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Natural language generation is usually divided into separate text planning and linguistic com- 
ponents. This division, though, assumes that the two components can operate independently, 
which is not always true. The IGEN generator eliminates the need for this assumption; it handles 
interactions between the components without sacri~cing the advantages of modularity. IGEN 
accomplishes this by means of annotations that its linguistic component places on the structures 
it builds; these annotations provide an abstract description of the effects of particular linguistic 
choices, allowing the planner to evaluate these choices without needing any linguistic knowledge. 
This approach allows IGEN to vary the work done by each component independently, even in 
cases where the final output depends on interactions between them. In addition, since IGEN 
explicitly models the effects of linguistic choices, it can gracefully handle situations where the 
available time or linguistic resources are limited. 

1. Introduct ion 

Programs that generate natural language have generally been divided into two largely 
independent components: a text planning component that organizes the information 
to be expressed, and a linguistic component that converts the information into gram- 
matical sentences of some natural language (e.g., Thompson 1977; McKeown 1985; 
McDonald 1983; Meteer 1989; Reithinger 1990; Dale 1989). This division seems natural, 
and has indeed proven useful, because the two components deal with different kinds 
of data and involve different kinds of reasoning. The planning component reasons 
about information and text structures to plan a coherent discourse, while the linguis- 
tic component arranges the lexical elements and syntactic constructions available in 
some language to ensure the resulting text's grammaticality and comprehensibility. 

This division into independent components, though, is only tenable if the decisions 
each component must make can be made independently. If some of the generator's 
work involves both text planning and purely linguistic issues, there will be no way 
to make the necessary decisions without violating the generator's modularity. As we 
shall see, natural language generation does indeed involve such decisions. The need 
to handle interactions between text planning and linguistic concerns thus seems to 
require either abandoning the division into separate components (e.g., Danlos 1987; 
Kantrowitz and Bates 1992), with the resulting increase in complexity, or foregoing 
the ability to handle these interactions at all (as advocated in Reiter [1994]). A third 
option is to identify possible interactions in advance and handle them as special cases, 
but this only allows the generator to handle those interactions that have been antici- 
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pated in advance. Furthermore, handling the interactions often requires violating the 
modularity of the system, because detecting when the special case has occurred still 
requires both planning and linguistic knowledge. 

The IGEN generator solves this problem. IGEN handles interactions between the 
text planning and linguistic components without having to sacrifice any of the gen- 
erator's modularity. The key to IGEN's approach is the use of annotations that the 
linguistic component attaches to each linguistic expression it constructs. These anno- 
tations abstract away from the details of the linguistic expressions, describing only 
those properties of the expressions that are potentially relevant to the planner. The 
planner can then evaluate the choices made by the linguistic component and deter- 
mine how those choices interact with the text plan independently of the linguistic 
component's processes and data structures. As a result, IGEN can make decisions in- 
volving interactions between the components while retaining complete modularity. In 
fact, replacing IGEN's normal linguistic component with one for a different language 
involves no change in the planner despite the fact that the two languages have d~- 
ferent idiomatic expressions for some of the sentences being generated; the planner's 
processing is identical in both languages. Furthermore, since the annotations allow 
IGEN to explicitly model the effects of its decisions, IGEN is able to gracefully handle 
the effects of limitations on processing time or linguistic resources; since IGEN always 
knows how well a given linguistic construction carries out its plan, it can choose the 
best available construction when it can't find an ideal one. 

2. Modularity in Generation 

Research in natural language generation has generally separated the task into distinct 
text planning and linguistic components. The text planning component selects and 
organizes the information to be expressed in some internal representation and then 
sends it to the linguistic component, which converts the information from the internal 
form into grammatical sentences of some natural language. The names given to the 
components vary; they have been called "strategic" and "tactical" components (e.g., 
McKeown 1985; Thompson 1977; Danlos 1987) 1, "planning" and "realization" (e.g., 
McDonald 1983; Hovy 1988a), or simply "what to say" versus "how to say it" (e.g., 
Danlos 1987; Reithinger 1990). The precise division of work between the components 
can also vary, as can the extent to which the text planner is responsible for select- 
ing (as opposed to merely organizing) the information to be expressed. Much (if not 
most) work in generation, though, continues to rely on this modular approach for its 
basic design. For example, DIOGENES (Nirenburg et al. 1988), EPICURE (Dale 1989), 
SPOKESMAN (Meteer 1989), Sibun's work on local organization of text (Sibun 1991), 
and COMET (Fisher and McKeown 1990) all are organized this way. McDonald has 
even argued for extending the model to a large number of components (McDonald 
1988), and several systems have indeed added an additional component between the 
planner and the linguistic component (Meteer 1994; Panaget 1994; Wanner 1994). Re- 
iter describes a pipelined modular approach as a consensus architecture underlying 
most recent work in generation (Reiter 1994). 

As this large body of work makes clear, the modular approach has been very 
useful, simplifying the design of generators and making them more flexible. In fact, in 
at least one case the "tactical" component of a generator was successfully replaced with 
a radically different independently designed one (Rubinoff 1986). A modular design, 

l Danlos uses "syntactic" rather than "tactical"; see the note on page 122 of Danlos (1987). 
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though,  presumes that the work  done by  each module  can be done independently.  
Separating generation into text planning and linguistic components  thus implicitly 
assumes that text planning can be done wi thout  knowledge  of the language being used 
and, conversely, that linguistic choices can be made  wi thout  text planning knowledge.  
Unfortunately, this is not  always true; both structural and lexical choices sometimes 
depend  on interactions between the two parts of the generator. Thus generat ion must  
either compromise the modular i ty  be tween the components  or give up the ability to 
handle  these cases properly} 

2.1 Interactions between the Modules 
The modular  approach to generation assumes that the linguistic component ' s  decisions 
never  mat ter  to the planner  (or whichever  component(s)  organize the information to 
be expressed). This is not  the case, though,  as can be seen from the alternations in 
(1)-(3): 

(1) a. John killed him with a gun. 

b. John shot him dead. 

(2) a. John infected him with a virus. 

b. *John virused him sick. 

(3) a. *John homed  him with an order. 

b. John ordered him home. 

The sentences (la) and (lb) express essentially the same information, so if the 
generator  is a t tempting to express this information, it must  choose be tween them at 
some point. In a modular  generator, though,  there is no point  at which the decision 
can be made. The planner  can't  make this choice, because the availability of the choice 
depends  on the particular linguistic resources of English. This can be seen by  com- 
parison with (2) and (3), in which only one alternative is available. In fact, a different 
alternative is available in each case. Since the planner doesn ' t  know which alterna- 
tive(s) i s /a re  available, it can't  choose between them; the linguistic component  must  
make the choice. 

On the other hand, the decision has to be made  by  the planner, since it can depend  
on a n d / o r  affect the goals the generator  is trying to achieve. The choice between (la) 
and (lb) should depend  (in part) on what  the generator is primari ly trying to talk 
about. (la) is more  appropriate  if the generator  is going to continue talking about  the 
gun, whereas (lb) is more  appropriate  if the main concern is the ramifications of the 
victim's death. Since the planner  is the component  that deals with this information, it 
must  choose be tween the alternatives. 

Also, the choice between (la) and (lb) determines what  information can be easily 
omitted; cutting off the end of the sentence leaves out  ment ion  of the use of a gun in 
(la) and the death of the victim in (lb). Since the planner  knows the consequences of 
omitt ing information, it must  make the choice of which alternative to use and whether  
to abbreviate it. It might  seem that the planner could simply indicate exactly what  

2 Note that these interactions aren't the result of the particular details of how the work is divided 
between the components. As we shall see, there are some decisions that depend on both the 
underlying goals driving the generator and the details of what can be expressed in a particular 
language. Any architecture that deals with these issues in different components will encounter the 
problems described below. 
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information it wants  included in the utterance, but  that would  require the generator  
to always assume a strategy of saying as little as possible. 

Furthermore,  decisions about  what  information to include m ay  interact with other 
decisions. For example, the generator  may  want  to emphasize the victim's death but  
not  care about  the means  of death; it might  then choose (lb) for the emphasis  even 
though (la) would  let it skip ment ion of the gun. This kind of decision can only be 
made  by  the planner. 

The same kinds of interactions arise in the process of lexical choice. It would  
seem that lexical choice has to be handled  by  the planner, since it depends  very  much  
on what  the generator  is t rying to accomplish. For example,  the choice of describing 
someone as either firm, obstinate, or stubborn should depend  on what  else the generator  
wants  to say about  the person,  as should the choice be tween meek and wimpy. The 
generator  might  describe how justice was served by  an execution rather than how the 
prisoner  was murdered by the state. Similarly, the generator  might  deride the comments  
of a dreamer, but  praise the insights of a visionary. These kinds of lexical choices can 
only be made  by  the component  that handles the generator ' s  goals. 

On the other hand,  there are a number  of reasons w h y  lexical choice has to be 
handled  by  the linguistic component .  First of all, lexical choice is ve ry  dependen t  on 
the particular linguistic vocabulary  of the language being generated. Thus French, for 
example, uses two different verbs (connaftre and savoir) to express knowing  a person 
and knowing information, but  English just uses know for both  concepts. Similarly, 
English uses to be to indicate both  location and a state or property,  whereas  French 
uses se trouver for the former  and ~tre for the latter. 

Furthermore,  there is in general  no guarantee  that there will be any lexical i tem to 
express a given concept. For example,  there is no word  in English for the concept  of 
a car with a removable  door. There 's  no inherent  reason w h y  there couldn ' t  be; after 
all, there's a word  for a car with a removable  roof. This is just a part icular  fact about  
English. Similarly, there is a word  giant meaning "large man",  but  no corresponding 
word  meaning "large car". 

In addition, since lexical choice interacts with syntactic decisions, it cannot  be done 
in advance of choosing syntactic structures. For example,  a generator  cannot  decide 
to use probable instead of likely without  knowing if the completed  utterance could be 
the ungrammatical  he is probable to be early. Similarly, the verb drink can' t  be chosen 
wi thout  knowing whether  the clause will have  a direct object; he drinks apple juice and 
he drinks actually have quite different meanings. 3 Note that the decision here doesn ' t  
depend  just on whether  the beverage is going to be explicitly ment ioned;  it depends  
on whether  it's going to be ment ioned in a specific syntactic position in the sentence. 
So here too it is impossible to assign the decision to a single component ;  the decision 
must  be made  by  both  components .  

