of each word in the input. 
The model is expected to output the whole distribution of possible translations for 
each input word. This distribution is then combined with other distributions that are 
relevant to the application. For example, for cross-language information retrieval, the 
translational distribution can be combined with the distribution of term frequencies. 
For statistical machine translation, the translational distribution can be decoded with 
a source language model (Brown et al. 1988; A1-Onaizan et al. 1999). To predict how 
the different models might perform in such applications, the whole distribution task 
was to generate a whole set of links from each input word, weighted according to 
the probability assigned by the model to each of the input word's translations. Each 
model was tested on this task with and without function words. 

The mean results are plotted in Figures 4 and 5 with 95% confidence intervals. 
All four graphs in these figures are on the same scale to facilitate comparison. On 
both tasks involving the entire vocabulary, each of the biases presented in this article 
improves the efficiency of modeling the available training data. When closed-class 
words were ignored, Model 1 performed better than Method A, because open-class 
words are more likely to violate the one-to-one assumption. However, the explicit noise 
model in Methods B and C boosted their scores significantly higher than Model 1 and 
Method A. Method B was better than Method C at choosing the single best open-class 
links, and the situation was reversed for the whole distribution of open-class links. 
However, the differences in performance between these two methods were tiny on 
the open-class tasks, because they left only two classes for Method C to distinguish: 
content words and NULLS. Most of the scores on the whole distribution task were lower 
than their counterparts on the single-best translation task, because it is more difficult 
for any statistical method to correctly model the less common translations. The "best" 
translations are usually the most common. 

6.1.2 Experiment 2. To study how the benefits of the various biases vary with training 
corpus size, I evaluated Models A, B, C, and 1 on the whole distribution translation 
task, after training them on three different-size subsets of the Bible bitext. The first 
subset consisted of only the 250 verse pairs in the gold standard. The second subset 
included these 250 plus another random sample of 2,250 for a total of 2,500, an order 
of magnitude larger than the first subset. The third subset contained all 29,614 verse 
pairs in the Bible bitext, roughly an order of magnitude larger than the second subset. 
All models were compared to the five gold standard annotations, and the scores were 
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Figure 4 
Comparison of model performance on single-best translation task. (a) All links; (b) open-class 
links only. 
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Figure 5 
Comparison of model performance on whole distribution task. (a) All links; (b) open-class 
links only. 
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averaged over the two directions of translation, as before. Again, because the total 
probability assigned to all translations for each source word was one, precision = 
recall = percent correct on this task. The mean scores over the five gold standard 
annotations are graphed in Figure 6, where the right edge of the figure corresponds to 
the means of Figure 5(a). The figure supports the hypothesis in Melamed (to appear, 
Chapter 7) that the biases presented in this article are even more valuable when the 
training data are more sparse. The one-to-one assumption is useful, even though it 
forces us to use a greedy approximation to maximum likelihood. In relative terms, 
the advantage of the one-to-one assumption is much more pronounced on smaller 
training sets. For example, Model A is 102% more accurate than Model I when trained 
on only 250 verse pairs. The explicit noise model buys a considerable gain in accuracy 
across all sizes of training data, as do the link classes of Model C. In concert, when 
trained and tested only on the gold standard test set, the three biases outperformed 
Model 1 by up to 125%. This difference is even more significant given the absolute 
performance ceiling of 82% established by the interannotator agreement rates on the 
gold standard. 

6.2 Evaluation at the Type Level 
An important application of statistical translation models is to help lexicographers 
compile bilingual dictionaries. Dictionaries are written to answer the question, "What 
are the possible translations of X?" This is a question about link types, rather than 
about link tokens. 

Evaluation by link type is a thorny issue. Human judges often disagree about the 
degree to which context should play a role in judgments of translational equivalence. 
For example, the Harper-Collins French Dictionary (Cousin et al. 1990) gives the following 
French translations for English appoint: nommer, engager, fixer, d~signer. Likewise, most 
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lay judges would not consider instituer a correct French translation of appoint. In actual 
translations, however, when the object of the verb is commission, task force, panel, etc., 
English appoint is usually translated into French as instituer. To account for this kind of 
context-dependent translational equivalence, link types must be evaluated with respect 
to the bitext whence they were induced. 

I performed a post hoc evaluation of the link types produced by an earlier version 
of Method B (Melamed 1996b). The bitext used for this evaluation was the same aligned 
Hansards bitext used by Gale and Church (1991), except that I used only 300,000 
aligned segment pairs to save time. The bitext was automatically pretokenized to 
delimit punctuation, English possessive pronouns, and French elisions. Morphological 
variants in both halves of the bitext were stemmed to a canonical form. 

The link types assigned by the converged model were sorted by the scores in 
Equation 36. Figure 7 shows the distribution of these scores on a log scale. The log 
scale helps to illustrate the plateaus in the curve. The longest plateau represents the 
set of word pairs that were linked once out of one co-occurrence (1/1) in the bitext. 
All these word pairs were equally likely to be correct. The second-longest plateau 
resulted from word pairs that were linked twice out of two co-occurrences (2/2) and 
the third longest plateau is from word pairs that were linked three times out of three 
co-occurrences (3/3). As usual, the entries with higher scores were more likely to be 
correct. By discarding entries with lower scores, coverage could be traded for accuracy. 
This trade-off was measured at three points, representing cutoffs at the end of each of 
the three longest plateaus. 

The traditional method of measuring coverage requires knowledge of the correct 
link types, which is impossible to determine without a gold standard. An approximate 
coverage measure can be based on the number of different words in the corpus. For 
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Table 5 
Lexicon coverage at three different minimum score thresholds. The bitext 
contained 41,028 different English words and 36,314 different French 
words, for a total of 77,342. 

