
Integrating Text Planning and Linguistic
Choice Without Abandoning Modularity:
The IGEN Generator

Robert Rubinoff*

Natural language generation is usually divided into separate text planning and linguistic com-
ponents. This division, though, assumes that the two components can operate independently,
which is not always true. The IGEN generator eliminates the need for this assumption; it handles
interactions between the components without sacri~cing the advantages of modularity. IGEN
accomplishes this by means of annotations that its linguistic component places on the structures
it builds; these annotations provide an abstract description of the effects of particular linguistic
choices, allowing the planner to evaluate these choices without needing any linguistic knowledge.
This approach allows IGEN to vary the work done by each component independently, even in
cases where the final output depends on interactions between them. In addition, since IGEN
explicitly models the effects of linguistic choices, it can gracefully handle situations where the
available time or linguistic resources are limited.

1. Introduct ion

Programs that generate natural language have generally been divided into two largely
independent components: a text planning component that organizes the information
to be expressed, and a linguistic component that converts the information into gram-
matical sentences of some natural language (e.g., Thompson 1977; McKeown 1985;
McDonald 1983; Meteer 1989; Reithinger 1990; Dale 1989). This division seems natural,
and has indeed proven useful, because the two components deal with different kinds
of data and involve different kinds of reasoning. The planning component reasons
about information and text structures to plan a coherent discourse, while the linguis-
tic component arranges the lexical elements and syntactic constructions available in
some language to ensure the resulting text's grammaticality and comprehensibility.

This division into independent components, though, is only tenable if the decisions
each component must make can be made independently. If some of the generator's
work involves both text planning and purely linguistic issues, there will be no way
to make the necessary decisions without violating the generator's modularity. As we
shall see, natural language generation does indeed involve such decisions. The need
to handle interactions between text planning and linguistic concerns thus seems to
require either abandoning the division into separate components (e.g., Danlos 1987;
Kantrowitz and Bates 1992), with the resulting increase in complexity, or foregoing
the ability to handle these interactions at all (as advocated in Reiter [1994]). A third
option is to identify possible interactions in advance and handle them as special cases,
but this only allows the generator to handle those interactions that have been antici-

• AnswerLogic, Inc., 1111 19 St. NW, Suite 600, Washington, DC 20036. E-mail: rrubinoff@answerlogic.
com. The research described here was done at the University of Pennsylvania and Carnegie Mellon
University.

(~) 2000 Association for Computational Linguistics

Computational Linguistics Volume 26, Number 2

pated in advance. Furthermore, handling the interactions often requires violating the
modularity of the system, because detecting when the special case has occurred still
requires both planning and linguistic knowledge.

The IGEN generator solves this problem. IGEN handles interactions between the
text planning and linguistic components without having to sacrifice any of the gen-
erator's modularity. The key to IGEN's approach is the use of annotations that the
linguistic component attaches to each linguistic expression it constructs. These anno-
tations abstract away from the details of the linguistic expressions, describing only
those properties of the expressions that are potentially relevant to the planner. The
planner can then evaluate the choices made by the linguistic component and deter-
mine how those choices interact with the text plan independently of the linguistic
component's processes and data structures. As a result, IGEN can make decisions in-
volving interactions between the components while retaining complete modularity. In
fact, replacing IGEN's normal linguistic component with one for a different language
involves no change in the planner despite the fact that the two languages have d~-
ferent idiomatic expressions for some of the sentences being generated; the planner's
processing is identical in both languages. Furthermore, since the annotations allow
IGEN to explicitly model the effects of its decisions, IGEN is able to gracefully handle
the effects of limitations on processing time or linguistic resources; since IGEN always
knows how well a given linguistic construction carries out its plan, it can choose the
best available construction when it can't find an ideal one.

2. Modularity in Generation

Research in natural language generation has generally separated the task into distinct
text planning and linguistic components. The text planning component selects and
organizes the information to be expressed in some internal representation and then
sends it to the linguistic component, which converts the information from the internal
form into grammatical sentences of some natural language. The names given to the
components vary; they have been called "strategic" and "tactical" components (e.g.,
McKeown 1985; Thompson 1977; Danlos 1987) 1, "planning" and "realization" (e.g.,
McDonald 1983; Hovy 1988a), or simply "what to say" versus "how to say it" (e.g.,
Danlos 1987; Reithinger 1990). The precise division of work between the components
can also vary, as can the extent to which the text planner is responsible for select-
ing (as opposed to merely organizing) the information to be expressed. Much (if not
most) work in generation, though, continues to rely on this modular approach for its
basic design. For example, DIOGENES (Nirenburg et al. 1988), EPICURE (Dale 1989),
SPOKESMAN (Meteer 1989), Sibun's work on local organization of text (Sibun 1991),
and COMET (Fisher and McKeown 1990) all are organized this way. McDonald has
even argued for extending the model to a large number of components (McDonald
1988), and several systems have indeed added an additional component between the
planner and the linguistic component (Meteer 1994; Panaget 1994; Wanner 1994). Re-
iter describes a pipelined modular approach as a consensus architecture underlying
most recent work in generation (Reiter 1994).

As this large body of work makes clear, the modular approach has been very
useful, simplifying the design of generators and making them more flexible. In fact, in
at least one case the "tactical" component of a generator was successfully replaced with
a radically different independently designed one (Rubinoff 1986). A modular design,

l Danlos uses "syntactic" rather than "tactical"; see the note on page 122 of Danlos (1987).

108

Rubinoff The IGEN Generator

though, presumes that the work done by each module can be done independently.
Separating generation into text planning and linguistic components thus implicitly
assumes that text planning can be done wi thout knowledge of the language being used
and, conversely, that linguistic choices can be made wi thout text planning knowledge.
Unfortunately, this is not always true; both structural and lexical choices sometimes
depend on interactions between the two parts of the generator. Thus generat ion must
either compromise the modular i ty be tween the components or give up the ability to
handle these cases properly}

2.1 Interactions between the Modules
The modular approach to generation assumes that the linguistic component ' s decisions
never mat ter to the planner (or whichever component(s) organize the information to
be expressed). This is not the case, though, as can be seen from the alternations in
(1)-(3):

(1) a. John killed him with a gun.

b. John shot him dead.

(2) a. John infected him with a virus.

b. *John virused him sick.

(3) a. *John homed him with an order.

b. John ordered him home.

The sentences (la) and (lb) express essentially the same information, so if the
generator is a t tempting to express this information, it must choose be tween them at
some point. In a modular generator, though, there is no point at which the decision
can be made. The planner can't make this choice, because the availability of the choice
depends on the particular linguistic resources of English. This can be seen by com-
parison with (2) and (3), in which only one alternative is available. In fact, a different
alternative is available in each case. Since the planner doesn ' t know which alterna-
tive(s) i s /a re available, it can't choose between them; the linguistic component must
make the choice.

On the other hand, the decision has to be made by the planner, since it can depend
on a n d / o r affect the goals the generator is trying to achieve. The choice between (la)
and (lb) should depend (in part) on what the generator is primari ly trying to talk
about. (la) is more appropriate if the generator is going to continue talking about the
gun, whereas (lb) is more appropriate if the main concern is the ramifications of the
victim's death. Since the planner is the component that deals with this information, it
must choose be tween the alternatives.

Also, the choice between (la) and (lb) determines what information can be easily
omitted; cutting off the end of the sentence leaves out ment ion of the use of a gun in
(la) and the death of the victim in (lb). Since the planner knows the consequences of
omitt ing information, it must make the choice of which alternative to use and whether
to abbreviate it. It might seem that the planner could simply indicate exactly what

2 Note that these interactions aren't the result of the particular details of how the work is divided
between the components. As we shall see, there are some decisions that depend on both the
underlying goals driving the generator and the details of what can be expressed in a particular
language. Any architecture that deals with these issues in different components will encounter the
problems described below.

109

Computational Linguistics Volume 26, Number 2

information it wants included in the utterance, but that would require the generator
to always assume a strategy of saying as little as possible.

Furthermore, decisions about what information to include m ay interact with other
decisions. For example, the generator may want to emphasize the victim's death but
not care about the means of death; it might then choose (lb) for the emphasis even
though (la) would let it skip ment ion of the gun. This kind of decision can only be
made by the planner.

The same kinds of interactions arise in the process of lexical choice. It would
seem that lexical choice has to be handled by the planner, since it depends very much
on what the generator is t rying to accomplish. For example, the choice of describing
someone as either firm, obstinate, or stubborn should depend on what else the generator
wants to say about the person, as should the choice be tween meek and wimpy. The
generator might describe how justice was served by an execution rather than how the
prisoner was murdered by the state. Similarly, the generator might deride the comments
of a dreamer, but praise the insights of a visionary. These kinds of lexical choices can
only be made by the component that handles the generator ' s goals.

On the other hand, there are a number of reasons w h y lexical choice has to be
handled by the linguistic component . First of all, lexical choice is ve ry dependen t on
the particular linguistic vocabulary of the language being generated. Thus French, for
example, uses two different verbs (connaftre and savoir) to express knowing a person
and knowing information, but English just uses know for both concepts. Similarly,
English uses to be to indicate both location and a state or property, whereas French
uses se trouver for the former and ~tre for the latter.

Furthermore, there is in general no guarantee that there will be any lexical i tem to
express a given concept. For example, there is no word in English for the concept of
a car with a removable door. There 's no inherent reason w h y there couldn ' t be; after
all, there's a word for a car with a removable roof. This is just a part icular fact about
English. Similarly, there is a word giant meaning "large man", but no corresponding
word meaning "large car".

In addition, since lexical choice interacts with syntactic decisions, it cannot be done
in advance of choosing syntactic structures. For example, a generator cannot decide
to use probable instead of likely without knowing if the completed utterance could be
the ungrammatical he is probable to be early. Similarly, the verb drink can' t be chosen
wi thout knowing whether the clause will have a direct object; he drinks apple juice and
he drinks actually have quite different meanings. 3 Note that the decision here doesn ' t
depend just on whether the beverage is going to be explicitly ment ioned; it depends
on whether it's going to be ment ioned in a specific syntactic position in the sentence.
So here too it is impossible to assign the decision to a single component ; the decision
must be made by both components .