The need to handle  interactions such as these forces compromises  in the modular-  
ity of generators. In the TEXT system (McKeown 1985), for example,  some decisions 
about  what  information to include are in fact encoded into the tactical component .  
For example,  TEXT's tactical component  omits the attribute value WATER (used in 
TEXT to indicate that some object travels in or under  the water) w h en  it must  be 

3 McDonald has argued that lexical choice should be done in the first step in generation; in cases where 
lexical and syntactic decisions interact, lexical choice will constrain subsequent syntactic decisions 
(McDonald 1991). This approach is certainly possible (although it's not clear how to prevent 
independent lexical choices from imposing incompatible syntactic constraints), but it assumes that the 
resulting syntactic constraints don't matter to the generator. For example, choosing drink may require 
the generator to include a direct object even if it would prefer not to indicate that information; by the 
time the generator discovers this requirement, it is already committed to the choice. 
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expressed as an adjective. This is because the only available adjective is the somewhat  
awkward water-going, and it turns out that in the sentences TEXT happens to generate, 
WATER only appears in an adjective context in cases where it's not important  to say 
it. Thus, this strategic decision (that WATER can be omitted) is encoded permanent ly  
into the tactical component; there is no way  for the strategic component  to control this 
decision. 

In MUMBLE (Meteer et al. 1987), in contrast, the interactions have pushed lin- 
guistic information into the text planner. For example, MUMBLE can take the already 
constructed phrase Fluffy, Floyd's dog, buries bones and modify it with the information 
that this was reported by Helga to produce Helga reported that Fluffy, Floyd's dog, buries 
bones. But in order to do this, it has to mark the information about Helga with the 
new-main-clause feature. So the planner has to know what  clauses are, know that 
the earlier information was turned into a clause, and know that making Helga reports 
a new main clause is a useful thing to do. Many of the linguistic decisions are thus 
actually being made by the planner. 

2.2 Facing the Dilemma 
We are now faced with a dilemma. On the one hand,  the separation of planning and 
linguistic realization into distinct components seems natural and useful. On the other 
hand,  it precludes making decisions involving interactions between text planning and 
linguistic issues. 

One possible response would  be to abandon the separation; the generator could be 
a single component  that handles all of the work. This approach has occasionally been 
taken, as in Kantrowitz and Bates (1992) and Danlos (1987) 4 and, at least implicitly, in 
Paris and Scott (1994) and Delin et al. (1994); however, under  this approach, all of the 
flexibility and simplicity of modular  design is lost. 

The opposite approach is to simply ignore the limitations of a modular  design and 
proceed as if there need be no interactions between the components.  Whatever prob- 
lems result will be handled as best they can, on a case-by-case basis. This approach is 
the one taken (implicitly or explicitly) in the majority of generators. In fact, Reiter has 
even argued in favor of this approach, claiming that the interactions are sufficiently mi- 
nor to be ignored (or at least handled on an ad hoc basis) (Reiter 1994). While this cer- 
tainly has appeal as a design methodology, it seems reckless to assume that problems 
will never appear. Certainly an approach to generation that does handle these interac- 
tions would  be an improvement,  as long as it d idn ' t  require abandoning modularity. 

There have in fact been attempts to develop modified modular  designs that allow 
generators to handle interactions between the components.  These include devices such 
as interleaving the components (McDonald 1983; Appelt 1983), backtracking on failure 
(Appelt 1985; Nogier 1989), allowing the linguistic component  to interrogate the plan- 
ner (Mann 1983; Sondheimer and Nebel 1986), and Hovy 's  notion of restrictive (i.e., 
bottom-up) planning (Hovy 1988a, 1988c). All of these approaches, though, require 
that potential interactions be determined either by the tactical component  or by the 
system designer in advance. The text planning component  still has no way  to detect 
and respond to unanticipated interactions on its own initiative. 5 

4 Danlos still has a separate low-level "syntactic" component, but essentially all of the generator's 
decisions are made by the strategic component. 

5 In fact, adding additional components may make the problem even worse, as decisions may then be 
spread across three or more separate components. It might seem that a component placed between the 
planner and the realizer could handle interactions between the levels, but this would simply recreate 
the original problem within the "middle" component; coping with the interactions would still require 
dealing with the whole range of issues that come up in both planning and realization. 
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The IGEN generator resolves the modularity dilemma by means of a new ap- 
proach that preserves complete modularity but allows the generator to handle inter- 
actions between the components. The key to IGEN's approach is that the linguistic 
component provides the planner with an abstract description of the effects of using 
particular linguistic structures. This abstract description is encoded in annotations that 
the linguistic component attaches to the structures it builds. In contrast with previous 
feedback-based approaches, in which the feedback only occurs when the linguistic 
component needs additional help from the planner, IGEN annotates all of its linguistic 
structures. This allows the planner to detect situations where linguistic choices cause 
problems at the planning level; the linguistic component need not be aware of them. 
Conversely, the planner can build communicative plans without concern for whether 
the linguistic component can actually express the elements of the plan; any such prob- 
lems will be detected by the linguistic component and reflected in the annotations. 
The annotations allow a cycle of negotiation between the planner and the linguistic 
component; each component works entirely within its own level, drawing only on the 
results of the work at the other level. 

3. IGEN: A New Model for Generation 

The IGEN generator overcomes the limitations of the modular approach, without giv- 
ing up its advantages, by the use of annotations that provide feedback from the lin- 
guistic component to the planner. These annotations abstract away from the details 
of the linguistic expressions, allowing the planner to detect interactions between de- 
cisions at the linguistic and planning levels without having to know anything about 
the knowledge or reasoning used by the linguistic component. The planner can then 
respond to these interactions by choosing among the expressions proposed by the lin- 
guistic component, using the annotations to evaluate how particular linguistic choices 
affect the successful achievement of the goal(s) driving the generator. This approach 
allows IGEN's components to interact while preserving the strict separation between 
their knowledge and processing. 

The annotations are predicates that apply to the linguistic expression they are 
attached to, indicating some effect of or property of the expression. Most of them also 
take an explicit argument indicating a semantic expression whose relation to the option 
is indicated by the annotation. The types of annotations used by IGEN are shown in 
Figure 1. They fall into the following general categories: 6 

Meaning-based These relate the meaning of a linguistic option to the informa- 
tion it is supposed to express, both in terms of how explicitly and how 
completely the information is expressed. 

Contextual These indicate dependencies and effects on the presence and status 
of elements in the discourse context, including not only availability for 
anaphoric reference but also effects on how various elements in the dis- 
course context will be perceived. 

Pragmatic These indicate various pragmatic and stylistic features of the op- 
tion. 7 

6 There are also some annotation types used to keep track of IGEN's internal processing; these are not 
shown here. 

7 Note that IGEN currently only uses one annotation of this type: concise-construction, used to mark 
constructions that are particularly concise. 
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Meaning-based: 
makes-explicit 
makes-implicit 
indirectly-suggests 
missing-info 
extra-info 

Contextual: 
activates-in-context 
from-context 
relates-to 

Pragmatic: 
concise-construction 
tone 
marks-as-focus 

Figure 1 
Annotation types. 

The IGEN generator uses these annotations to allow for interactions between its 
various components, shown in Figure 2. IGEN works as follows: The communicative 
planner responds to goals given to the generator by building an appropriate plan, 
which will contain a number of communicative actions, i.e., actions that communi- 
cate information, and places requests for ways to express that information into the 
workspace. The linguistic component then responds by producing a series of anno- 
tated linguistic options for each of the planner's requests. These are also placed in 
the workspace, where the planner can use the annotations to evaluate and rank the 
options and also, when appropriate, to modify the plan based on what the linguistic 
component is able to produce. 

This process doesn't actually produce any output, though, since there is no way to 
determine when it is "finished." The linguistic component can always come up with 
yet another way to express something, and the planner can always do more reasoning 
about the interactions between some expression and the planner's specific and general 
goals. There must therefore be another component, here called the utterer, that is 
responsible for assembling utterances from the options preferred by the planner and 
shipping them off to be spoken or written. The utterer's job is to balance the planner's 
preferences against time pressure, producing output when whatever deficiencies the 
options have are outweighed by the consequences of remaining silent. The various 
components thus work together in parallel, incrementally building, improving, and 
producing utterances. Each component of the generator handles a particular aspect of 
the generation task, involving different kinds of knowledge and different constraints 
on the generator's work. 

IGEN in some ways resembles a blackboard architecture (Nii 1986b, 1986a); like 
a blackboard, its workspace contains several possible utterances that are described at 
different levels of structure and are built up incrementally by various independent 
components. On the other hand, it doesn't have the strict hierarchical structure that 
usually characterizes blackboard systems; each request from the planner may corre- 
spond to several linguistic options, and the linguistic options may handle (parts of) 
more than one request. Also, blackboard systems usually have sequential scheduling of 
actions, whereas IGEN's planner, linguistic component, and utterer all run in parallel. 

Furthermore, the relevant issue here for IGEN is whether there are real interac- 
tions between the modules, which a blackboard-style approach to generation doesn't 
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Goals 

N N Entries / / .  

~/ upt" 
. Workspace 

Evaluations -I 

Utterer 

Evaluated Options 

) 
Assembled Utterances 

Figure 2 
Architecture of the IGEN generator. 

guarantee. Blackboard-based generation can still be structured in a way that makes 
such interactions impossible, either explicitly, as in DIOGENES (Nirenburg et al. 1988), 
which uses several blackboards successively, or implicitly, as in GLINDA, in which 
successive stages of rules depend on the results of previous stages for their triggers. 8 

3.1 The Communicative Planner 
This is a special-purpose planner that accepts goals from the overall system and plans 
out ways to achieve them via communication. These can be "communicative" goals 
such as "transmit this information to the user" (or more precisely "get the user to be- 
lieve this information"), but they can also be social interaction goals such as "establish 
a deferential (or collegial, or superior) attitude toward the user" or cooperative behav- 
ior goals such as "be straightforward" or "transmit as little information as possible" 

8 As can be seen from the diagram on page 24 of Kantrowitz and Bates (1992) and the accompanying 
discussion. 
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or even more  general goals such as "get the user to take his umbrel la"  or "convince 
the user to improve his diet." 

The communicat ive  planner  draws on a set of specialized plans that capture how 
communicat ion acts can achieve various goals. It draws on knowledge of the effects 
of communicat ion to plan out  how to achieve various kinds of goals by  expressing 
various kinds of information. Since it has to evaluate how well particular linguistic 
expressions further those goals, the planner  needs to build an explicit representat ion 
of its plan(s) that indicates how particular actions contribute to their achievement.  The 
planner depends  on the linguistic component  to tell it how to carry out these actions, 
i.e., how to express particular information in language. 