Total  English French 
Cutoff Minimum Lexicon Words Words 
Plateau Score Entries Represented % Represented % 

3/3 28 32,274 14,299 35 13,409 37 
2/2 18 43,075 18,533 45 1Z133 47 
1/1 9 88,633 36,371 89 33,017 91 

lexicons extracted from corpora, perfect coverage implies at least one entry containing 
each word in the corpus. One-sided variants, which consider only source words, have 
also been used (Gale and Church 1991). Table 5 shows both the marginal (one-sided) 
and the combined coverage at each of the three cutoff points. It also shows the absolute 
number of (non-NULL) entries in each of the three lexicons. Of course, the size of 
automatically induced lexicons depends on the size of the training bitext. Table 5 
shows that, given a sufficiently large bitext, the method can automatically construct 
translation lexicons with as many entries as published bilingual dictionaries. 

The next task was to measure accuracy. It would have taken too long to evaluate 
every lexicon entry manually. Instead, I took five random samples (with replacement) 
of 100 entries each from each of the three lexicons. Each of the samples was first com- 
pared to a translation lexicon extracted from a machine-readable bilingual dictionary 
(Cousin et al. 1991). All the entries in the sample that appeared in the dictionary were 
assumed to be correct. I checked the remaining entries in all the samples by hand. To 
account for context-dependent translational equivalence, I evaluated the accuracy of 
the translation lexicons in the context of the bitext whence they were extracted, using 
a simple bilingual concordancer. A lexicon entry (u,v) was considered correct if u and 
v ever appeared as direct translations of each other in an aligned segment pair. That 
is, a link type was considered correct if any of its tokens were correct. 

Direct translations come in different flavors. Most entries that I checked by hand 
were of the plain vanilla variety that you might find in a bilingual dictionary (entry 
type V). However, a significant munber of words translated into a different part of 
speech (entry type P). For instance, in the entry (protection, prot6g6), the English word 
is a noun but the French word is an adjective. This entry appeared because to have 
protection is often translated as ~tre prot~g~ ('to be protected') in the bitext. The entry 
will never occur in a bilingual dictionary, but users of translation lexicons, be they 
human or machine, will want to know that translations often happen this way. 

The evaluation of translation models at the word type level is complicated by the 
possibility of phrasal translations, such as imm~diatement ~-~ right away. All the methods 
being evaluated here produce models of translational equivalence between individual 
words only. How can we decide whether a single-word translation "matches" a phrasal 
translation? The answer lies in the observation that corpus-based lexicography usually 
involves a lexicographer. Bilingual lexicographers can work with bilingual concordanc- 
ing software that can point them to instances of any link type induced from a bitext 
and display these instances sorted by their contexts (e.g. Simard, Foster, and Perrault 
1993). Given an incomplete link type, the lexicographer can usually reconstruct the 
complete link type from the contexts in the concordance. For example, if the model 
proposes an equivalence between immddiatement and right, a bilingual concordance 
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Table 6 
Distribution of different types of correct lexicon entries at varying levels of 
coverage (mean + standard deviation). 

Cutoff Coverage % Type V % Type P % Type I Total % Accuracy 

3/3 36% 89 4- 2.2 3.4 :E 0.5 7.6 + 3.2 99,2 4- 0.8 
2/2 46% 81 4- 3.0 8.0 ::E 2.1 9.8 + 1.8 99.0 4- 1.4 
1/1 90% 82 + 2.5 4.4 + 0.5 6.0 + 1.9 92.8 + 1.1 

can show the lexicographer  that  the mode l  was  really t rying to capture  the equiva-  
lence be tween  imm#diatement and right away or be tween  imm#diatement and  right now. 
I counted incomplete  entries in a third category (entry type  I). Whether  links in this 
category should  be  considered correct depends  on the application.  

Table 6 shows the distr ibution of correct lexicon entries a m o n g  the types  V, P and  I. 
Figure 8 g raphs  the accuracy of the m e t h o d  against  coverage,  wi th  95% confidence 
intervals.  The u p p e r  curve  represents  accuracy w h e n  incomple te  links are considered 
correct, and  the lower  w h e n  they are considered incorrect. On  the fo rmer  metric,  the 
m e t h o d  can generate  t ranslat ion lexicons wi th  accuracy and  coverage  bo th  exceeding 
90%, as well  as dictionary-size t ranslat ion lexicons that  are over  99% correct. 

7. Conclus ion  

There are m a n y  ways  to mode l  translat ional  equivalence and  m a n y  ways  to est imate 
translat ion models .  "The mathemat ics  of statistical machine  translat ion" p roposed  b y  
Brown et al. (1993b) are just one kind of mathemat ics  for one k ind  of statistical trans- 
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Figure 8 
Translation lexicon accuracy with 95% confidence intervals at varying levels of coverage. 
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lation. In this article, I have proposed  and evaluated new kinds of translation model  
biases, alternative parameter  estimation strategies, and techniques for exploiting pre- 
existing knowledge  that may  be available about  particular languages and language 
pairs. On a variety of evaluation metrics, each infusion of knowledge  about  the prob- 
lem domain  resulted in better translation models.  

Each innovat ion presented here opens the way  for more  research. Model  biases can 
be mixed and matched with each other, with previously published biases like the word  
order  correlation bias, and with other biases yet  to be invented. The competi t ive linking 
algori thm can be generalized in various ways. New  kinds of preexisting knowledge  
can be exploited to improve accuracy for particular language pairs or even just for 
particular bitexts. It is difficult to say where  the greatest advances will come from. Yet, 
one thing is clear from our  current  vantage point: Research on empirical methods  for 
model ing translational equivalence has not  run  out  of steam, as some have claimed, 
but  has only just begun. 
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