The need to handle interactions such as these forces compromises in the modular-
ity of generators. In the TEXT system (McKeown 1985), for example, some decisions
about what information to include are in fact encoded into the tactical component .
For example, TEXT's tactical component omits the attribute value WATER (used in
TEXT to indicate that some object travels in or under the water) w h en it must be

3 McDonald has argued that lexical choice should be done in the first step in generation; in cases where
lexical and syntactic decisions interact, lexical choice will constrain subsequent syntactic decisions
(McDonald 1991). This approach is certainly possible (although it's not clear how to prevent
independent lexical choices from imposing incompatible syntactic constraints), but it assumes that the
resulting syntactic constraints don't matter to the generator. For example, choosing drink may require
the generator to include a direct object even if it would prefer not to indicate that information; by the
time the generator discovers this requirement, it is already committed to the choice.

110

Rubinoff The IGEN Generator

expressed as an adjective. This is because the only available adjective is the somewhat
awkward water-going, and it turns out that in the sentences TEXT happens to generate,
WATER only appears in an adjective context in cases where it's not important to say
it. Thus, this strategic decision (that WATER can be omitted) is encoded permanent ly
into the tactical component; there is no way for the strategic component to control this
decision.

In MUMBLE (Meteer et al. 1987), in contrast, the interactions have pushed lin-
guistic information into the text planner. For example, MUMBLE can take the already
constructed phrase Fluffy, Floyd's dog, buries bones and modify it with the information
that this was reported by Helga to produce Helga reported that Fluffy, Floyd's dog, buries
bones. But in order to do this, it has to mark the information about Helga with the
new-main-clause feature. So the planner has to know what clauses are, know that
the earlier information was turned into a clause, and know that making Helga reports
a new main clause is a useful thing to do. Many of the linguistic decisions are thus
actually being made by the planner.

2.2 Facing the Dilemma
We are now faced with a dilemma. On the one hand, the separation of planning and
linguistic realization into distinct components seems natural and useful. On the other
hand, it precludes making decisions involving interactions between text planning and
linguistic issues.

One possible response would be to abandon the separation; the generator could be
a single component that handles all of the work. This approach has occasionally been
taken, as in Kantrowitz and Bates (1992) and Danlos (1987) 4 and, at least implicitly, in
Paris and Scott (1994) and Delin et al. (1994); however, under this approach, all of the
flexibility and simplicity of modular design is lost.

The opposite approach is to simply ignore the limitations of a modular design and
proceed as if there need be no interactions between the components. Whatever prob-
lems result will be handled as best they can, on a case-by-case basis. This approach is
the one taken (implicitly or explicitly) in the majority of generators. In fact, Reiter has
even argued in favor of this approach, claiming that the interactions are sufficiently mi-
nor to be ignored (or at least handled on an ad hoc basis) (Reiter 1994). While this cer-
tainly has appeal as a design methodology, it seems reckless to assume that problems
will never appear. Certainly an approach to generation that does handle these interac-
tions would be an improvement, as long as it d idn ' t require abandoning modularity.

There have in fact been attempts to develop modified modular designs that allow
generators to handle interactions between the components. These include devices such
as interleaving the components (McDonald 1983; Appelt 1983), backtracking on failure
(Appelt 1985; Nogier 1989), allowing the linguistic component to interrogate the plan-
ner (Mann 1983; Sondheimer and Nebel 1986), and Hovy 's notion of restrictive (i.e.,
bottom-up) planning (Hovy 1988a, 1988c). All of these approaches, though, require
that potential interactions be determined either by the tactical component or by the
system designer in advance. The text planning component still has no way to detect
and respond to unanticipated interactions on its own initiative. 5

4 Danlos still has a separate low-level "syntactic" component, but essentially all of the generator's
decisions are made by the strategic component.

5 In fact, adding additional components may make the problem even worse, as decisions may then be
spread across three or more separate components. It might seem that a component placed between the
planner and the realizer could handle interactions between the levels, but this would simply recreate
the original problem within the "middle" component; coping with the interactions would still require
dealing with the whole range of issues that come up in both planning and realization.

111

Computational Linguistics Volume 26, Number 2

The IGEN generator resolves the modularity dilemma by means of a new ap-
proach that preserves complete modularity but allows the generator to handle inter-
actions between the components. The key to IGEN's approach is that the linguistic
component provides the planner with an abstract description of the effects of using
particular linguistic structures. This abstract description is encoded in annotations that
the linguistic component attaches to the structures it builds. In contrast with previous
feedback-based approaches, in which the feedback only occurs when the linguistic
component needs additional help from the planner, IGEN annotates all of its linguistic
structures. This allows the planner to detect situations where linguistic choices cause
problems at the planning level; the linguistic component need not be aware of them.
Conversely, the planner can build communicative plans without concern for whether
the linguistic component can actually express the elements of the plan; any such prob-
lems will be detected by the linguistic component and reflected in the annotations.
The annotations allow a cycle of negotiation between the planner and the linguistic
component; each component works entirely within its own level, drawing only on the
results of the work at the other level.

3. IGEN: A New Model for Generation

The IGEN generator overcomes the limitations of the modular approach, without giv-
ing up its advantages, by the use of annotations that provide feedback from the lin-
guistic component to the planner. These annotations abstract away from the details
of the linguistic expressions, allowing the planner to detect interactions between de-
cisions at the linguistic and planning levels without having to know anything about
the knowledge or reasoning used by the linguistic component. The planner can then
respond to these interactions by choosing among the expressions proposed by the lin-
guistic component, using the annotations to evaluate how particular linguistic choices
affect the successful achievement of the goal(s) driving the generator. This approach
allows IGEN's components to interact while preserving the strict separation between
their knowledge and processing.

The annotations are predicates that apply to the linguistic expression they are
attached to, indicating some effect of or property of the expression. Most of them also
take an explicit argument indicating a semantic expression whose relation to the option
is indicated by the annotation. The types of annotations used by IGEN are shown in
Figure 1. They fall into the following general categories: 6

Meaning-based These relate the meaning of a linguistic option to the informa-
tion it is supposed to express, both in terms of how explicitly and how
completely the information is expressed.

Contextual These indicate dependencies and effects on the presence and status
of elements in the discourse context, including not only availability for
anaphoric reference but also effects on how various elements in the dis-
course context will be perceived.

Pragmatic These indicate various pragmatic and stylistic features of the op-
tion. 7

6 There are also some annotation types used to keep track of IGEN's internal processing; these are not
shown here.

7 Note that IGEN currently only uses one annotation of this type: concise-construction, used to mark
constructions that are particularly concise.

112

Rubinoff The IGEN Generator

Meaning-based:
makes-explicit
makes-implicit
indirectly-suggests
missing-info
extra-info

Contextual:
activates-in-context
from-context
relates-to

Pragmatic:
concise-construction
tone
marks-as-focus

Figure 1
Annotation types.

The IGEN generator uses these annotations to allow for interactions between its
various components, shown in Figure 2. IGEN works as follows: The communicative
planner responds to goals given to the generator by building an appropriate plan,
which will contain a number of communicative actions, i.e., actions that communi-
cate information, and places requests for ways to express that information into the
workspace. The linguistic component then responds by producing a series of anno-
tated linguistic options for each of the planner's requests. These are also placed in
the workspace, where the planner can use the annotations to evaluate and rank the
options and also, when appropriate, to modify the plan based on what the linguistic
component is able to produce.

This process doesn't actually produce any output, though, since there is no way to
determine when it is "finished." The linguistic component can always come up with
yet another way to express something, and the planner can always do more reasoning
about the interactions between some expression and the planner's specific and general
goals. There must therefore be another component, here called the utterer, that is
responsible for assembling utterances from the options preferred by the planner and
shipping them off to be spoken or written. The utterer's job is to balance the planner's
preferences against time pressure, producing output when whatever deficiencies the
options have are outweighed by the consequences of remaining silent. The various
components thus work together in parallel, incrementally building, improving, and
producing utterances. Each component of the generator handles a particular aspect of
the generation task, involving different kinds of knowledge and different constraints
on the generator's work.

IGEN in some ways resembles a blackboard architecture (Nii 1986b, 1986a); like
a blackboard, its workspace contains several possible utterances that are described at
different levels of structure and are built up incrementally by various independent
components. On the other hand, it doesn't have the strict hierarchical structure that
usually characterizes blackboard systems; each request from the planner may corre-
spond to several linguistic options, and the linguistic options may handle (parts of)
more than one request. Also, blackboard systems usually have sequential scheduling of
actions, whereas IGEN's planner, linguistic component, and utterer all run in parallel.

Furthermore, the relevant issue here for IGEN is whether there are real interac-
tions between the modules, which a blackboard-style approach to generation doesn't

113

Computational Linguistics Volume 26, Number 2

Goals

N N Entries / / .

~/ upt"
. Workspace

Evaluations -I

Utterer

Evaluated Options

)
Assembled Utterances

Figure 2
Architecture of the IGEN generator.

guarantee. Blackboard-based generation can still be structured in a way that makes
such interactions impossible, either explicitly, as in DIOGENES (Nirenburg et al. 1988),
which uses several blackboards successively, or implicitly, as in GLINDA, in which
successive stages of rules depend on the results of previous stages for their triggers. 8

3.1 The Communicative Planner
This is a special-purpose planner that accepts goals from the overall system and plans
out ways to achieve them via communication. These can be "communicative" goals
such as "transmit this information to the user" (or more precisely "get the user to be-
lieve this information"), but they can also be social interaction goals such as "establish
a deferential (or collegial, or superior) attitude toward the user" or cooperative behav-
ior goals such as "be straightforward" or "transmit as little information as possible"

8 As can be seen from the diagram on page 24 of Kantrowitz and Bates (1992) and the accompanying
discussion.

114

Rubinoff The IGEN Generator

or even more general goals such as "get the user to take his umbrel la" or "convince
the user to improve his diet."

The communicat ive planner draws on a set of specialized plans that capture how
communicat ion acts can achieve various goals. It draws on knowledge of the effects
of communicat ion to plan out how to achieve various kinds of goals by expressing
various kinds of information. Since it has to evaluate how well particular linguistic
expressions further those goals, the planner needs to build an explicit representat ion
of its plan(s) that indicates how particular actions contribute to their achievement. The
planner depends on the linguistic component to tell it how to carry out these actions,
i.e., how to express particular information in language.