While the planner  is specialized for planning communicat ive actions, it can in 
principle draw on anything in the system's general body  of knowledge and belief that 
might  suppor t  the goals it is given. Thus (as we shall see) in the second example in 
Section 4.3, the planner  decides to ment ion the rain not  because it bears any special 
relationship to anything in the input  goal, but  rather because mentioning it is part  of a 
plan that achieves the goal. Even in cases where  the p lanner ' s  goal is simply to transmit 
some specific information, it can include any additional information that will help that 
transmission to succeed. The planner ' s  role is not just to organize information, or even 
to collect information on some topic and organize it, but  rather to identify a set of 
communicat ive acts that will achieve some goal. 

3.1.1 Building an Initial Plan. The communicat ive planner  starts off by  building an 
initial plan to achieve the goals it is given. The form of that plan is important.  It cannot  
be just a (partially or totally) ordered set of information to go into the text, as is the 
case in ma ny  generators. Since IGEN's planner  needs to evaluate how well linguistic 
options achieve the plan's  goals, the plan must  record what  each piece of information 
in the plan is in tended to accomplish and how it supports  the purpose  of the larger 
text containing it. Sometimes the p lanner ' s  goal may  simply be to convey certain 
information to the user, but  there may  also be more  indirect goals that conveyance 
is in tended to achieve. Thus the plan must  indicate in detail why the information is 
being expressed. An example of the type of plan the planner  must  build is shown 
in Figure 3 (Section 4.1 discusses the use of this plan in more detail). This model  of 
text plans meshes well with the model  of discourse structure developed by  Grosz and 
Sidner (Grosz and Sidner 1985, 1986), in which the purpose  of each discourse segment 
is an important  part  of the structure. 9 

IGEN constructs its plans using a hierarchical planning algori thm (Nilsson 1980). 
The planner  first checks all of its top-level plans to see which have effects that match 
the goal. Each matching plan's precondit ions are checked; if they are currently (be- 
lieved to be) true, the planner  then at tempts to find all instantiations of the plan's 
body. 1° The body  of a plan can be an action or sequence of actions, a goal or sequence 

9 Moore and Paris also note that "a generation system must maintain the kinds of information outlined 
by Grosz and Sidner" (Moore and Paris 1989, 203). Their planner uses plan structures similar to 
IGEN's, except that the plan operators they use are generally instantiations of rhetorical relations 
drawn from Rhetorical Structure Theory (Mann and Thompson 1987). In IGEN, the plans can involve 
any goals or actions that could be achieved via communication. 

Hovy has described another text planner that builds similar plans (Hovy 1988b). This system, 
however, starts with a list of information to be expressed and merely arranges it into a coherent 
pattern; it is thus not a planner in the sense used here (as Hovy makes clear). 

10 Since text planning was not the primary focus of this work, IGEN is designed to simply assume that 
any false preconditions are unattainable. IGEN's planner divides the requirements of a plan into two 
parts: the preconditions, which are not planned for, and those in the plan body, which are. This has no 
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. 

2. 

. 

4. 

N. 

Overall Goal: Know(Hearer,[weather information over next few days]) 
Achieve (1) by achieving: 

Know(Hearer,[first day's information]) 
Know(Hearer,[second day's information]) 

Know(Hearer,[last day's information]) 

Support (2) by performing: Utter([first day's information]) 
Support (2) by performing: Utter([second day's information]) 

Support (2) by performing: Utter([last day's information]) 

Figure 3 
A sample initial plan. 

of goals, a subplan, or a goal decomposition. 11 To instantiate the body, the planner 
accordingly collects the action(s), recursively plans for the goal(s), instantiates the 
subplan, or carries out the goal decomposition. The net result of this process is a list 
of possible complete plans that achieve the original goal. 

3.1.2 Responding to Linguistic Options. Once the communicative planner has built 
up an initial plan of what it wants to say, it puts requests for the individual bits of 
information contained in the plan into the workspace for the linguistic component to 
respond to. The planner, however, cannot assume that its requests will be followed 
precisely; the linguistic component may not be able to find a way of completely sat- 
isfying them. The planner must therefore examine and evaluate the responses that 
the linguistic component puts into the workspace (as described below in Section 3.2). 
These responses consist of linguistic structures together with the annotations that pro- 
vide descriptions of how closely the option carries out the request(s) it responds to, as 
well as any other information or effects arising from the use of the option. Drawing 
on these annotations, the planner evaluates how well the various options fit into the 
plan and assigns them appropriate ratings along a scale from VERY-HIGH to VERY-L0W. 

The evaluation algorithm is divided into two phases (as shown in Figure 4), which 
work roughly as follows: The first phase looks at how well the option matches the 
request, checking first to see whether the option misses any requested information; 
if there is no missing information, the rating is based on annotations indicating the 
relationship between the option's meaning and the request. The second phase then 
adjusts the option's rating based on how any missing or added information interacts 
with the plan structure. This ability to adjust preferences among linguistic options 
based on planning issues allows IGEN to overcome the usual limitations of a modular 
generator design. Without the annotations (or some similar feedback mechanism), 
the planner would have to supply the linguistic component with any information 
that might be relevant to choosing among the options. This could potentially include 

practical effects, since the preconditions, by and large, are types of goals that IGEN doesn't have any 
plans for; any attempt to plan for them would immediately fail. 

11 A goal decomposition is a way to decompose a goal into subgoals that can be planned for 
independently. For example, the utter-sequence plan works by decomposing the information to be 
uttered according to some relevant ordering. 
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EVALUATE(Option, Request) 
Phase 1: 

1. Let Covered-Pieces = 
UNION(Request, arguments of any COVERS-OTHER-ENTRY annotations). 

2. If Option has a MISSING-INFO annotation whose argument is a member of 
Covered-Pieces, or has more than one MISSING-INFO annotation, evaluation is 
: VERY-LOW. 

3. Else if Option has any MISSING-INFO annotations, evaluation is :LOW. 

4. Else if Option has any INDIRECTLY-SUGGESTS annotations, evaluation is 
: MEDIUM. 

5. Else if Option has any MA~S-IMPLICIT annotations, evaluation is : HIGH. 

6. Else evaluation is :VERY-HIGH (because Option must have a MAKES-EXPLICIT 
annotation). 

Phase 2: 

1. Let Adjustment = 0. 

2. For each MISSING-INFO annotation attached to Option: Subtract 1/2 from 
Adjustment if its argument is an item in the plan (1 if it's a critical item). 

3. For eachACTIVATES-IN-CONTEXT or EXTRA-INFO annotation attached to 
Option: 

• If its argument is a critical item in the plan, add I to Adjustment. 
• Else if its argument supports or conflicts with a critical item in the plan 

or strengthens or weakens a goal or precondition of the plan or the head 
of the request, add or subtract 1 from Adjustment accordingly. 

• Else if its argument is a sequence, Request is a member of another 
sequence that is a critical item in the plan, and the two sequences are 
along the same scale but are disjoint or only overlap slightly, subtract 1 
from Adjustment. For example, the sequences [1, 2, 3, 4] and [4, 5, 6, 7] 
would trigger this adjustment, but the sequences [1, 2, 3, 4] and [2, 3, 4, 5] 
wouldn't. 

• Else if its argument is an element in the plan, add 1/2 to Adjustment. 

4. Adjust Option's  Phase I evaluation up or down Adjustment levels (ignoring 
1/2s), e.g. an Adjustment of -2 or - 21/2 would change : HIGH to : LOW, and add 
an ADJUSTED-UP or ADJUSTED-DOWN annotation to Option as appropriate. 

Note:  a "critical" i tem in a p lan  is one  that  p lays  a central  role in the s t ruc ture  of  the 
plan,  e.g. the basis  of a goal  d e c o m p o s i t i o n  or  an  action, goal  or  p lan  sequence.  
Figure 4 
The linguistic option evaluation algorithm. 

a n y t h i n g  in the plan,  so the l inguistic c o m p o n e n t  w o u l d  have  to u n d e r s t a n d  and  
reason  abou t  eve ry  aspect  of  the plan,  defea t ing  the w h o l e  p u r p o s e  of  a m o d u l a r  
architecture.  

In add i t ion  to eva lua t ing  opt ions ,  the p lanner  looks for oppor tun i t i e s  to revise the 
p lan  based  on  the w o r k  of  the l inguist ic c o m p o n e n t .  For  example ,  the same  linguistic 
s t ructure  m a y  a p p e a r  as an  op t ion  for  several  different  par t s  of  the plan,  or  an  op t ion  
for one  pa r t  of  the p lan  m a y  also express  i n fo rma t ion  con ta ined  in (or re la ted to) 
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another part of the plan. The planner can reorganize the plan to take advantage of 
these kinds of situations. 12 Thus the communicative plan can be modified based on 
linguistic information, again without violating the strict modularity of the generator. 

3.2 The Linguistic Component 
The linguistic component is the part of IGEN that produces the actual bits of lan- 
guage that make up the utterance. It acts like a "consultant" to the communicative 
planner, providing it with linguistic expressions that attempt to capture part or all of 
the information the planner wants to express. 13 The linguistic component monitors the 
workspace, looking for requests from the planner, to which it responds by suggesting 
linguistic expressions that capture some or all of the information in the request. These 
expressions are placed in the workspace as options for the planner to evaluate; the 
linguistic component continues suggesting options for a request as long as that request 
remains in the workspace. 14 

The linguistic options are pieces of surface structure; they can be at any level of 
grammatical structure and need only be partially specified. Thus an option could be a 
full sentence, phrase, or word, or a particular clause structure (e.g., a topicalization or 
an/t-cleft) with no further detail filled in, or a noun phrase with a determiner but with 
the head noun left unspecified. The options are represented as feature sets indicating 
the various syntactic and lexical properties of the option. 15 For example, the following 
feature set represents the partial phrase "It will be ADJP" in which the predicate 
adjective has not yet been specified: 

CAT ~ S 

SUBJ . . . .  #<w : IT> - • - 

LEX = #<w:BE> 
TENSE = FUTURE 

FRED ~ ADJP 

ORDER z (SUBJ HEAD FRED) 

The FRED role in this phrase has not been filled yet, so its value is ADJF, indicating 
that it must be filled by an adjective phrase. 

The linguistic component is also responsible for annotating the options it puts into 
the workspace. The annotations are derived primarily from three sources: a comparison 
of the structure and position of the option's meaning and the request in IGEN's seman- 
tic network, the induced perspective shift of the option's meaning, and special anno- 
tations associated directly with the option. 16 The annotation algorithm works roughly 

12 Another possibility would be for the planner to revise the plan when it detects problems with the 
options. For example, in a tutoring situation, if the linguistic component only returned options that 
involve concepts the student doesn't  yet understand or know about, the planner might decide to revise 
the plan (perhaps to simplify what  it's trying to say). IGEN doesn't  implement this kind of plan 
revision, although the annotations provide the planner with the information necessary to do so. 

13 IGEN's design allows for multiple linguistic components, each providing a different kind of linguistic 
knowledge, although only one was actually used; see Rubinoff (1992) for details. 

14 As currently implemented, the linguistic component finds options by scanning through IGEN's 
semantic network, looking for items that are part of the meaning of some expression (Rubinoff 1992). 
The particular method used to produce the options, though, is incidental to the the overall functioning 
of the generator; it has no effect on the annotation or evaluation of the options, as the annotations 
depend only on the relationship between the option's meaning and the request. 

15 There is also a MAP feature used to connect unfilled syntactic arguments with the corresponding 
semantic objects. 

16 The induced perspective shift of the option's meaning is computed using a model of perspective built 
into IGEN's knowledge representation formalism; see Rubinoff (1992) for details. 
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as  fo l lows :  F i r s t  the  l i ngu i s t i c  c o m p o n e n t  a d d s  an  a n n o t a t i o n  tha t  i nd i ca t e s  the  k i n d  of  
c o n n e c t i o n  (if any)  b e t w e e n  the  o p t i o n ' s  m e a n i n g  a n d  the  r eques t ;  th is  p r o d u c e s  e i the r  
a MAKES-EXPLICIT, MAKES-IMPLICIT, INDIRECTLY-SUGGESTS, or MISSING-INFO annota- 
tion. Next it adds EXTRA-INFO and MISSING-INFO annotations to indicate the differ- 
ences between (the meaning of) the option and the request, and COVERS-OTHER-ENTRY 
annotations for any other requests that are included in the option's meaning. Finally, it 
adds ACTIVATES-IN-CONTEXT annotations to indicate any associated perspective shifts. 

For an example, consider the situation described in Section 2.1 where the generator 
is trying to express the information that John shot and killed someone. 17 Among the 
annotated options produced to express #<SHOOT-AND-KILL (JOHN, BILL)> are: 

• #<w:KILL>: 
(MAKES-EXPLICIT #<KILL (AGENTi, AGENT2) >) 
(MAKES-IMPLICIT #<SHOOT-AND-KILL(AGENTi, AGENT2) >) 
(MISSING-INFO #<INSTRUMENT(SHOOT-AND-KILL, GUN) >) 

• #<w: SHOOT>: 
(MAKES-EXPLICIT #< SHOOT (AGENT1, AGENT2) >) 
(MAKES-IMPLICIT #<SHOOT-AND-KILL (AGENTI, AGENTg.) >) 
(MISSING-INFO #<RESULT (SHOOT-AND-KILL, DEATH) >) 

In  each  of  these  cases,  t he re  is a MAKES-EXPLICIT a n n o t a t i o n  for  the  m e a n i n g  of  the  
w o r d ,  a MAKES-IMPLICIT a n n o t a t i o n  for  the  r e q u e s t e d  i n f o r m a t i o n ,  a n d  a MISSINGINF0 
a n n o t a t i o n  for  the  p r o p e r t y  of  the  r e q u e s t  t ha t  is no t  c o v e r e d  b y  the  op t ion .  (Of course ,  
MAKES-EXPLICIT a n n o t a t i o n s  on  the  o p t i o n s  tha t  p r o d u c e  with a gun a n d  dead i nd i ca t e  
h o w  the  m i s s i n g  i n f o r m a t i o n  can  be  a d d e d  to the  u t t e rance . )  

The  ful l  a n n o t a t i o n  a l g o r i t h m  is as  fo l lows:  18 

A N N O T A T E ( R e q u e s t ,  O p t i o n )  

i, 

2. 

3. 

4. 

5. 

Construct a MAKES-EXPLICIT annotation for each node or link in Opt ion ' s  
meaning and collect them in Annotat ions.  

If Opt ion ' s  meaning contains Request  and nothing else, return Annotat ions.  

If Request  is an instance of an element in Opt ion ' s  meaning and they have the 
same label, add  a MAKES-EXPLICIT annotation for Request  to Annotat ions.  

Else if Request  is an instance, subconcept, or subrange of an element in Opt ion ' s  
meaning or a posit ion within (or identical to) an element in Opt ion ' s  meaning, 
then add a MAKES-IMPLICIT annotation for Request,  MISSING-INFO annotations 
for any links connected to Request that don't match links connected to the 
element in Option's meaning, and EXTRA-INFO annotations for any links 
connected to the element in Option's meaning that don't match links connected 
to Request. 

Else if an element in Option's meaning is an instance or subconcept of Request, 
add a MAKES-IMPLICIT annotation for Request and MISSING-INFO annotations as 
described in step (4) to Annotations. 

17 While these annotations provide the necessary information for the planner to choose among the 
options as discussed in Section 2.1, IGEN's plan revision capabilities doesn't currently handle this case. 
As a result, IGEN currently produces either "John shot him dead" or "John killed him with a gun" for 
this example. 

18 This description leaves out a few details; for example, in certain cases MISSING-INF0 annotations are 
only generated for links considered "prominent" in the current perspective; see Rubinoff (1992) for 
details. 

119 



Computational Linguistics Volume 26, Number 2 

6. 

7. 

8, 

9. 

10. 

11. 

12. 

Else if an element in Option's meaning is a "sibling" of Request (i.e., they are 
instances or subconcepts of the same element) or an "uncle" of Request (i.e., the 
sibling of an element of which Request is an instance or subconcept), add a 
MAKES-IMPLICIT annotation for Request and MISSING-INFO and EXTRA-INFO 
annotations as described in step (4) to Annotations. 

Else if there is any other link between Request and an element in Option's 
meaning, add an INDIRECTLY-SUGGESTS annotation for Request to Annotations. 

Else add a MISSING-INF0 annotation for Request to Annotations. 

If Option's meaning contains a node or link that is another part of the planner's 
request, then add a COVERS-0THER-ENTRY annotation for the workspace entry 
containing the request to Annotations, and repeat steps (3) through (8) for that 
request. 

Add ACTIVATES-IN-CONTEXT annotations for every element that would be shifted 
into perspective by an element in Option's meaning to Annotations. 

Add any special annotations associated with Option to Annotations. 

Return Annotations. 

3.3 The Utterer 
The utterer  is responsible for the final assembly and ou tpu t  of the utterance. Its main 
concern is balancing the desire for the most  appropriate  possible utterance against 
t ime pressure. Since the planner  and the linguistic component  build up  and refine the 
ut terance incrementally, they can continue working indefinitely; there 's  never  a point  
where  they can declare the utterance "finished" and quit working.  On the other hand,  
IGEN can't  go too long wi thout  ut tering something or it will lose its turn, because 
the user will either utter  (i.e., type) something else or get tired of wait ing and leave 
(or quit the program).  So the utterer  mus t  strike a balance be tween the advantage 
of improvements  to the ut terance that may  yet  be found  and the disadvantage of 
cont inued delay. 

The actual work  of the utterer  is fairly straightforward.  It constantly monitors  the 
workspace,  checking the available options against a time-sensitive acceptability level. 
Whenever  the best available ut terance meets or exceeds the m in im u m  acceptable eval- 
uation, the utterer  proceeds to ou tpu t  the utterance. The criterion of acceptability is 
de termined via a set of delay thresholds that control how long to wait  before low- 
ering the min imum acceptable rating. For example,  the default  threshold settings are 
[0,1,2,12,16], meaning: if the time since the last ut terance is more  than 0, accept an 
option rated VERY-HIGH or better; if the time since the last ut terance is more than 1, 
accept an option rated HIGH or better; and so on through all the ratings. 19 If the time 
since the last ut terance is more  than 16, then any option will be accepted; this essen- 
tially means  that the generator  would  rather say something completely s tupid than 
remain silent. 

If any of the candidate  ut terances '  evaluations meets or exceeds the current  mini- 
m u m  acceptable rating, the utterer  chooses the best candidate  ut terance and outputs  
it, removing the workspace entries it derives from. If there are two or more  candidate 
utterances with the highest rating, the utterer  breaks the tie by  compar ing the ratings 

19 IGEN measures time in terms of cycles through its process scheduler, an arbitrary but workable 
approach that allows for consistent timing behavior. 
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of the individual  options they are composed of. If there is still a tie, the utterer  chooses, 
in order of preference, the candidate utterance that: 

. 

2. 

. 

, 

5. 

violates fewer constraints. 2° 
was the only one whose rating was adjusted up  by the planner, since 
this means there was something specific about  the option that fit well 
into the plan. 
is more concise, indicated by  the presence of a CONCISE-CONSTRUCTION 
annotation. 21 
covers more  entries in the workspace. 
covers an earlier entry in the workspace. 

If none of these criteria distinguish the candidate utterances, the utterer simply picks 
one at random. 

4. Examples 

The workings of the various components  and representational machinery  described 
above can be seen more  clearly by  looking at a few examples of IGEN at work. These 
examples demonstra te  how IGEN can handle  decisions that involve various kinds of 
interactions between linguistic and planning issues, despite the strict separation of the 
planning and linguistic components  of the generator. In addition, the examples show 
how IGEN is sensitive to time pressure, improving its ou tput  when  given more time 
to work and degrading gracefully when  forced to work  faster. 

4.1 Supporting the Plan Structure 
In this example, the generator  is given the goal #<KNOW(HEARER,WEATHER-INFD)>, 
where  #<WEATHER-INF0> is an unordered  collection of facts about  the weather  over 
a three-day span starting on the current  day. The final output  in response to this goal 
is: 

(4) It is warm on today. It will be warm on Monday. It will be cool on 
Tuesday. 

Since the input  goal simply involves transmitting a fixed set of information to the 
hearer, the construction of this response is fairly straightforward. Nevertheless,  even 
in this simple example there are a few places where  purely  linguistic preferences are 
over r idden  by  the planner  in order  to suppor t  the text plan structure. 