While the planner is specialized for planning communicat ive actions, it can in
principle draw on anything in the system's general body of knowledge and belief that
might suppor t the goals it is given. Thus (as we shall see) in the second example in
Section 4.3, the planner decides to ment ion the rain not because it bears any special
relationship to anything in the input goal, but rather because mentioning it is part of a
plan that achieves the goal. Even in cases where the p lanner ' s goal is simply to transmit
some specific information, it can include any additional information that will help that
transmission to succeed. The planner ' s role is not just to organize information, or even
to collect information on some topic and organize it, but rather to identify a set of
communicat ive acts that will achieve some goal.

3.1.1 Building an Initial Plan. The communicat ive planner starts off by building an
initial plan to achieve the goals it is given. The form of that plan is important. It cannot
be just a (partially or totally) ordered set of information to go into the text, as is the
case in ma ny generators. Since IGEN's planner needs to evaluate how well linguistic
options achieve the plan's goals, the plan must record what each piece of information
in the plan is in tended to accomplish and how it supports the purpose of the larger
text containing it. Sometimes the p lanner ' s goal may simply be to convey certain
information to the user, but there may also be more indirect goals that conveyance
is in tended to achieve. Thus the plan must indicate in detail why the information is
being expressed. An example of the type of plan the planner must build is shown
in Figure 3 (Section 4.1 discusses the use of this plan in more detail). This model of
text plans meshes well with the model of discourse structure developed by Grosz and
Sidner (Grosz and Sidner 1985, 1986), in which the purpose of each discourse segment
is an important part of the structure. 9

IGEN constructs its plans using a hierarchical planning algori thm (Nilsson 1980).
The planner first checks all of its top-level plans to see which have effects that match
the goal. Each matching plan's precondit ions are checked; if they are currently (be-
lieved to be) true, the planner then at tempts to find all instantiations of the plan's
body. 1° The body of a plan can be an action or sequence of actions, a goal or sequence

9 Moore and Paris also note that "a generation system must maintain the kinds of information outlined
by Grosz and Sidner" (Moore and Paris 1989, 203). Their planner uses plan structures similar to
IGEN's, except that the plan operators they use are generally instantiations of rhetorical relations
drawn from Rhetorical Structure Theory (Mann and Thompson 1987). In IGEN, the plans can involve
any goals or actions that could be achieved via communication.

Hovy has described another text planner that builds similar plans (Hovy 1988b). This system,
however, starts with a list of information to be expressed and merely arranges it into a coherent
pattern; it is thus not a planner in the sense used here (as Hovy makes clear).

10 Since text planning was not the primary focus of this work, IGEN is designed to simply assume that
any false preconditions are unattainable. IGEN's planner divides the requirements of a plan into two
parts: the preconditions, which are not planned for, and those in the plan body, which are. This has no

115

Computational Linguistics Volume 26, Number 2

.

2.

.

4.

N.

Overall Goal: Know(Hearer,[weather information over next few days])
Achieve (1) by achieving:

Know(Hearer,[first day's information])
Know(Hearer,[second day's information])

Know(Hearer,[last day's information])

Support (2) by performing: Utter([first day's information])
Support (2) by performing: Utter([second day's information])

Support (2) by performing: Utter([last day's information])

Figure 3
A sample initial plan.

of goals, a subplan, or a goal decomposition. 11 To instantiate the body, the planner
accordingly collects the action(s), recursively plans for the goal(s), instantiates the
subplan, or carries out the goal decomposition. The net result of this process is a list
of possible complete plans that achieve the original goal.

3.1.2 Responding to Linguistic Options. Once the communicative planner has built
up an initial plan of what it wants to say, it puts requests for the individual bits of
information contained in the plan into the workspace for the linguistic component to
respond to. The planner, however, cannot assume that its requests will be followed
precisely; the linguistic component may not be able to find a way of completely sat-
isfying them. The planner must therefore examine and evaluate the responses that
the linguistic component puts into the workspace (as described below in Section 3.2).
These responses consist of linguistic structures together with the annotations that pro-
vide descriptions of how closely the option carries out the request(s) it responds to, as
well as any other information or effects arising from the use of the option. Drawing
on these annotations, the planner evaluates how well the various options fit into the
plan and assigns them appropriate ratings along a scale from VERY-HIGH to VERY-L0W.

The evaluation algorithm is divided into two phases (as shown in Figure 4), which
work roughly as follows: The first phase looks at how well the option matches the
request, checking first to see whether the option misses any requested information;
if there is no missing information, the rating is based on annotations indicating the
relationship between the option's meaning and the request. The second phase then
adjusts the option's rating based on how any missing or added information interacts
with the plan structure. This ability to adjust preferences among linguistic options
based on planning issues allows IGEN to overcome the usual limitations of a modular
generator design. Without the annotations (or some similar feedback mechanism),
the planner would have to supply the linguistic component with any information
that might be relevant to choosing among the options. This could potentially include

practical effects, since the preconditions, by and large, are types of goals that IGEN doesn't have any
plans for; any attempt to plan for them would immediately fail.

11 A goal decomposition is a way to decompose a goal into subgoals that can be planned for
independently. For example, the utter-sequence plan works by decomposing the information to be
uttered according to some relevant ordering.

116

Rubinoff The IGEN Generator

EVALUATE(Option, Request)
Phase 1:

1. Let Covered-Pieces =
UNION(Request, arguments of any COVERS-OTHER-ENTRY annotations).

2. If Option has a MISSING-INFO annotation whose argument is a member of
Covered-Pieces, or has more than one MISSING-INFO annotation, evaluation is
: VERY-LOW.

3. Else if Option has any MISSING-INFO annotations, evaluation is :LOW.

4. Else if Option has any INDIRECTLY-SUGGESTS annotations, evaluation is
: MEDIUM.

5. Else if Option has any MA~S-IMPLICIT annotations, evaluation is : HIGH.

6. Else evaluation is :VERY-HIGH (because Option must have a MAKES-EXPLICIT
annotation).

Phase 2:

1. Let Adjustment = 0.

2. For each MISSING-INFO annotation attached to Option: Subtract 1/2 from
Adjustment if its argument is an item in the plan (1 if it's a critical item).

3. For eachACTIVATES-IN-CONTEXT or EXTRA-INFO annotation attached to
Option:

• If its argument is a critical item in the plan, add I to Adjustment.
• Else if its argument supports or conflicts with a critical item in the plan

or strengthens or weakens a goal or precondition of the plan or the head
of the request, add or subtract 1 from Adjustment accordingly.

• Else if its argument is a sequence, Request is a member of another
sequence that is a critical item in the plan, and the two sequences are
along the same scale but are disjoint or only overlap slightly, subtract 1
from Adjustment. For example, the sequences [1, 2, 3, 4] and [4, 5, 6, 7]
would trigger this adjustment, but the sequences [1, 2, 3, 4] and [2, 3, 4, 5]
wouldn't.

• Else if its argument is an element in the plan, add 1/2 to Adjustment.

4. Adjust Option's Phase I evaluation up or down Adjustment levels (ignoring
1/2s), e.g. an Adjustment of -2 or - 21/2 would change : HIGH to : LOW, and add
an ADJUSTED-UP or ADJUSTED-DOWN annotation to Option as appropriate.

Note: a "critical" i tem in a p lan is one that p lays a central role in the s t ruc ture of the
plan, e.g. the basis of a goal d e c o m p o s i t i o n or an action, goal or p lan sequence.
Figure 4
The linguistic option evaluation algorithm.

a n y t h i n g in the plan, so the l inguistic c o m p o n e n t w o u l d have to u n d e r s t a n d and
reason abou t eve ry aspect of the plan, defea t ing the w h o l e p u r p o s e of a m o d u l a r
architecture.

In add i t ion to eva lua t ing opt ions , the p lanner looks for oppor tun i t i e s to revise the
p lan based on the w o r k of the l inguist ic c o m p o n e n t . For example , the same linguistic
s t ructure m a y a p p e a r as an op t ion for several different par t s of the plan, or an op t ion
for one pa r t of the p lan m a y also express i n fo rma t ion con ta ined in (or re la ted to)

117

Computational Linguistics Volume 26, Number 2

another part of the plan. The planner can reorganize the plan to take advantage of
these kinds of situations. 12 Thus the communicative plan can be modified based on
linguistic information, again without violating the strict modularity of the generator.

3.2 The Linguistic Component
The linguistic component is the part of IGEN that produces the actual bits of lan-
guage that make up the utterance. It acts like a "consultant" to the communicative
planner, providing it with linguistic expressions that attempt to capture part or all of
the information the planner wants to express. 13 The linguistic component monitors the
workspace, looking for requests from the planner, to which it responds by suggesting
linguistic expressions that capture some or all of the information in the request. These
expressions are placed in the workspace as options for the planner to evaluate; the
linguistic component continues suggesting options for a request as long as that request
remains in the workspace. 14

The linguistic options are pieces of surface structure; they can be at any level of
grammatical structure and need only be partially specified. Thus an option could be a
full sentence, phrase, or word, or a particular clause structure (e.g., a topicalization or
an/t-cleft) with no further detail filled in, or a noun phrase with a determiner but with
the head noun left unspecified. The options are represented as feature sets indicating
the various syntactic and lexical properties of the option. 15 For example, the following
feature set represents the partial phrase "It will be ADJP" in which the predicate
adjective has not yet been specified:

CAT ~ S

SUBJ #<w : IT> - • -

LEX = #<w:BE>
TENSE = FUTURE

FRED ~ ADJP

ORDER z (SUBJ HEAD FRED)

The FRED role in this phrase has not been filled yet, so its value is ADJF, indicating
that it must be filled by an adjective phrase.

The linguistic component is also responsible for annotating the options it puts into
the workspace. The annotations are derived primarily from three sources: a comparison
of the structure and position of the option's meaning and the request in IGEN's seman-
tic network, the induced perspective shift of the option's meaning, and special anno-
tations associated directly with the option. 16 The annotation algorithm works roughly

12 Another possibility would be for the planner to revise the plan when it detects problems with the
options. For example, in a tutoring situation, if the linguistic component only returned options that
involve concepts the student doesn't yet understand or know about, the planner might decide to revise
the plan (perhaps to simplify what it's trying to say). IGEN doesn't implement this kind of plan
revision, although the annotations provide the planner with the information necessary to do so.

13 IGEN's design allows for multiple linguistic components, each providing a different kind of linguistic
knowledge, although only one was actually used; see Rubinoff (1992) for details.

14 As currently implemented, the linguistic component finds options by scanning through IGEN's
semantic network, looking for items that are part of the meaning of some expression (Rubinoff 1992).
The particular method used to produce the options, though, is incidental to the the overall functioning
of the generator; it has no effect on the annotation or evaluation of the options, as the annotations
depend only on the relationship between the option's meaning and the request.

15 There is also a MAP feature used to connect unfilled syntactic arguments with the corresponding
semantic objects.

16 The induced perspective shift of the option's meaning is computed using a model of perspective built
into IGEN's knowledge representation formalism; see Rubinoff (1992) for details.

118

Rubinoff The IGEN Generator

as fo l lows : F i r s t the l i ngu i s t i c c o m p o n e n t a d d s an a n n o t a t i o n tha t i nd i ca t e s the k i n d of
c o n n e c t i o n (if any) b e t w e e n the o p t i o n ' s m e a n i n g a n d the r eques t ; th is p r o d u c e s e i the r
a MAKES-EXPLICIT, MAKES-IMPLICIT, INDIRECTLY-SUGGESTS, or MISSING-INFO annota-
tion. Next it adds EXTRA-INFO and MISSING-INFO annotations to indicate the differ-
ences between (the meaning of) the option and the request, and COVERS-OTHER-ENTRY
annotations for any other requests that are included in the option's meaning. Finally, it
adds ACTIVATES-IN-CONTEXT annotations to indicate any associated perspective shifts.

For an example, consider the situation described in Section 2.1 where the generator
is trying to express the information that John shot and killed someone. 17 Among the
annotated options produced to express #<SHOOT-AND-KILL (JOHN, BILL)> are:

• #<w:KILL>:
(MAKES-EXPLICIT #<KILL (AGENTi, AGENT2) >)
(MAKES-IMPLICIT #<SHOOT-AND-KILL(AGENTi, AGENT2) >)
(MISSING-INFO #<INSTRUMENT(SHOOT-AND-KILL, GUN) >)

• #<w: SHOOT>:
(MAKES-EXPLICIT #< SHOOT (AGENT1, AGENT2) >)
(MAKES-IMPLICIT #<SHOOT-AND-KILL (AGENTI, AGENTg.) >)
(MISSING-INFO #<RESULT (SHOOT-AND-KILL, DEATH) >)

In each of these cases, t he re is a MAKES-EXPLICIT a n n o t a t i o n for the m e a n i n g of the
w o r d , a MAKES-IMPLICIT a n n o t a t i o n for the r e q u e s t e d i n f o r m a t i o n , a n d a MISSINGINF0
a n n o t a t i o n for the p r o p e r t y of the r e q u e s t t ha t is no t c o v e r e d b y the op t ion . (Of course ,
MAKES-EXPLICIT a n n o t a t i o n s on the o p t i o n s tha t p r o d u c e with a gun a n d dead i nd i ca t e
h o w the m i s s i n g i n f o r m a t i o n can be a d d e d to the u t t e rance .)

The ful l a n n o t a t i o n a l g o r i t h m is as fo l lows: 18

A N N O T A T E (R e q u e s t , O p t i o n)

i,

2.

3.

4.

5.

Construct a MAKES-EXPLICIT annotation for each node or link in Opt ion ' s
meaning and collect them in Annotat ions.

If Opt ion ' s meaning contains Request and nothing else, return Annotat ions.

If Request is an instance of an element in Opt ion ' s meaning and they have the
same label, add a MAKES-EXPLICIT annotation for Request to Annotat ions.

Else if Request is an instance, subconcept, or subrange of an element in Opt ion ' s
meaning or a posit ion within (or identical to) an element in Opt ion ' s meaning,
then add a MAKES-IMPLICIT annotation for Request, MISSING-INFO annotations
for any links connected to Request that don't match links connected to the
element in Option's meaning, and EXTRA-INFO annotations for any links
connected to the element in Option's meaning that don't match links connected
to Request.

Else if an element in Option's meaning is an instance or subconcept of Request,
add a MAKES-IMPLICIT annotation for Request and MISSING-INFO annotations as
described in step (4) to Annotations.

17 While these annotations provide the necessary information for the planner to choose among the
options as discussed in Section 2.1, IGEN's plan revision capabilities doesn't currently handle this case.
As a result, IGEN currently produces either "John shot him dead" or "John killed him with a gun" for
this example.

18 This description leaves out a few details; for example, in certain cases MISSING-INF0 annotations are
only generated for links considered "prominent" in the current perspective; see Rubinoff (1992) for
details.

119

Computational Linguistics Volume 26, Number 2

6.

7.

8,

9.

10.

11.

12.

Else if an element in Option's meaning is a "sibling" of Request (i.e., they are
instances or subconcepts of the same element) or an "uncle" of Request (i.e., the
sibling of an element of which Request is an instance or subconcept), add a
MAKES-IMPLICIT annotation for Request and MISSING-INFO and EXTRA-INFO
annotations as described in step (4) to Annotations.

Else if there is any other link between Request and an element in Option's
meaning, add an INDIRECTLY-SUGGESTS annotation for Request to Annotations.

Else add a MISSING-INF0 annotation for Request to Annotations.

If Option's meaning contains a node or link that is another part of the planner's
request, then add a COVERS-0THER-ENTRY annotation for the workspace entry
containing the request to Annotations, and repeat steps (3) through (8) for that
request.

Add ACTIVATES-IN-CONTEXT annotations for every element that would be shifted
into perspective by an element in Option's meaning to Annotations.

Add any special annotations associated with Option to Annotations.

Return Annotations.

3.3 The Utterer
The utterer is responsible for the final assembly and ou tpu t of the utterance. Its main
concern is balancing the desire for the most appropriate possible utterance against
t ime pressure. Since the planner and the linguistic component build up and refine the
ut terance incrementally, they can continue working indefinitely; there 's never a point
where they can declare the utterance "finished" and quit working. On the other hand,
IGEN can't go too long wi thout ut tering something or it will lose its turn, because
the user will either utter (i.e., type) something else or get tired of wait ing and leave
(or quit the program). So the utterer mus t strike a balance be tween the advantage
of improvements to the ut terance that may yet be found and the disadvantage of
cont inued delay.

The actual work of the utterer is fairly straightforward. It constantly monitors the
workspace, checking the available options against a time-sensitive acceptability level.
Whenever the best available ut terance meets or exceeds the m in im u m acceptable eval-
uation, the utterer proceeds to ou tpu t the utterance. The criterion of acceptability is
de termined via a set of delay thresholds that control how long to wait before low-
ering the min imum acceptable rating. For example, the default threshold settings are
[0,1,2,12,16], meaning: if the time since the last ut terance is more than 0, accept an
option rated VERY-HIGH or better; if the time since the last ut terance is more than 1,
accept an option rated HIGH or better; and so on through all the ratings. 19 If the time
since the last ut terance is more than 16, then any option will be accepted; this essen-
tially means that the generator would rather say something completely s tupid than
remain silent.

If any of the candidate ut terances ' evaluations meets or exceeds the current mini-
m u m acceptable rating, the utterer chooses the best candidate ut terance and outputs
it, removing the workspace entries it derives from. If there are two or more candidate
utterances with the highest rating, the utterer breaks the tie by compar ing the ratings

19 IGEN measures time in terms of cycles through its process scheduler, an arbitrary but workable
approach that allows for consistent timing behavior.

120

Rubinoff lqle IGEN Generator

of the individual options they are composed of. If there is still a tie, the utterer chooses,
in order of preference, the candidate utterance that:

.

2.

.

,

5.

violates fewer constraints. 2°
was the only one whose rating was adjusted up by the planner, since
this means there was something specific about the option that fit well
into the plan.
is more concise, indicated by the presence of a CONCISE-CONSTRUCTION
annotation. 21
covers more entries in the workspace.
covers an earlier entry in the workspace.

If none of these criteria distinguish the candidate utterances, the utterer simply picks
one at random.

4. Examples

The workings of the various components and representational machinery described
above can be seen more clearly by looking at a few examples of IGEN at work. These
examples demonstra te how IGEN can handle decisions that involve various kinds of
interactions between linguistic and planning issues, despite the strict separation of the
planning and linguistic components of the generator. In addition, the examples show
how IGEN is sensitive to time pressure, improving its ou tput when given more time
to work and degrading gracefully when forced to work faster.

4.1 Supporting the Plan Structure
In this example, the generator is given the goal #<KNOW(HEARER,WEATHER-INFD)>,
where #<WEATHER-INF0> is an unordered collection of facts about the weather over
a three-day span starting on the current day. The final output in response to this goal
is:

(4) It is warm on today. It will be warm on Monday. It will be cool on
Tuesday.

Since the input goal simply involves transmitting a fixed set of information to the
hearer, the construction of this response is fairly straightforward. Nevertheless, even
in this simple example there are a few places where purely linguistic preferences are
over r idden by the planner in order to suppor t the text plan structure.

4.1.1 Bui lding the Initial Plan. Upon being invoked, IGEN sends its goal to the com-
municat ive planner, which constructs an initial plan. The planner starts by applying
the ut ter-sequence plan, which involves decomposing the goal based on a relevant se-
quence. Since the members of #<WEATI-IER-INF0~ all have connections to the sequence
of days in the month, the planner is able to decompose the original goal into a sequence

20 The only possible constraint in the current implementation is a missing (obligatory) feature value; all
other grammatical and conceptual constraints are strictly enforced.

21 This is actually controlled by a parameter (*conciseness-preference*) that determines whether the
utterer will prefer concise or verbose options or neither. In theory, tlnis parameter should be set by the
planner based on its knowledge of the situation; in practice, it is set by hand to prefer concise options.

121

Computational Linguistics Volume 26, Number 2

of goals b a s e d on the sequence of d a y s i nvo lved in the goal. Fur ther p l a n n i n g for the
sequence of subgoa l s y ie lds the fo l lowing plan:

i.

2.

.

4.

5.

Overal l Goal: #<KNOW (HEARER, WEATHER-INF0) >

Achieve (I) by sequencing information based on the #<SEQUENCE> of the
three days involved

Support (2) with information about #<SEPT-25>

Support (2) with information about #<SEPT-26>

Support (2) with information about #<SEPT-27>

Reques ts to express the i n fo rma t ion a b o u t each d a y ' s w e a t h e r are then pa s sed on to
the l inguist ic c o m p o n e n t .