4.1.1 Bui lding the Initial Plan. Upon being invoked,  IGEN sends its goal to the com- 
municat ive planner, which constructs an initial plan. The planner  starts by  applying 
the ut ter-sequence plan, which involves decomposing the goal based on a relevant se- 
quence. Since the members  of #<WEATI-IER-INF0~ all have connections to the sequence 
of days in the month,  the planner  is able to decompose the original goal into a sequence 

20 The only possible constraint in the current implementation is a missing (obligatory) feature value; all 
other grammatical and conceptual constraints are strictly enforced. 

21 This is actually controlled by a parameter (*conciseness-preference*) that determines whether the 
utterer will prefer concise or verbose options or neither. In theory, tlnis parameter should be set by the 
planner based on its knowledge of the situation; in practice, it is set by hand to prefer concise options. 
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of goals  b a s e d  on  the sequence  of  d a y s  i nvo lved  in the goal. Fur ther  p l a n n i n g  for the 
sequence  of  subgoa l s  y ie lds  the fo l lowing  plan:  

i. 

2. 

. 

4. 

5. 

Overal l  Goal:  #<KNOW (HEARER, WEATHER-INF0) > 

Achieve (I) by sequencing information based on the #<SEQUENCE> of the 
three days involved 

Support (2) with information about #<SEPT-25> 

Support (2) with information about #<SEPT-26> 

Support (2) with information about #<SEPT-27> 

Reques ts  to express  the i n fo rma t ion  a b o u t  each d a y ' s  w e a t h e r  are then  pa s sed  on  to 
the l inguist ic c o m p o n e n t .  

In  part icular ,  the p l anne r  carries ou t  s tep (4) of  the p lan  b y  p lac ing  in the w o r k s p a c e  
the request :  

#<OVER-TIME-SPAN(#<WITHIN-RANGE(TEMPERATURE,56DEG-75DEG-F)>, 
SEPT-26)> 

A separa te  w o r k s p a c e  en t ry  is crea ted  for  each n o d e  and  l ink in this request ,  22 wi th  
the en t ry  for the top- level  #<0VER-TIME-SPAN> link m a r k e d  as their " h e a d "  entry. 

4.1.2 Producing and Evaluating Linguistic Options. The l inguist ic c o m p o n e n t  then  
beg ins  to p r o d u c e  a nd  anno ta te  l inguist ic op t ions  for each of  these entries. It also runs  
the first phase  of  the eva lua t ion  a lgo r i thm (descr ibed in Figure  4) to p r o d u c e  an  initial 
evaluat ion.  23 

For  #<TEMPERATURE>, the l inguistic c o m p o n e n t  f inds the fo l lowing  opt ions :  24 

#<w : WEATHER> 

H E A D  ~-~ C A T  ~--- N 

LEX ~ #<w : WEATHER> 

The linguistic component draws on the portion of IGEN's knowledge 
shown in Figure 5 to annotate this option. Since the option directly 
expresses the concept #<WEATHER>, the linguistic component attaches a 
MAKES-EXPLICIT annotation to the option. Since #<TEMPERATURE> has a 
#<PART> link connecting it to #<WEATHER>, it attaches an 
INDIRECTLY-SUGGESTS annotation for #<TEMPERATURE>. 

22 This doesn't limit the linguistic component to working on only one node or link at a time; options can 
cover or depend on other entries, as, for example, the future tense option in Section 4.1.2. 

23 This should really be done by the planner, but the first phase doesn't actually depend on any 
information about the plan, so it can safely be run by the linguistic component without compromising 
the separation of the components. The second phase, which does depend on the plan, will be run by 
the planner. 

24 It actually produces several other options that are immediately ruled out as being completely 
inappropriate, e.g. the word temperature as an option for #<SEPT-26>, or because they require 
arguments that aren't present in the request, e.g. the verb be (which needs two arguments) as an option 
for #<TEMPERATURE>. Throughout these examples, such options will simply be ignored in the interests 
of brevity. 
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=weather" ------£>( weather ~ =it":/d/om 

part I / I part I / I part I I I I part 

wind ) ( precipitation 

=waiqrfl" - - - I ~ : ~  warm 

part 

"temperature" 

ran0e-end 

CG 
Figure 5 
Some semantic network fragments used by the linguistic component. 

#<w: TEMPERATURE> 

H E A D  ~ C A T  ~--- N 

LEX z #<w : TEMPERATURE> 

Since the meaning of #<w : TEMPERATURE> is the request itself, the only 
annotation attached is a MAKES-EXPLICIT annotation for 
#<TEMPERATURE>. 

#<w: IT> 

LEX ----- #<w:IT> 

Since the usage of #<w: IT> here is an idiomatic construction, it has 
some special handling in the lexicon to indicate that its meaning 
depends on what it is being used to describe. In particular, #<w: IT> 
here is taken to mean #<TEMPERATURE>. The linguistic component thus 
produces a MAKES-EXPLICIT annotation for #<TEMPERATURE>, as it does 
for the option using the word #<w : TEMPERATURE>. #<w:IT> is also 
marked as producing a CONCISE-CONSTRUCTION annotation, so the 
linguistic component attaches one to the option. 
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As these options are produced, they are evaluated based on their annotations accord- 
ing to the algorithm described in Figure 4. In the first phase, #<w : WEATHER> is rated 
MEDIUM, reflecting the fact that the option doesn't really express the request, but does 
suggest it indirectly by mentioning a closely related concept. #<w : TEMPERATURE> is 
rated VERY-HIGH, reflecting the option's exact match with the request, as is #<w: IT>, 
which also expresses #<TEMPERATURE> (albeit idiomatically). The second phase of 
the evaluation algorithm makes no changes to the ratings, since the options' annota- 
tions don't indicate anything that would interact with the plan, leaving #<w: IT> and 
#<w : TEMPERATURE> as the preferred options. 25 

For #<WITHIN-RANGE>, the only acceptable option the linguistic component finds is: 

#<w:BE> 
CAT 

HEAD 

SUBJ 

PRED 

O R D E R  = 

---- S 

_-- [ CAT ---- V 

L LEX = # < w : B E >  

---- NP 

z A D J P  

(SUBJ  HEAD P R E D )  

The SUBJ and PRED features indicate #<w:BE>'s syntactic roles; the value of these 
features indicates the syntactic constraints on the structures that may fill the roles. 
In addition, the structure has a MAP feature indicating which workspace entries can 
provide options to fill the roles. 

Since #<WITHIN-RANGE> is a subconcept of #<BE-LOCATED> (one meaning of 
#<w:BE> in IGEN's lexicon), the linguistic component produces (MAKES-EXPLICIT 
#<BE-LOCATED>) and (MAKES-IMPLICIT #<WITHIN-RANGE>) annotations for the op- 
tion. These annotations lead the first phase of the evaluation algorithm to rate the 
option as HIGH; the second phase leaves this evaluation unadjusted. (Of course, since 
there is only one acceptable option here, its rating doesn't really matter.) 

For #<56DEG-Z5DEG-F>, the options produced are (omitting the details of the 
structures to show only the annotations): 

#<w:WARM>: 
(MAKES-EXPLICIT #<WARM>) 
(MAKES-IMPLICIT #<56DEG-75DEG-F>) 

#<w:TEMPERATURE>: 
(MAKES-EXPLICIT #<TEMPERATURE>) 
(INDIRECTLY-SUGGESTS #<56DEG-75DEG-F>) 

These annotations are based on the network fragment shown in Figure 5. #<w:WARM> 
is rated HIGH, because it does a reasonable job of describing the requested temperature 
range} 6 The #<w : TEMPERATURE> option is not as good, but it at least gives a sense of 
what is being talked about, so it gets the next lower rating of MEDIUM. 

The entries we have seen so far have not involved any interactions between the 

25 R e  u t t e r e r  wi l l  u l t i m a t e l y  c h o o s e  # < w :  I T >  b e c a u s e  i t  is m a r k e d  as  m o r e  conc i se .  
26 ] ' h i s  is d e t e r m i n e d  u s i n g  a r u l e - b a s e d  i n f e r e n c e  m e c h a n i s m  d e s c r i b e d  in  R u b i n o f f  (1992). 
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options and  the plan. Our  first instance of such interactions arises in the options for 
# < 0VER-TIME-SPAN>: 

• #<w: 0VER>: 
(MAKES-EXPLICIT #<0VER-TIME-SPAN>) 
(ACTIVATES-IN-CONTEXT 

#< INSTANCE (SEPT-26, LINEAR-SPAN) >) 

• #<w:0N>: 

(MAKES-EXPLICIT #<0N>) 
(MAKES-IMPLICIT #<0VER-TIME-SPAN>) 
(ACTIVATES-IN-CONTEXT 

#< INSTANCE (SEPT-26, LINEAR-POS) >) 

• [TENSE : FUTURE]: 27 
(MAKES-EXPLICIT #<0VER-TIME-SPAN>) 
(MAKES-EXPLICIT #<FUTURE>) 
(COVERS-0THER-ENTRY entry for:#<SEPT-26>) 
(MAKES-IMPLICIT #<SEPT-26>) 

The first phase  evaluat ions suggest  that  #<w: OVER> is the preferred option. Here,  
though,  the second phase  of the evaluat ion a lgor i thm modif ies  the rat ings based on 
interactions wi th  the plan. The ACTIVATES-IN-CONTEXT annotat ions for #<w:0VER> 
and #<w:0N> indicate that  these options affect h o w  the sys tem (and the hearer) 
perceive the t ime span being talked about. Since the #<SEQUENCE> of days  being 
talked about  is the organizing principle of the plan, it is a "critical" piece of the 
plan, as are the #<MEMBER> links connecting it to the pieces of the original goal. The 
ACTIVATES-IN-CONTEXT annotat ion for #<w:0VER> indicates that  it encourages  the 
hearer  to think of #<SEPT-26> as a #<LINEAR-SPAN>. This conflicts wi th  the (critical) 
#<MEMBER> link be tween  #<SEPT-26> and the #<SEQUENCE>, because it describes the 
day  as a span  of t ime rather  than  as a discrete point  in a sequence. The second phase  
a lgor i thm thus downgrades  #<w:0VER>'s rat ing f rom VERY-HIGH to HIGH. Conversely,  
#<w:0N> encourages the hearer to think of #<SEPT-26> as a #<LINEAR-POS>, i.e., 
a discrete position within a linear span, supporting the critical #<MEMBER> link. ]"he 
rating for #<w: ON> is therefore upgraded from HIGH to VERY-HIGH, and it becomes the 
preferred option. 28 

Note here how the use of annotations allows the planner to remain ignorant of 
purely linguistic issues. The planner has no way to distinguish between an option 
realizing #<0VER-TIME-SPAN> as a lexical item and one realizing it as the value of 
some feature of another option. Its decision is based solely on the contextual effects 
of the available options. The planner can only make distinctions based on the effects 
of the options, not on the forms of the options. 