In part icular , the p l anne r carries ou t s tep (4) of the p lan b y p lac ing in the w o r k s p a c e
the request :

#<OVER-TIME-SPAN(#<WITHIN-RANGE(TEMPERATURE,56DEG-75DEG-F)>,
SEPT-26)>

A separa te w o r k s p a c e en t ry is crea ted for each n o d e and l ink in this request , 22 wi th
the en t ry for the top- level #<0VER-TIME-SPAN> link m a r k e d as their " h e a d " entry.

4.1.2 Producing and Evaluating Linguistic Options. The l inguist ic c o m p o n e n t then
beg ins to p r o d u c e a nd anno ta te l inguist ic op t ions for each of these entries. It also runs
the first phase of the eva lua t ion a lgo r i thm (descr ibed in Figure 4) to p r o d u c e an initial
evaluat ion. 23

For #<TEMPERATURE>, the l inguistic c o m p o n e n t f inds the fo l lowing opt ions : 24

#<w : WEATHER>

H E A D ~-~ C A T ~--- N

LEX ~ #<w : WEATHER>

The linguistic component draws on the portion of IGEN's knowledge
shown in Figure 5 to annotate this option. Since the option directly
expresses the concept #<WEATHER>, the linguistic component attaches a
MAKES-EXPLICIT annotation to the option. Since #<TEMPERATURE> has a
#<PART> link connecting it to #<WEATHER>, it attaches an
INDIRECTLY-SUGGESTS annotation for #<TEMPERATURE>.

22 This doesn't limit the linguistic component to working on only one node or link at a time; options can
cover or depend on other entries, as, for example, the future tense option in Section 4.1.2.

23 This should really be done by the planner, but the first phase doesn't actually depend on any
information about the plan, so it can safely be run by the linguistic component without compromising
the separation of the components. The second phase, which does depend on the plan, will be run by
the planner.

24 It actually produces several other options that are immediately ruled out as being completely
inappropriate, e.g. the word temperature as an option for #<SEPT-26>, or because they require
arguments that aren't present in the request, e.g. the verb be (which needs two arguments) as an option
for #<TEMPERATURE>. Throughout these examples, such options will simply be ignored in the interests
of brevity.

122

Rubinoff The IGEN Generator

=weather" ------£>(weather ~ =it":/d/om

part I / I part I / I part I I I I part

wind) (precipitation

=waiqrfl" - - - I ~ : ~ warm

part

"temperature"

ran0e-end

CG
Figure 5
Some semantic network fragments used by the linguistic component.

#<w: TEMPERATURE>

H E A D ~ C A T ~--- N

LEX z #<w : TEMPERATURE>

Since the meaning of #<w : TEMPERATURE> is the request itself, the only
annotation attached is a MAKES-EXPLICIT annotation for
#<TEMPERATURE>.

#<w: IT>

LEX ----- #<w:IT>

Since the usage of #<w: IT> here is an idiomatic construction, it has
some special handling in the lexicon to indicate that its meaning
depends on what it is being used to describe. In particular, #<w: IT>
here is taken to mean #<TEMPERATURE>. The linguistic component thus
produces a MAKES-EXPLICIT annotation for #<TEMPERATURE>, as it does
for the option using the word #<w : TEMPERATURE>. #<w:IT> is also
marked as producing a CONCISE-CONSTRUCTION annotation, so the
linguistic component attaches one to the option.

123

Computational Linguistics Volume 26, Number 2

As these options are produced, they are evaluated based on their annotations accord-
ing to the algorithm described in Figure 4. In the first phase, #<w : WEATHER> is rated
MEDIUM, reflecting the fact that the option doesn't really express the request, but does
suggest it indirectly by mentioning a closely related concept. #<w : TEMPERATURE> is
rated VERY-HIGH, reflecting the option's exact match with the request, as is #<w: IT>,
which also expresses #<TEMPERATURE> (albeit idiomatically). The second phase of
the evaluation algorithm makes no changes to the ratings, since the options' annota-
tions don't indicate anything that would interact with the plan, leaving #<w: IT> and
#<w : TEMPERATURE> as the preferred options. 25

For #<WITHIN-RANGE>, the only acceptable option the linguistic component finds is:

#<w:BE>
CAT

HEAD

SUBJ

PRED

O R D E R =

---- S

_-- [CAT ---- V

L LEX = # < w : B E >

---- NP

z A D J P

(SUBJ HEAD P R E D)

The SUBJ and PRED features indicate #<w:BE>'s syntactic roles; the value of these
features indicates the syntactic constraints on the structures that may fill the roles.
In addition, the structure has a MAP feature indicating which workspace entries can
provide options to fill the roles.

Since #<WITHIN-RANGE> is a subconcept of #<BE-LOCATED> (one meaning of
#<w:BE> in IGEN's lexicon), the linguistic component produces (MAKES-EXPLICIT
#<BE-LOCATED>) and (MAKES-IMPLICIT #<WITHIN-RANGE>) annotations for the op-
tion. These annotations lead the first phase of the evaluation algorithm to rate the
option as HIGH; the second phase leaves this evaluation unadjusted. (Of course, since
there is only one acceptable option here, its rating doesn't really matter.)

For #<56DEG-Z5DEG-F>, the options produced are (omitting the details of the
structures to show only the annotations):

#<w:WARM>:
(MAKES-EXPLICIT #<WARM>)
(MAKES-IMPLICIT #<56DEG-75DEG-F>)

#<w:TEMPERATURE>:
(MAKES-EXPLICIT #<TEMPERATURE>)
(INDIRECTLY-SUGGESTS #<56DEG-75DEG-F>)

These annotations are based on the network fragment shown in Figure 5. #<w:WARM>
is rated HIGH, because it does a reasonable job of describing the requested temperature
range} 6 The #<w : TEMPERATURE> option is not as good, but it at least gives a sense of
what is being talked about, so it gets the next lower rating of MEDIUM.

The entries we have seen so far have not involved any interactions between the

25 R e u t t e r e r wi l l u l t i m a t e l y c h o o s e # < w : I T > b e c a u s e i t is m a r k e d as m o r e conc i se .
26] ' h i s is d e t e r m i n e d u s i n g a r u l e - b a s e d i n f e r e n c e m e c h a n i s m d e s c r i b e d in R u b i n o f f (1992).

124

Rubinoff The IGEN Generator

options and the plan. Our first instance of such interactions arises in the options for
< 0VER-TIME-SPAN>:

• #<w: 0VER>:
(MAKES-EXPLICIT #<0VER-TIME-SPAN>)
(ACTIVATES-IN-CONTEXT

#< INSTANCE (SEPT-26, LINEAR-SPAN) >)

• #<w:0N>:

(MAKES-EXPLICIT #<0N>)
(MAKES-IMPLICIT #<0VER-TIME-SPAN>)
(ACTIVATES-IN-CONTEXT

#< INSTANCE (SEPT-26, LINEAR-POS) >)

• [TENSE : FUTURE]: 27
(MAKES-EXPLICIT #<0VER-TIME-SPAN>)
(MAKES-EXPLICIT #<FUTURE>)
(COVERS-0THER-ENTRY entry for:#<SEPT-26>)
(MAKES-IMPLICIT #<SEPT-26>)

The first phase evaluat ions suggest that #<w: OVER> is the preferred option. Here,
though, the second phase of the evaluat ion a lgor i thm modif ies the rat ings based on
interactions wi th the plan. The ACTIVATES-IN-CONTEXT annotat ions for #<w:0VER>
and #<w:0N> indicate that these options affect h o w the sys tem (and the hearer)
perceive the t ime span being talked about. Since the #<SEQUENCE> of days being
talked about is the organizing principle of the plan, it is a "critical" piece of the
plan, as are the #<MEMBER> links connecting it to the pieces of the original goal. The
ACTIVATES-IN-CONTEXT annotat ion for #<w:0VER> indicates that it encourages the
hearer to think of #<SEPT-26> as a #<LINEAR-SPAN>. This conflicts wi th the (critical)
#<MEMBER> link be tween #<SEPT-26> and the #<SEQUENCE>, because it describes the
day as a span of t ime rather than as a discrete point in a sequence. The second phase
a lgor i thm thus downgrades #<w:0VER>'s rat ing f rom VERY-HIGH to HIGH. Conversely,
#<w:0N> encourages the hearer to think of #<SEPT-26> as a #<LINEAR-POS>, i.e.,
a discrete position within a linear span, supporting the critical #<MEMBER> link.]"he
rating for #<w: ON> is therefore upgraded from HIGH to VERY-HIGH, and it becomes the
preferred option. 28

Note here how the use of annotations allows the planner to remain ignorant of
purely linguistic issues. The planner has no way to distinguish between an option
realizing #<0VER-TIME-SPAN> as a lexical item and one realizing it as the value of
some feature of another option. Its decision is based solely on the contextual effects
of the available options. The planner can only make distinctions based on the effects
of the options, not on the forms of the options.

The final piece of the request is #<SEPT-26>, for which the linguistic componen t
produces the following options:

• #<w : TOMORROW>:
(MAKES-EXPLICIT #<TOMORROW>)

27 This is an example of how linguistic options need not be single words or complete phrases; this option
is a feature value pair that will be added to another phrase.

28 #<w:0N> is preferred over [TENSE =FUTURE], which is also rated VERY-HIGH, because it was adjusted
up in response to a specific plan interaction as discussed in Section 3.3.

125

Computational Linguistics Volume 26, Number 2

(MAKES-IMPLICIT #<SEPT-26>)
(ACTIVATES-IN-CONTEXT #<FEW-DAYS>)

#<w:MONDAY>:
(MAKES-EXPLICIT #<MONDAY>)
(MAKES-IMPLICIT #<SEPT-26>)
(ACTIVATES-IN-CONTEXT #<WEEK>)

The first phase of the evaluat ion algori thm rates both of these options as HIGH, since
they match the p lanner ' s request equally well. The second phase, though, distinguishes
be tween them on the basis of the particular t ime sequences they activate. The se-
quence #<WEEK> activated by the option #<w :MONDAY> is significantly different from
the #<SEQUENCE> of three days a round which the plan is organized, so #<w : MONDAY>
is downgraded to #<MEDIUM>. The #<FEW-DAYS> sequence activated by the option
#<w : TOMORROW>, on the other hand, largely overlaps with the plan's #<SEQUENCE>,
so no adjustment is made. As a result, #<w:TOMORR0W> becomes the preferred option.

4.1.3 Assembling the Utterance. As these options are p roduced and evaluated, the
utterer watches the workspace, t rying to assemble them into an acceptable utterance.
Whenever an option appears that meets the current acceptability threshold, the utterer
utters (i.e., prints) it. The final result is:

(5) It will be wa rm on Monday.

Note that this ou tpu t does not s imply use the highest-rated option from each entry in
the workspace, because that would involve the ungrammatical phrase on tomorrow. In
addit ion to responding to time pressure, the utterer also enforces syntactic constraints;
it chooses the best possible combinat ion of options that is syntactically acceptable. 29

4.1.4 Summary. This simple example illustrates how the annotations allow IGEN to
maintain the traditional division into two independent components while still han-
dling interactions be tween decisions at the planning and linguistic levels. The planner
never has to deal with linguistic structures, and the linguistic component never has to
deal with plans or information structures. For example, the planner can' t distinguish
be tween lexical i tems and feature values; conversely the linguistic component has no
access to the goals driving the planner or the plans it builds. Nevertheless, w h e n there
are decisions that depend on both informational and linguistic structures, the annota-
tions allow IGEN to handle the interactions be tween the different levels. The effects of
these interactions are relatively minor in this example, but subsequent examples will
show how they can be more dramatic.

4.2 Revising the Plan
In addit ion to merely selecting among options, IGEN's planner can revise the plan in
response to them. Consider a slight modification to the previous example, in which
IGEN is given the same goal except that the temperature on the third day falls within

29 This is an oversimplification, as can be seen from the output in (4) in Section 4.1, where IGEN
produces the phrase on today. What's really going on is that IGEN's lexicon has two entries for each of
today and tomorrow; one as a noun phrase and one as a prepositional phrase. As it happens, the PP
entry turns up first. In the case here, the option for Monday is produced and selected before the NP
option for tomorrow turns up. In the first sentence of (4), there is no such option, so the linguistic
component has time to produce the NP today option.

126

Rubinoff The IGEN Generator

the range considered "wa rm . " IGEN proceeds to bui ld a p lan that is identical to the
previous one (except for the difference in the informat ion to be expressed). As before,
the p lanner places requests in the workspace and the linguistic componen t starts to
construct options. At this point, IGEN is well on its w a y to generat ing text similar
to (4):

(6) It is w a r m on today. It will be w a r m on Monday. It will be w a r m on
Tuesday.

However , once the opt ion for warm is produced, someth ing new happens . The
planner detects that there are several parallel s tructures in the workspace that can use
the same linguistic structure (warm) to realize different concepts (the different tem-
pera ture ranges) in corresponding posit ions wi thin each structure. This provides the
oppor tun i ty to combine the parallel s tructures into a single conjoined structure, which
the p lanner proceeds to do. All of the workspace entries for the parallel s tructures are
removed, and the p lanner enters requests for a new conjoined structure: 3°

#< 0VER-TIME-SPAN (#<WITHIN-RANGE (TEMPERATURE , 56DEG-75DEG-F) >,

#<AND (SEPT-25 , SEPT-26 , SEPT-27) >) >

IGEN then proceeds as in the previous example , u l t imately generating:

(7) It will be w a r m on today, Monday, and Tuesday.

Note that the p lanner couldn ' t have created this conjoined structure initially be-
cause it d idn ' t know that all three days ' t empera tures could be realized the same way.
To the planner, each day has a different t empera tu re range. This example appears
exactly the same as the previous one. Once the linguistic componen t indicates that
all three t empera tu re ranges can be realized the same way, though, the p lanner can
then de termine that this results in a paral lel ism that can be reduced to a conjoined
structure. The annotat ions al low the p lanner to modi fy its plan, based on the results of
the realization process, despite not hav ing any access to pure ly linguistic knowledge
or processing.

4.3 Varying the Utterance in Response to the Plan
In the previous examples , we have seen h o w IGEN can use the feedback f rom the
linguistic componen t to improve the organizat ion of the text it generates. The anno-
tations also al low IGEN to tailor the genera ted text so as to bet ter achieve the goals
behind the utterance. Consider IGEN's response to the goal "make the user happy" : 31

1.
2.

Overal l goal: #<BE-STATE (HEARER, HAPPY) >
Achieve (1) by achieving subgoals:

(a) Goal: Downp l ay unpleasan t informat ion

30 The temperature range used in the conjoined structure is chosen randomly from among the structures
being combined. This is safe to do because it is certain that all of the temperature ranges can be
realized the same way; that's what triggered the combination in the first place.

31 The construction of the plans in this section is admittedly ad hoc; IGEN certainly doesn't have a
complete model of the psychological factors and issues they involve. What's important here, though, is
not the construction of the plan but rather how the plan and the annotations are used to produce the
kind of subtle effects that can't be produced by the linguistic component or the planner alone.

127

Computational Linguistics Volume 26, Number 2

.

.

5.

(b) Goal: Emphasize pleasant information

Achieve (2a) by expressing:
#<MINIMAL-SIGNIFICANCE (# < CONSIST-0F (PRECIPITATION,

RAIN) >) >
Achieve (2b) by expressing:
#<WITHIN-RANGE (TEMPERATURE, 60DEG-80DEG-F) >
Achieve (2b) by expressing:
#<AT-TIME (#<CONSIST-0F (PRECIPITATION, N0-PRECIPITATION) >,

THIS-AFTERN00N) >

The final result for this plan is:

(8) It is only drizzling. It is warm. It will be clear soon.

Most of this output is produced straightforwardly in a manner similar to the previous
example. Some of the choices, however, are the result of interactions of a sort beyond
what was seen there.

Consider the options for #<CONSIST-0F (PRECIPITATION,RAIN) > in step (3) of the
plan; these include: 32

• #<w:RAINS>: VERY-HIGH
(MAKES-EXPLICIT #<CONSIST-0F>)
(MAKES-EXPLICIT #<PRECIPITATION>)
(MAKES-EXPLICIT #<RAIN>)

• #<w:DRIZZLES>: HIGH
(MAKES-EXPLICIT #<C0NSIST-0F>)
(MAKES-EXPLICIT #<PRECIPITATION>)
(MAKES-IMPLICIT #<RAIN>)
(MAKES-EXPLICIT #<DRIZZLE>)
(EXTRA-INF0 #<STRENGTH(RAIN,WEAK)>)

• #<w:POURS>:HIGH
(MAKES-EXPLICIT #<C0NSIST-0F>)
(MAKES-EXPLICIT #<PRECIPITATION>)
(MAKES-IMPLICIT #<RAIN>)
(MAKES-EXPLICIT #<POUR>)
(EXTRA-INFO #<STRENGTH(RAIN,STRONG)>)

The first phase of the evaluation algorithm rates the word #<w:RAINS> highest, since
it captures the intended meaning precisely. #<w: DRIZZLES> and #<w: POURS> are the
next best options, since they capture the basic meaning, and are equally appropriate,
since the linguistic component can't evaluate the significance of the extra information
they present.

The second phase, however, determines that the EXTRA-INF0 expressed by the
option #<w:DRIZZLES> implies another part of the information requested by the
planner (the #<MINIMAL-SIGNIFICANCE> relation). Its rating is therefore increased
to VERY-HIGH. Conversely, the rating for #<w:POURS> is lowered to MEDIUM, since it

32 To simplify the discussion, I have included the first-phase evaluations of the options here.

128

Rubinoff The IGEN Generator

contradicts the #<MINIMAL-SIGNIFICANCE> relation. This leaves both other options,
#<w:RAINS> and #<w:DRIZZLES>, rated VERY-HIGH; the utterer will prefer to use
#<w:DRIZZLES>, though, since there was something specific about the option that the
planner approved of.

The decision here to say #<w : DRIZZLES> instead of #<w:RAINS> could not have
been made by either the planner of the linguistic component alone. The decision de-
pends on both the planner's knowledge that the concept #<DRIZZLE> supports an-
other piece of the plan and the linguistic component's knowledge that there is a way
to express #<DRIZZLE> without making explicit its distortion of the actual information
that it's raining. It's only the interaction between the two components provided by
the annotations that makes saying #<w : DRIZZLES> instead of #<w:RAINS> possible.

The point of using the annotations, though, was not just to handle these kinds
of interactions, but more importantly to do so without compromising the principled
separation of the two components. Among other things, this makes it possible for IGEN
to express the same information in a different manner, based solely on differences in
the plan. If the purely linguistic issues are the same, the linguistic component will do
exactly the same work, even though the differences in the output may depend in part
on that work.

We can see this by comparing the previous example with IGEN's response to
the goal #<TAKE(HEARER, UMBRELLA)>, for which the planner constructs the following
plan:

i.

2.

.

.

Goal: #<TAKE(HEARER,UMBRELLA) >

Achieve (I) by achieving subgoal:
#<WANT (HEARER, #<TAKE (HEARER, UMBRELLA) >) >

Achieve (2) by achieving subgoal:
#<KNOW (HEARER, #<CONSIST-0F (PRECIPITATION, RAIN) >) >
depending on the preconditions:
#<DANGEROUS (#<C0NSIST-0F (PRECIPITATION, RAIN) >) >

and
< PROTECTI ON (# < TAKE (HEARER, UMBRELLA) >,

#<CONSIST-0F (PRECIPITATION, RAIN) >) >

Achieve (3) by expressing:
#<CONSIST-0F (PRECIPITATION, RAIN) >

Note that the information to be expressed here in step (4) is also expressed in step (3) of
the previous example. Since the linguistic component doesn't have access to the plan,
it necessarily produces the same options as before. The planner, though, evaluates
these options differently, since it is using them to carry out a different plan.

The three options #<w: RAINS>, #<w: POURS>, and #<w: DRIZZLES> are produced
and annotated as before. Their evaluations are different, though. Step (3) here has
a precondition that #<CONSIST-0F(PRECIPITATION,RAIN) > be #<DANGEROUS> in or-
der to achieve its intended goal. The extra information expressed by #<w:POURS>
supports this precondition, so #<w:POURS> is upgraded to VERY-HIGH. On the other
hand, #<w:DRIZZLES> undercuts the precondition and is therefore downgraded to
MEDIUM. The preferred option here is therefore #<w:POURS>, in contrast to the previ-
ous example, and the final result is then:

(9) It is pouring.

129

Computational Linguistics Volume 26, Number 2

The final output differs even though the linguistic component does exactly the
same processing in these two examples. From the linguistic component's point of view,
the examples are exactly the same; the same request is placed in the workspace, so the
same options are produced. The difference lies solely in the plan structure, not in the
content of the explicit message to be realized, so only the planner behaves differently.
The linguistic component's design and functioning are completely indifferent to the
issues that concern the planner.