The final piece of the request  is #<SEPT-26>, for which  the linguistic componen t  
produces  the following options: 

• #<w : TOMORROW>: 
(MAKES-EXPLICIT #<TOMORROW>) 

27 This is an example of how linguistic options need not be single words or complete phrases; this option 
is a feature value pair that will be added to another phrase. 

28 #<w:0N> is preferred over [TENSE =FUTURE], which is also rated VERY-HIGH, because it was adjusted 
up in response to a specific plan interaction as discussed in Section 3.3. 
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(MAKES-IMPLICIT #<SEPT-26>) 
(ACTIVATES-IN-CONTEXT #<FEW-DAYS>) 

#<w:MONDAY>: 
(MAKES-EXPLICIT #<MONDAY>) 
(MAKES-IMPLICIT #<SEPT-26>) 
(ACTIVATES-IN-CONTEXT #<WEEK>) 

The first phase of the evaluat ion algori thm rates both  of these options as HIGH, since 
they match the p lanner ' s  request  equally well. The second phase,  though,  distinguishes 
be tween them on the basis of the particular t ime sequences they activate. The se- 
quence #<WEEK> activated by  the option #<w :MONDAY> is significantly different from 
the #<SEQUENCE> of three days a round which the plan is organized, so #<w : MONDAY> 
is downgraded  to #<MEDIUM>. The #<FEW-DAYS> sequence activated by  the option 
#<w : TOMORROW>, on the other hand,  largely overlaps with the plan's  #<SEQUENCE>, 
so no adjustment  is made.  As a result, #<w:TOMORR0W> becomes the preferred option. 

4.1.3 Assembling the Utterance. As these options are p roduced  and evaluated,  the 
utterer  watches the workspace,  t rying to assemble them into an acceptable utterance. 
Whenever  an option appears  that meets  the current  acceptability threshold, the utterer  
utters (i.e., prints) it. The final result  is: 

(5) It will be wa rm on Monday. 

Note that this ou tpu t  does not  s imply use the highest-rated option from each entry in 
the workspace,  because that would  involve the ungrammatical  phrase on tomorrow.  In 
addit ion to responding to time pressure, the utterer  also enforces syntactic constraints; 
it chooses the best possible combinat ion of options that is syntactically acceptable. 29 

4.1.4 Summary.  This simple example illustrates how the annotations allow IGEN to 
maintain the traditional division into two independent  components  while still han- 
dling interactions be tween decisions at the planning and linguistic levels. The planner  
never  has to deal with linguistic structures, and the linguistic component  never  has to 
deal with plans or information structures. For example,  the planner  can' t  distinguish 
be tween lexical i tems and feature values; conversely the linguistic component  has no 
access to the goals driving the planner  or the plans it builds. Nevertheless,  w h e n  there 
are decisions that depend  on both informational  and linguistic structures, the annota-  
tions allow IGEN to handle  the interactions be tween the different levels. The effects of 
these interactions are relatively minor  in this example,  but  subsequent  examples will 
show how they can be more dramatic. 

4.2 Revising the Plan 
In addit ion to merely  selecting among options, IGEN's planner  can revise the plan in 
response to them. Consider  a slight modification to the previous  example,  in which 
IGEN is given the same goal except that the temperature  on the third day falls within 

29 This is an oversimplification, as can be seen from the output in (4) in Section 4.1, where IGEN 
produces the phrase on today. What's really going on is that IGEN's lexicon has two entries for each of 
today and tomorrow; one as a noun phrase and one as a prepositional phrase. As it happens, the PP 
entry turns up first. In the case here, the option for Monday is produced and selected before the NP 
option for tomorrow turns up. In the first sentence of (4), there is no such option, so the linguistic 
component has time to produce the NP today option. 
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the range considered "wa rm . "  IGEN proceeds  to bui ld a p lan  that  is identical to the 
previous  one (except for the difference in the informat ion to be  expressed).  As before, 
the p lanner  places requests in the workspace  and  the linguistic componen t  starts to 
construct  options. At this point,  IGEN is well  on its w a y  to generat ing text similar 
to (4): 

(6) It is w a r m  on today. It will be  w a r m  on Monday.  It will be  w a r m  on 
Tuesday. 

However ,  once the opt ion for warm is produced,  someth ing  new happens .  The 
planner  detects that  there are several  parallel  s tructures in the workspace  that can use 
the same linguistic structure (warm) to realize different concepts  (the different tem- 
pera ture  ranges) in corresponding posit ions wi thin  each structure. This provides  the 
oppor tun i ty  to combine  the parallel s tructures into a single conjoined structure, which 
the p lanner  proceeds  to do. All of the workspace  entries for the parallel  s tructures are 
removed,  and  the p lanner  enters requests for a new conjoined structure: 3° 

#< 0VER-TIME-SPAN (#<WITHIN-RANGE (TEMPERATURE , 56DEG-75DEG-F) >, 

#<AND (SEPT-25 , SEPT-26 , SEPT-27) >) > 

IGEN then proceeds  as in the previous  example ,  u l t imately  generating: 

(7) It will be w a r m  on today, Monday,  and Tuesday. 

Note  that  the p lanner  couldn ' t  have  created this conjoined structure initially be- 
cause it d idn ' t  know that  all three days '  t empera tures  could be realized the same way. 
To the planner,  each day  has a different t empera tu re  range. This example  appears  
exactly the same as the previous  one. Once the linguistic componen t  indicates that  
all three t empera tu re  ranges  can be realized the same way, though,  the p lanner  can 
then de termine  that  this results in a paral lel ism that can be reduced  to a conjoined 
structure. The annotat ions al low the p lanner  to modi fy  its plan, based  on the results of 
the realization process, despite not  hav ing  any  access to pure ly  linguistic knowledge  
or processing. 

4.3 Varying the Utterance in Response to the Plan 
In the previous  examples ,  we  have  seen h o w  IGEN can use the feedback f rom the 
linguistic componen t  to improve  the organizat ion of the text it generates.  The anno-  
tations also al low IGEN to tailor the genera ted text so as to bet ter  achieve the goals 
behind  the utterance. Consider  IGEN's  response to the goal "make  the user  happy" :  31 

1. 
2. 

Overal l  goal: #<BE-STATE (HEARER, HAPPY) > 
Achieve (1) by  achieving subgoals: 

(a) Goal: Downp l ay  unpleasan t  informat ion 

30 The temperature range used in the conjoined structure is chosen randomly from among the structures 
being combined. This is safe to do because it is certain that all of the temperature ranges can be 
realized the same way; that's what triggered the combination in the first place. 

31 The construction of the plans in this section is admittedly ad hoc; IGEN certainly doesn't have a 
complete model of the psychological factors and issues they involve. What's important here, though, is 
not the construction of the plan but rather how the plan and the annotations are used to produce the 
kind of subtle effects that can't be produced by the linguistic component or the planner alone. 
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. 

. 

5. 

(b) Goal: Emphasize pleasant information 

Achieve (2a) by expressing: 
#<MINIMAL-SIGNIFICANCE (# < CONSIST-0F (PRECIPITATION, 

RAIN) >) > 
Achieve (2b) by expressing: 
#<WITHIN-RANGE (TEMPERATURE, 60DEG-80DEG-F) > 
Achieve (2b) by expressing: 
#<AT-TIME (#<CONSIST-0F (PRECIPITATION, N0-PRECIPITATION) >, 

THIS-AFTERN00N) > 

The final result for this plan is: 

(8) It is only drizzling. It is warm. It will be clear soon. 

Most of this output is produced straightforwardly in a manner similar to the previous 
example. Some of the choices, however, are the result of interactions of a sort beyond 
what was seen there. 

Consider the options for #<CONSIST-0F (PRECIPITATION,RAIN) > in step (3) of the 
plan; these include: 32 

• #<w:RAINS>: VERY-HIGH 
(MAKES-EXPLICIT #<CONSIST-0F>) 
(MAKES-EXPLICIT #<PRECIPITATION>) 
(MAKES-EXPLICIT #<RAIN>) 

• #<w:DRIZZLES>: HIGH 
(MAKES-EXPLICIT #<C0NSIST-0F>) 
(MAKES-EXPLICIT #<PRECIPITATION>) 
(MAKES-IMPLICIT #<RAIN>) 
(MAKES-EXPLICIT #<DRIZZLE>) 
(EXTRA-INF0 #<STRENGTH(RAIN,WEAK)>) 

• #<w:POURS>:HIGH 
(MAKES-EXPLICIT #<C0NSIST-0F>) 
(MAKES-EXPLICIT #<PRECIPITATION>) 
(MAKES-IMPLICIT #<RAIN>) 
(MAKES-EXPLICIT #<POUR>) 
(EXTRA-INFO #<STRENGTH(RAIN,STRONG)>) 

The first phase of the evaluation algorithm rates the word #<w:RAINS> highest, since 
it captures the intended meaning precisely. #<w: DRIZZLES> and #<w: POURS> are the 
next best options, since they capture the basic meaning, and are equally appropriate, 
since the linguistic component can't evaluate the significance of the extra information 
they present. 

The second phase, however, determines that the EXTRA-INF0 expressed by the 
option #<w:DRIZZLES> implies another part of the information requested by the 
planner (the #<MINIMAL-SIGNIFICANCE> relation). Its rating is therefore increased 
to VERY-HIGH. Conversely, the rating for #<w:POURS> is lowered to MEDIUM, since it 

32 To simplify the discussion, I have included the first-phase evaluations of the options here. 
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contradicts the #<MINIMAL-SIGNIFICANCE> relation. This leaves both other options, 
#<w:RAINS> and #<w:DRIZZLES>, rated VERY-HIGH; the utterer will prefer to use 
#<w:DRIZZLES>, though, since there was something specific about the option that the 
planner approved of. 

The decision here to say #<w : DRIZZLES> instead of #<w:RAINS> could not have 
been made by either the planner of the linguistic component alone. The decision de- 
pends on both the planner's knowledge that the concept #<DRIZZLE> supports an- 
other piece of the plan and the linguistic component's knowledge that there is a way 
to express #<DRIZZLE> without making explicit its distortion of the actual information 
that it's raining. It's only the interaction between the two components provided by 
the annotations that makes saying #<w : DRIZZLES> instead of #<w:RAINS> possible. 