4.4 The Range of Variation
We can see similar variation in the handling of #<N0-PRECIPITATION>, which is real-
ized in three different ways in three different examples because of the different roles
it plays in the three plans. In Section 4.3, it was realized as clear; the two examples
that follow illustrate how IGEN can select alternative realizations.

Consider first what happens when the generator is given the goal "get the user to
conserve water." In response, it builds up a plan to do so by talking about the drought:

I.

2.

.

4.

Goal: #<CONSERVE(HEARER,WATER) >
Achieve (1) by achieving subgoah
<WANT (HEARER, # <CONSERVE (HEARER, WATER) >) >
Achieve (2) by achieving subgoah
< KNOW (HEARER, # < SERI 0US-DROUGHT >) >
depending on the preconditions:
#<DANGEROUS(#<SERIOUS-DROUGHT>) > and
#<PROTECTION (#< CONSERVE (HEARER, WATER) >,

#<SERIOUS-DROUGHT>) >

Achieve (3) by expressing:
#<CONTINUE (DROUGHT) >
#<OVER-TIME-SPAN (CONSIST-0F (PRECIPITATION,

N0-PRECIPITATION)) ,
TODAY) >

and
#<0VER-TIME-SPAN (REPEAT (CONSIST-OF (PRECIPITATION,

N0-PRECIPITATION)) ,
TOMORROW) >

This plan is similar to the one built in Section 4.3 for the goal #<TAKE(HEARER,UM-
BRELLA) >; they both involve motivating the hearer to take some action by explaining
some danger that the action will provide protection from. The main difference here
is that rather than simply telling the user that there is a serious drought, the plan-
ner draws on a more specific (ad hoc) plan that involves expressing more detailed
information.

The final result for this example is:

(10) The drought is continuing. It is dry today. It will be dry again tomorrow.

Note that IGEN uses #<w:DRY> here to express #<N0-PRECIPITATION>, in con-
trast with the first example in Section 4.3, where it was expressed by #<w : CLEAR>.
This happens because #<w: DRY> has an (ACTIVATES-IN-CONTEXT #<DROUGHT>) anno-
tation, and activating the concept #<DROUGHT> supports the sense of danger that is a
precondition of step (3) of the plan. #<w:DRY>'s evaluation is thus upgraded, making

130

Rubinoff The IGEN Generator

it the preferred option. In the example in Section 4.3, this activation doesn't interact
with the plan, so #<w:CLEAR> remains the preferred option.

Yet another realization is selected when IGEN is given the goal of convincing the
user to go to the park, resulting in the following plan:

I.

2.

.

.

Goal: #<BE-LOCATED(HEARER,PARK) >
Achieve (1) by achieving subgoal:
#<WANT (HEARER, #<BE-LOCATED (HEARER, PARK) >) >
Achieve (2) by achieving subgoal:
#<KNOW (HEARER,

AND (CONSIST-0F (PRECIPITATION, N0-PRECIPITATION))
WITHIN-RANGE (TEMPERATURE, WARM)) >

depending on the preconditions:
#<ENJOYABLE (#<BE-LOCATED (HEARER, PARK) >) >

and
#<SUITABLE (

#<AND (CONSIST-0F (PRECIPITATION, N0-PRECIPITATION) ,

WITHIN-RANGE (TEMPERATURE, WARM)) >,

#<BE-LOCATED (HEARER, PARK) >) >

Achieve (3) by expressing:
#<AND (CONSIST-0F (PRECIPITATION, N0-PRECIPITATION) ,

WITHIN-RANGE (TEMPERATURE, WARM)) >

The resulting output is:

(11) It is sunny and it is warm.

The only difference from previous examples lies in the choice of #<w: SUNNY>
to express the concept #<N0-PRECIPITATION> rather than using either #<w:CLEAR>
or #<w:DRY>. This choice arises because of an ACTIVATES-IN-CONTEXT annotation
indicating that the use of #<w:SUNNY> activates the concept #<SUNSHINE>, which
strengthens the enjoyability precondition in step (3) of the plan. It is this sort of inter-
action between linguistic choices and the plan structure that allows IGEN to express
#<N0-PRECIPITATION> three different ways in three different examples.

The point here is not just that IGEN can produce different lexical realizations for
a particular concept. If that were the only goal, we could dispense with the feedback
mechanism and simply design some sort of discrimination network (or similar device)
to test various features of the information being expressed. The planner could supply
whatever information is needed to drive the network. 33 Something like this approach
is in fact used in some systems (e.g., Elhadad and Robin 1992; PenMan 1989; Hovy
1988a).

The problem with the discrimination network approach is that it can't handle
the range of examples shown here without violating the modularity of the generator.
The examples shown here have involved linguistic choices that depend on the plan
structure, on other actions in the plan, and on preconditions of the plan. Furthermore,
the plan dependencies can involve a nontrivial amount of reasoning (e.g., the example
immediately above, which involves the connection between sunshine and enjoying

33 Of course, that still wouldn't allow for examples like the one in Section 4.2, where the planner modifies
the plan in response to the work of the linguistic component.

131

Computational Linguistics Volume 26, Number 2

being outdoors). Encoding these decisions in a discrimination net (or any other kind
of processing) within the linguistic component would mean giving that component
access to all of the plan and the reasoning used to construct it. Much of the planner's
knowledge and processing would have to be duplicated in the linguistic component.
IGEN, in contrast, handles these examples while maintaining strict modularity.

4.5 The Effects of Time Pressure
The discussion of the examples in Section 4.3 glosses over an important detail: IGEN
will only generate the output shown there if the time pressure is eased by increasing the
delay thresholds. In particular, the choice of #<w :DRIZZLES> and #<w: POURS> over
#<w:RAINS> in those examples is made with the thresholds set to force the utterer
to always wait at least five time units before uttering the next piece of text. This
is necessary because the linguistic component produces the option for #<w:RAINS>
sooner than the options for #<w: POURS> and #<w :DRIZZLES>.

If the delay thresholds are left at the default settings, the utterer will accept an
option that is rated VERY-HIGH without any delay. Thus when the #<w:RAINS> op-
tion appears, the utterer immediately accepts and utters it. While # <w:DRTZZLES > and
#<w: POURS > would be better options in these examples, the utterer never gets a chance
to see them. Because of time pressure, the decision of how to realize the planner's re-
quest is made before the linguistic component has a chance to find #<w : DRIZZLES>.
There's nothing wrong with this result; it is raining is a perfectly good way to ex-
press #<CONSIST-0F(PRECIPITATION,RAIN)>. It's just that if IGEN is given more
time to work, it can produce a better utterance. The utterer's job is to balance the
quality of the utterance against time pressure; in this example, changing the inten-
sity of the time pressure induces a corresponding change in the refinement of the
utterance.

Of course, if the time pressure is set sufficiently high (e.g., to simulate a situation
where the the hearer is about to walk away), IGEN will sometimes produce an utter-
ance that has some slight problems, because speed is more important than perfection.
Consider what happens when the example in Section 4.1 is run with the delay thresh-
olds set to accept anything that's not terrible (i.e., any option rated MEDIUM or higher)
right away. The planning and initial production and evaluation of options proceeds
as with the default thresholds. The handling of #<0VER-TIME-SPAN> works out dif-
ferently, though. The option for #<w:0VER> is produced by the linguistic component
several time units before the option for #<w:0N>. With the default thresholds, that's
not a problem, because the utterer can wait long enough for #<w: 0N> to be produced.
With the increased time pressure, though, the utterer is forced to produce the utterance
before the option #<w:0N> is available. The resulting utterance (for the second day's
information) is it will be warm over Monday.

This result is not awful; the sentence still manages to express the intended infor-
mation. It just doesn't fit quite as well into the intended overall structure of the text.
So the main consequence here of increasing the time pressure is to generate a text
that is slightly less coherent and fluent. In this case, IGEN responds to increasing time
pressure with a slight degradation in the generated text.

4.6 The Effects of Vocabulary Limitations
Since IGEN is designed to always find the best utterance possible in the available time,
without assuming any notion of a "correct" utterance, it can produce reasonable output
even when generating in domains where it has limited linguistic resources. This can
be seen by looking at the result of selectively disabling elements of its "vocabulary,"
i.e., the lexical and syntactic resources available to the linguistic component. The result

132

Rubinoff The IGEN Generator

is a gradual, graceful degradation of the generated text as the generator's linguistic
resources become poorer.

Consider again IGEN's response (under relatively mild time pressure) when given
the goal #<TAKE(HEARER,UMBRELLA)>. The resulting plan, as we have seen, requires
expressing the information #<CONSIST-0F (PRECIPITATION,RAIN) >, which is accom-
plished by uttering it is pouring. If the verb #<w: POUR> is removed from the generator's
vocabulary, though, this utterance is not possible; instead the output becomes it is rain-
ing. Note that this is the same output IGEN produces if the time pressure is increased;
the consequence of limiting either time or vocabulary is the same.

If the verbs #<w:RAINS> and #<w:DRIZZLES> are removed as well, the generator
is left with no single option that can express all of the requested information. Instead,
the utterer resorts to assembling individual options for the various pieces of the re-
quest, producing the sentence the precipitation consists of rain. 34 While this utterance does
adequately express the requested information, it is fairly awkward. Still, it's not bad,
given that the two best options are unavailable.

Beyond this point, further vocabulary removal starts to make things much worse.
Removing the phrase #<w: CONSIST OF> leads to the utterance of it will be clear. This
utterance is terrible; it completely misses the intended information. That's not surpris-
ing; after all, the options that should be used have all been removed from IGEN's
vocabulary. On the other hand, it's not completely bizarre; it's still talking about the
weather, and in fact it's even still describing the precipitation. That is, IGEN still has
a vague sense of what it's trying to say; it's not simply producing an utterance at ran-
dom. This can be seen again by removing the phrase #<w: BE CLEAR>; the resulting
utterance is then it snowed. IGEN is still trying to get as close as it can to the intended
information, even though it can't really get it right.