The point of using the annotations, though, was not just to handle these kinds 
of interactions, but more importantly to do so without compromising the principled 
separation of the two components. Among other things, this makes it possible for IGEN 
to express the same information in a different manner, based solely on differences in 
the plan. If the purely linguistic issues are the same, the linguistic component will do 
exactly the same work, even though the differences in the output may depend in part 
on that work. 

We can see this by comparing the previous example with IGEN's response to 
the goal #<TAKE(HEARER, UMBRELLA)>, for which the planner constructs the following 
plan: 

i. 

2. 

. 

. 

Goal: #<TAKE(HEARER,UMBRELLA) > 

Achieve (I) by achieving subgoal: 
#<WANT (HEARER, #<TAKE (HEARER, UMBRELLA) > ) > 

Achieve (2) by achieving subgoal: 
#<KNOW (HEARER, #<CONSIST-0F (PRECIPITATION, RAIN) >) > 
depending on the preconditions: 
#<DANGEROUS (#<C0NSIST-0F (PRECIPITATION, RAIN) > ) > 

and 
# < PROTECTI ON (# < TAKE ( HEARER, UMBRELLA) >, 

#<CONSIST-0F (PRECIPITATION, RAIN) >) > 

Achieve (3) by expressing: 
#<CONSIST-0F (PRECIPITATION, RAIN) > 

Note that the information to be expressed here in step (4) is also expressed in step (3) of 
the previous example. Since the linguistic component doesn't have access to the plan, 
it necessarily produces the same options as before. The planner, though, evaluates 
these options differently, since it is using them to carry out a different plan. 

The three options #<w: RAINS>, #<w: POURS>, and #<w: DRIZZLES> are produced 
and annotated as before. Their evaluations are different, though. Step (3) here has 
a precondition that #<CONSIST-0F(PRECIPITATION,RAIN) > be #<DANGEROUS> in or- 
der to achieve its intended goal. The extra information expressed by #<w:POURS> 
supports this precondition, so #<w:POURS> is upgraded to VERY-HIGH. On the other 
hand, #<w:DRIZZLES> undercuts the precondition and is therefore downgraded to 
MEDIUM. The preferred option here is therefore #<w:POURS>, in contrast to the previ- 
ous example, and the final result is then: 

(9) It is pouring. 
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The final output differs even though the linguistic component does exactly the 
same processing in these two examples. From the linguistic component's point of view, 
the examples are exactly the same; the same request is placed in the workspace, so the 
same options are produced. The difference lies solely in the plan structure, not in the 
content of the explicit message to be realized, so only the planner behaves differently. 
The linguistic component's design and functioning are completely indifferent to the 
issues that concern the planner. 

4.4 The Range of Variation 
We can see similar variation in the handling of #<N0-PRECIPITATION>, which is real- 
ized in three different ways in three different examples because of the different roles 
it plays in the three plans. In Section 4.3, it was realized as clear; the two examples 
that follow illustrate how IGEN can select alternative realizations. 

Consider first what happens when the generator is given the goal "get the user to 
conserve water." In response, it builds up a plan to do so by talking about the drought: 

I. 

2. 

. 

4. 

Goal: #<CONSERVE(HEARER,WATER) > 
Achieve (1) by achieving subgoah 
# <WANT (HEARER, # <CONSERVE (HEARER, WATER) >) > 
Achieve (2) by achieving subgoah 
# < KNOW (HEARER, # < SERI 0US-DROUGHT > ) > 
depending on the preconditions: 
#<DANGEROUS(#<SERIOUS-DROUGHT>) > and 
#<PROTECTION (#< CONSERVE (HEARER, WATER) >, 

#<SERIOUS-DROUGHT>) > 

Achieve (3) by expressing: 
#<CONTINUE (DROUGHT) > 
#<OVER-TIME-SPAN (CONSIST-0F (PRECIPITATION, 

N0-PRECIPITATION) ) , 
TODAY) > 

and 
#<0VER-TIME-SPAN (REPEAT (CONSIST-OF (PRECIPITATION, 

N0-PRECIPITATION) ) , 
TOMORROW) > 

This plan is similar to the one built in Section 4.3 for the goal #<TAKE(HEARER,UM- 
BRELLA) >; they both involve motivating the hearer to take some action by explaining 
some danger that the action will provide protection from. The main difference here 
is that rather than simply telling the user that there is a serious drought, the plan- 
ner draws on a more specific (ad hoc) plan that involves expressing more detailed 
information. 

The final result for this example is: 

(10) The drought is continuing. It is dry today. It will be dry again tomorrow. 

Note that IGEN uses #<w:DRY> here to express #<N0-PRECIPITATION>, in con- 
trast with the first example in Section 4.3, where it was expressed by #<w : CLEAR>. 
This happens because #<w: DRY> has an (ACTIVATES-IN-CONTEXT #<DROUGHT>) anno- 
tation, and activating the concept #<DROUGHT> supports the sense of danger that is a 
precondition of step (3) of the plan. #<w:DRY>'s evaluation is thus upgraded, making 
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it the preferred option. In the example in Section 4.3, this activation doesn't interact 
with the plan, so #<w:CLEAR> remains the preferred option. 

Yet another realization is selected when IGEN is given the goal of convincing the 
user to go to the park, resulting in the following plan: 

I. 

2. 

. 

. 

Goal: #<BE-LOCATED(HEARER,PARK) > 
Achieve (1) by achieving subgoal: 
#<WANT (HEARER, #<BE-LOCATED (HEARER, PARK) >)  > 
Achieve (2) by achieving subgoal: 
#<KNOW (HEARER, 

AND (CONSIST-0F (PRECIPITATION, N0-PRECIPITATION) ) 
WITHIN-RANGE (TEMPERATURE, WARM) ) > 

depending on the preconditions: 
#<ENJOYABLE (#<BE-LOCATED (HEARER, PARK) >) > 

and 
#<SUITABLE ( 

#<AND (CONSIST-0F (PRECIPITATION, N0-PRECIPITATION) , 

WITHIN-RANGE (TEMPERATURE, WARM) ) >, 

#<BE-LOCATED (HEARER, PARK) >) > 

Achieve (3) by expressing: 
#<AND (CONSIST-0F (PRECIPITATION, N0-PRECIPITATION) , 

WITHIN-RANGE (TEMPERATURE, WARM) ) > 

The resulting output is: 

(11) It is sunny and it is warm. 

The only difference from previous examples lies in the choice of #<w: SUNNY> 
to express the concept #<N0-PRECIPITATION> rather than using either #<w:CLEAR> 
or #<w:DRY>. This choice arises because of an ACTIVATES-IN-CONTEXT annotation 
indicating that the use of #<w:SUNNY> activates the concept #<SUNSHINE>, which 
strengthens the enjoyability precondition in step (3) of the plan. It is this sort of inter- 
action between linguistic choices and the plan structure that allows IGEN to express 
#<N0-PRECIPITATION> three different ways in three different examples. 

The point here is not just that IGEN can produce different lexical realizations for 
a particular concept. If that were the only goal, we could dispense with the feedback 
mechanism and simply design some sort of discrimination network (or similar device) 
to test various features of the information being expressed. The planner could supply 
whatever information is needed to drive the network. 33 Something like this approach 
is in fact used in some systems (e.g., Elhadad and Robin 1992; PenMan 1989; Hovy 
1988a). 

The problem with the discrimination network approach is that it can't handle 
the range of examples shown here without violating the modularity of the generator. 
The examples shown here have involved linguistic choices that depend on the plan 
structure, on other actions in the plan, and on preconditions of the plan. Furthermore, 
the plan dependencies can involve a nontrivial amount of reasoning (e.g., the example 
immediately above, which involves the connection between sunshine and enjoying 

33 Of course, that still wouldn't allow for examples like the one in Section 4.2, where the planner modifies 
the plan in response to the work of the linguistic component. 
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being outdoors). Encoding these decisions in a discrimination net (or any other kind 
of processing) within the linguistic component would mean giving that component 
access to all of the plan and the reasoning used to construct it. Much of the planner's 
knowledge and processing would have to be duplicated in the linguistic component. 
IGEN, in contrast, handles these examples while maintaining strict modularity. 

4.5 The Effects of Time Pressure 
The discussion of the examples in Section 4.3 glosses over an important detail: IGEN 
will only generate the output shown there if the time pressure is eased by increasing the 
delay thresholds. In particular, the choice of #<w :DRIZZLES> and #<w: POURS> over 
#<w:RAINS> in those examples is made with the thresholds set to force the utterer 
to always wait at least five time units before uttering the next piece of text. This 
is necessary because the linguistic component produces the option for #<w:RAINS> 
sooner than the options for #<w: POURS> and #<w :DRIZZLES>. 

If the delay thresholds are left at the default settings, the utterer will accept an 
option that is rated VERY-HIGH without any delay. Thus when the #<w:RAINS> op- 
tion appears, the utterer immediately accepts and utters it. While # <w:DRTZZLES > and 
#<w: POURS > would be better options in these examples, the utterer never gets a chance 
to see them. Because of time pressure, the decision of how to realize the planner's re- 
quest is made before the linguistic component has a chance to find #<w : DRIZZLES>. 
There's nothing wrong with this result; it is raining is a perfectly good way to ex- 
press #<CONSIST-0F(PRECIPITATION,RAIN)>. It's just that if IGEN is given more 
time to work, it can produce a better utterance. The utterer's job is to balance the 
quality of the utterance against time pressure; in this example, changing the inten- 
sity of the time pressure induces a corresponding change in the refinement of the 
utterance. 

Of course, if the time pressure is set sufficiently high (e.g., to simulate a situation 
where the the hearer is about to walk away), IGEN will sometimes produce an utter- 
ance that has some slight problems, because speed is more important than perfection. 
Consider what happens when the example in Section 4.1 is run with the delay thresh- 
olds set to accept anything that's not terrible (i.e., any option rated MEDIUM or higher) 
right away. The planning and initial production and evaluation of options proceeds 
as with the default thresholds. The handling of #<0VER-TIME-SPAN> works out dif- 
ferently, though. The option for #<w:0VER> is produced by the linguistic component 
several time units before the option for #<w:0N>. With the default thresholds, that's 
not a problem, because the utterer can wait long enough for #<w: 0N> to be produced. 
With the increased time pressure, though, the utterer is forced to produce the utterance 
before the option #<w:0N> is available. The resulting utterance (for the second day's 
information) is it will be warm over Monday. 

This result is not awful; the sentence still manages to express the intended infor- 
mation. It just doesn't fit quite as well into the intended overall structure of the text. 
So the main consequence here of increasing the time pressure is to generate a text 
that is slightly less coherent and fluent. In this case, IGEN responds to increasing time 
pressure with a slight degradation in the generated text. 

4.6 The Effects of Vocabulary Limitations 
Since IGEN is designed to always find the best utterance possible in the available time, 
without assuming any notion of a "correct" utterance, it can produce reasonable output 
even when generating in domains where it has limited linguistic resources. This can 
be seen by looking at the result of selectively disabling elements of its "vocabulary," 
i.e., the lexical and syntactic resources available to the linguistic component. The result 
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is a gradual, graceful degradation of the generated text as the generator's linguistic 
resources become poorer. 

Consider again IGEN's response (under relatively mild time pressure) when given 
the goal #<TAKE(HEARER,UMBRELLA)>. The resulting plan, as we have seen, requires 
expressing the information #<CONSIST-0F (PRECIPITATION,RAIN) >, which is accom- 
plished by uttering it is pouring. If the verb #<w: POUR> is removed from the generator's 
vocabulary, though, this utterance is not possible; instead the output becomes it is rain- 
ing. Note that this is the same output IGEN produces if the time pressure is increased; 
the consequence of limiting either time or vocabulary is the same. 

If the verbs #<w:RAINS> and #<w:DRIZZLES> are removed as well, the generator 
is left with no single option that can express all of the requested information. Instead, 
the utterer resorts to assembling individual options for the various pieces of the re- 
quest, producing the sentence the precipitation consists of rain. 34 While this utterance does 
adequately express the requested information, it is fairly awkward. Still, it's not bad, 
given that the two best options are unavailable. 

Beyond this point, further vocabulary removal starts to make things much worse. 
Removing the phrase #<w: CONSIST OF> leads to the utterance of it will be clear. This 
utterance is terrible; it completely misses the intended information. That's not surpris- 
ing; after all, the options that should be used have all been removed from IGEN's 
vocabulary. On the other hand, it's not completely bizarre; it's still talking about the 
weather, and in fact it's even still describing the precipitation. That is, IGEN still has 
a vague sense of what it's trying to say; it's not simply producing an utterance at ran- 
dom. This can be seen again by removing the phrase #<w: BE CLEAR>; the resulting 
utterance is then it snowed. IGEN is still trying to get as close as it can to the intended 
information, even though it can't really get it right. 

Eventually, of course, removing linguistic resources will make the generator col- 
lapse; if every word or phrase relating to precipitation of any sort is removed, then 
IGEN produces it is medium, which, though grammatical, is gibberish. If the linguistic 
component has absolutely no way to produce options related to what the planner 
wants to express, then there's really nothing IGEN can do. What's significant here, 
though, is that as the generator's linguistic resources are gradually impoverished, the 
generator's output degrades gracefully. Rather than immediately collapse when its 
preferred options are removed, IGEN continues to produce the best possible utterance 
it can build with its remaining linguistic resources. 3s 

4.7 Generating in a Different Language 
As a test of IGEN's modularity, a simple French linguistic component was developed 
and tested on the examples in Sections 4.1 and 4.3. Switching to a different language 
provides an extreme example of how the linguistic component can be varied without 
affecting the planner. The change primarily involved defining new lexicon entries for 
the French words, phrases, and feature values needed to talk about the weather. In 
addition, the routine that handles verb inflection had to be replaced, since French verb 
endings are different from English ones. Other than these changes, though, no mod- 

34 The actual output  is precipitation consists of rain, but  this is just due to a limitation of the implemented  
grammar. Specifically, there 's  no requirement  that noun  phrases have determiners,  so the linguistic 
component  never  bothers to suggest  one for the NP headed  by #<w:PRECIPITATIOR>. 

35 Of course, in many  situations it 's best  to pu t  a lower bound  on the quality of IGEN's output;  this can 
be done simply by setting the appropriate delay thresholds to infinity. It would  also be possible to set 
an overall t ime limit on IGEN's processing, after which an uncompleted  plan would  be assumed to 
have failed. IGEN could then modify  the plan or take other appropriate  corrective action. 
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ification to IGEN was necessary. The linguistic component  was otherwise unaltered,  
and the planner  and utterer  required no changes at all. 36 

The main difference be tween the ways  English and French describe the weather  
lies in the "weather  it" construction. English allows weather  descriptions that use 
it together with any of a class of verbs of being, seeming, or becoming. Thus the 
following sentences are all possible in English: 

(12) It is warm. 

(13) It seems warm. 

(14) It feels warm.  

(15) It's becoming warm.  

(16) It's getting warm. 

In these sentences, the meaning of it seems to be the weather  or the temperature;  
thus in any of these sentences it could be replaced by  the weather or the temperature 
without  changing the meaning or acceptability. This p h e n o m e n o n  is mode led  in IGEN 
by  having a special word  #<w: IT>  whose  meaning  can range over  the various items 
constituting the weather;  this word  is constrained to appear  only as the subject of an 
appropriate  verb. Thus, as we saw in Section 4.1, #<w: IT> is represented as meaning 
#<TEMPERATURE> and annotated appropriately. 

A literal translation of any of the sentences in (12) to (16) into French, though,  
would  be ungrammatical .  The corresponding French construction uses the verb faire 
(literally ' to make '  or ' to do'),  as in (17): 

(17) 

(18) 

(19) 

(20) 

(21) 

I1 fait chaud. 
It m a k e s / d o e s  w a r m  
It is warm. 

*Le temps fait chaud. 
The weather  m a k e s / d o e s  wa rm 
The weather  is warm. 

*La temp4rature fait chaud. 
The tempera ture  m a k e s / d o e s  wa rm 
The tempera ture  is warm. 

*I1 semble chaud. 
It seems warm. 

I1 semble faire chaud. 
It seems to m a k e / d o  warm. 
It seems warm. 

Unlike it in (12) to (16), the il here is not  referring to the weather  or the temperature.  
Rather it is an expletive, i.e., a d u m m y  subject required by  the grammar  of the lan- 
guage, similar to the it in the English it seems John left. This can be seen by  comparison 

36 It was necessary to add a few more elements to the semantic network (which is used by both 
components) to capture the meaning of the French word sur, which does not correspond exactly to the 
meaning of any English word, as discussed below. These new elements were used only by the 
linguistic component, not by the planner. 
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with (18) and (19), in which replacing il with le temps ("the weather")  or la temperature 
("the temperature") leads to an ungrammatical  sentence. (20) and (21) demonstrate 
that the crucial element in the French construction is the verb faire; other verbs can 
be used only if they combine with faire. This contrasts with the English construction, 
in which it is the crucial element and can be used with a range of verbs. The French 
construction is thus represented in IGEN as a version of the verb faire that takes an 
expletive il as its subject and whose meaning ranges over specifications of the various 
elements of the weather. 

A second difference between the two languages shows up in Section 4.1 in the 
options for #<0VER-TIME-SPAN>. In English, IGEN has to choose between using on 
or over to express this link. In French, though, these concepts are expressed by the 
same word (sur).  37 Furthermore, sur can't be used for temporal expressions, only for 
spatial expressions. So the options for #<0VER-TIME-SPAN> work out quite differ- 
ently in French. French in general uses ~ ("at") rather than sur for temporal expres- 
sions; however ~ cannot be used with expressions describing days. Instead, these 
temporal modifiers are expressed using bare NP's with no preposition. This con- 
struction is modeled in IGEN by a null preposition whose object must  be a definite 
NP. 

Given all of this, IGEN produces the following results in French for the example 
in Section 4.1: 

(22) I1 fait chaud aujourd'hui.  I1 fera chaud lundi. 
it does warm today it will do warm Monday  
It is warm today. It will be warm Monday. 

I1 fera frais mardi. 
it will do cool Tuesday 
It will be cool Tuesday. 

This is equivalent to the English result except for expressing the temporal modifier 
as a noun phrase rather than as a prepositional phrase headed by on, as discussed 
above. 

Similarly, the variant in Section 4.2 produces: 

(23) I1 fera chaud aujourd 'hui  lundi et mardi. 
it will do warm today Monday  and Tuesday 
It will be warm today Monday  and Tuesday. 

For the goal of making the user happy, IGEN produces the French output: 

(24) I1 bruine seulement. I1 fait chaud. Le temps sera clair bientdt. 
it drizzles only it does warm the weather will be clear soon 
It's only drizzling. It's warm. It will be clear soon. 

This is exactly the same as the English output  except for the use of the French "weather 
faire" construction or the explicit use of le temps ("the wea ther ' )  rather than the English 
"weather it" construction. 

37 Note that the point here is not that sur is the (unique) translation of on and over into French; IGEN is 
doing generation, not machine translation. It's just that sur is the French word that most naturally 
expresses the particular concepts IGEN is using. 
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The goal of convincing the user to take his umbrella, though, produces the output: 

(25) I1 pleut. 
it rains 
It's raining. 

because French doesn't have a verb corresponding to to pour. Since no option equiva- 
lent to the one for #<w: POURS> is proposed, the option for #<w: PLEUT> is the preferred 
option, just as #<w:RAINS> is the preferred option in English when lack of time or 
deliberate removal prevents the linguistic component from finding #<w : POUR$>. 

The point here is not simply that IGEN can handle these changes; after all, one of 
the primary motivations for dividing the generator into separate planning and linguis- 
tic components is to allow the components to be modified independently. The point 
is that IGEN allows the linguistic component to be modified so dramatically without 
limiting its ability to handle interactions between linguistic and planning issues. In 
fact, IGEN can handle these interactions equally with either version of the linguistic 
component without having to make any corresponding changes to the planner. 

5. Summary 

IGEN is designed to overcome the limitations, while retaining the advantages, of the 
modular approach to natural language generation. It does this by means of annota- 
tions that provide the planner with an abstract description of the effects of particular 
linguistic choices, allowing IGEN to handle interactions between the planning and 
linguistic levels while retaining the complete independence of the components. Thus 
IGEN can vary the work done by each component independently, even in cases where 
the final output depends on interactions between them. 

As the examples in Section 4 show, IGEN can vary how it expresses information 
in response to the differing roles that the information plays in the plan and, con- 
versely, in response to a change in the language being used. It can also revise its 
initial communicative plan based on the options suggested by the linguistic compo- 
nent. Furthermore, this variation requires no weakening of the generator's modularity. 
Changes in the plan structure are invisible to the linguistic component, and the change 
in languages is invisible to the planner. In addition, since IGEN explicitly models and 
reasons about the effects of its linguistic choices, it can gracefully handle situations 
where the available time or linguistic resources are limited. 
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