Eventually, of course, removing linguistic resources will make the generator col-
lapse; if every word or phrase relating to precipitation of any sort is removed, then
IGEN produces it is medium, which, though grammatical, is gibberish. If the linguistic
component has absolutely no way to produce options related to what the planner
wants to express, then there's really nothing IGEN can do. What's significant here,
though, is that as the generator's linguistic resources are gradually impoverished, the
generator's output degrades gracefully. Rather than immediately collapse when its
preferred options are removed, IGEN continues to produce the best possible utterance
it can build with its remaining linguistic resources. 3s

4.7 Generating in a Different Language
As a test of IGEN's modularity, a simple French linguistic component was developed
and tested on the examples in Sections 4.1 and 4.3. Switching to a different language
provides an extreme example of how the linguistic component can be varied without
affecting the planner. The change primarily involved defining new lexicon entries for
the French words, phrases, and feature values needed to talk about the weather. In
addition, the routine that handles verb inflection had to be replaced, since French verb
endings are different from English ones. Other than these changes, though, no mod-

34 The actual output is precipitation consists of rain, but this is just due to a limitation of the implemented
grammar. Specifically, there 's no requirement that noun phrases have determiners, so the linguistic
component never bothers to suggest one for the NP headed by #<w:PRECIPITATIOR>.

35 Of course, in many situations it 's best to pu t a lower bound on the quality of IGEN's output; this can
be done simply by setting the appropriate delay thresholds to infinity. It would also be possible to set
an overall t ime limit on IGEN's processing, after which an uncompleted plan would be assumed to
have failed. IGEN could then modify the plan or take other appropriate corrective action.

133

Computational Linguistics Volume 26, Number 2

ification to IGEN was necessary. The linguistic component was otherwise unaltered,
and the planner and utterer required no changes at all. 36

The main difference be tween the ways English and French describe the weather
lies in the "weather it" construction. English allows weather descriptions that use
it together with any of a class of verbs of being, seeming, or becoming. Thus the
following sentences are all possible in English:

(12) It is warm.

(13) It seems warm.

(14) It feels warm.

(15) It's becoming warm.

(16) It's getting warm.

In these sentences, the meaning of it seems to be the weather or the temperature;
thus in any of these sentences it could be replaced by the weather or the temperature
without changing the meaning or acceptability. This p h e n o m e n o n is mode led in IGEN
by having a special word #<w: IT> whose meaning can range over the various items
constituting the weather; this word is constrained to appear only as the subject of an
appropriate verb. Thus, as we saw in Section 4.1, #<w: IT> is represented as meaning
#<TEMPERATURE> and annotated appropriately.

A literal translation of any of the sentences in (12) to (16) into French, though,
would be ungrammatical . The corresponding French construction uses the verb faire
(literally ' to make ' or ' to do'), as in (17):

(17)

(18)

(19)

(20)

(21)

I1 fait chaud.
It m a k e s / d o e s w a r m
It is warm.

*Le temps fait chaud.
The weather m a k e s / d o e s wa rm
The weather is warm.

*La temp4rature fait chaud.
The tempera ture m a k e s / d o e s wa rm
The tempera ture is warm.

*I1 semble chaud.
It seems warm.

I1 semble faire chaud.
It seems to m a k e / d o warm.
It seems warm.

Unlike it in (12) to (16), the il here is not referring to the weather or the temperature.
Rather it is an expletive, i.e., a d u m m y subject required by the grammar of the lan-
guage, similar to the it in the English it seems John left. This can be seen by comparison

36 It was necessary to add a few more elements to the semantic network (which is used by both
components) to capture the meaning of the French word sur, which does not correspond exactly to the
meaning of any English word, as discussed below. These new elements were used only by the
linguistic component, not by the planner.

134

Rubinoff The IGEN Generator

with (18) and (19), in which replacing il with le temps ("the weather") or la temperature
("the temperature") leads to an ungrammatical sentence. (20) and (21) demonstrate
that the crucial element in the French construction is the verb faire; other verbs can
be used only if they combine with faire. This contrasts with the English construction,
in which it is the crucial element and can be used with a range of verbs. The French
construction is thus represented in IGEN as a version of the verb faire that takes an
expletive il as its subject and whose meaning ranges over specifications of the various
elements of the weather.

A second difference between the two languages shows up in Section 4.1 in the
options for #<0VER-TIME-SPAN>. In English, IGEN has to choose between using on
or over to express this link. In French, though, these concepts are expressed by the
same word (sur). 37 Furthermore, sur can't be used for temporal expressions, only for
spatial expressions. So the options for #<0VER-TIME-SPAN> work out quite differ-
ently in French. French in general uses ~ ("at") rather than sur for temporal expres-
sions; however ~ cannot be used with expressions describing days. Instead, these
temporal modifiers are expressed using bare NP's with no preposition. This con-
struction is modeled in IGEN by a null preposition whose object must be a definite
NP.

Given all of this, IGEN produces the following results in French for the example
in Section 4.1:

(22) I1 fait chaud aujourd'hui. I1 fera chaud lundi.
it does warm today it will do warm Monday
It is warm today. It will be warm Monday.

I1 fera frais mardi.
it will do cool Tuesday
It will be cool Tuesday.

This is equivalent to the English result except for expressing the temporal modifier
as a noun phrase rather than as a prepositional phrase headed by on, as discussed
above.

Similarly, the variant in Section 4.2 produces:

(23) I1 fera chaud aujourd 'hui lundi et mardi.
it will do warm today Monday and Tuesday
It will be warm today Monday and Tuesday.

For the goal of making the user happy, IGEN produces the French output:

(24) I1 bruine seulement. I1 fait chaud. Le temps sera clair bientdt.
it drizzles only it does warm the weather will be clear soon
It's only drizzling. It's warm. It will be clear soon.

This is exactly the same as the English output except for the use of the French "weather
faire" construction or the explicit use of le temps ("the wea ther ') rather than the English
"weather it" construction.

37 Note that the point here is not that sur is the (unique) translation of on and over into French; IGEN is
doing generation, not machine translation. It's just that sur is the French word that most naturally
expresses the particular concepts IGEN is using.

135

Computational Linguistics Volume 26, Number 2

The goal of convincing the user to take his umbrella, though, produces the output:

(25) I1 pleut.
it rains
It's raining.

because French doesn't have a verb corresponding to to pour. Since no option equiva-
lent to the one for #<w: POURS> is proposed, the option for #<w: PLEUT> is the preferred
option, just as #<w:RAINS> is the preferred option in English when lack of time or
deliberate removal prevents the linguistic component from finding #<w : POUR$>.

The point here is not simply that IGEN can handle these changes; after all, one of
the primary motivations for dividing the generator into separate planning and linguis-
tic components is to allow the components to be modified independently. The point
is that IGEN allows the linguistic component to be modified so dramatically without
limiting its ability to handle interactions between linguistic and planning issues. In
fact, IGEN can handle these interactions equally with either version of the linguistic
component without having to make any corresponding changes to the planner.

5. Summary

IGEN is designed to overcome the limitations, while retaining the advantages, of the
modular approach to natural language generation. It does this by means of annota-
tions that provide the planner with an abstract description of the effects of particular
linguistic choices, allowing IGEN to handle interactions between the planning and
linguistic levels while retaining the complete independence of the components. Thus
IGEN can vary the work done by each component independently, even in cases where
the final output depends on interactions between them.

As the examples in Section 4 show, IGEN can vary how it expresses information
in response to the differing roles that the information plays in the plan and, con-
versely, in response to a change in the language being used. It can also revise its
initial communicative plan based on the options suggested by the linguistic compo-
nent. Furthermore, this variation requires no weakening of the generator's modularity.
Changes in the plan structure are invisible to the linguistic component, and the change
in languages is invisible to the planner. In addition, since IGEN explicitly models and
reasons about the effects of its linguistic choices, it can gracefully handle situations
where the available time or linguistic resources are limited.

References
Appelt, Douglas E. 1983. TELEGRAM: A

grammar formalism for language
planning. In Proceedings of the 21st Annual
Meeting, pages 74-78, Cambridge, MA,
June. Association for Computational
Linguistics.

Appelt, Douglas E. 1985. Planning English
Sentences. Studies in Natural Language
Processing. Cambridge University Press.

Dale, Robert. 1989. Generating Referring
Expressions in a Domain of Objects and
Processes. Ph.D. thesis, Centre for
Cognitive Science, University of
Edinburgh.

Danlos, Laurence. 1987. The Linguistic Basis
of Text Generation. Studies in Natural
Language Processing. Cambridge
University Press, Cambridge, England,
English translation edition. Translated by
Dominique Debize and Colin Henderson.

Delin, Judy, Anthony Hartley, C4cile Paris,
Donia Scott, and Keith Vander Linden.
1994. Expressing procedural relationships
in multilingual instructions. In Proceedings
of the Seventh International Workshop on
Natural Language Generation, pages 61-70,
Kennebunkport, ME, June.

Elhadad, Michael and Jacques Robin. 1992.
Controlling content realization with
functional unification grammars. In

136

Rubinoff The IGEN Generator

Robert Dale, Eduard Hovy, Dietmar
ROsner, and Oliviero Stock, editors,
Aspects of Automated Natural Language
Generation. Springer-Verlag, pages 89-104.

Fisher, Steven K. and Kathleen R.
McKeown. 1990. Coordinating text and
graphics in explanation generation. In
Proceedings of the Eigth National Conference
on Arti~cial Intelligence, pages 442-449,
Boston, MA. American Association for
Artificial Intelligence.

Grosz, Barbara J. and Candace L. Sidner.
1985. Discourse structure and the proper
treatment of interruptions. In Proceedings
of the Ninth International Joint Conference on
Arti~cial Intelligence, pages 832-839, Los
Angeles, CA, August. Morgan Kaufmann.

Grosz, Barbara J. and Candace L. Sidner.
1986. Attention, intentions, and the
structure of discourse. Computational
Linguistics, 12(3):175-204.

Hovy, Eduard H. 1988a. Generating Natural
Language Under Pragmatic Constraints.
Lawrence Erlbaum, Hillsdale, NJ.

Hovy, Eduard H. 1988b. Planning coherent
multisentential text. In Proceedings of the
26th Annual Meeting, pages 163-169,
Buffalo, NY, June. Association for
Computational Linguistics.

Hovy, Eduard H. 1988c. Two types of
planning in language generation. In
Proceedings of the 26th Annual Meeting,
pages 179-186, Buffalo, NY, June.
Association for Computational
Linguistics.

Kantrowitz, Mark and Joseph Bates. 1992.
Integrated natural language generation
systems. In Robert Dale, Eduard Hovy,
Dietmar R6sner, and Oliviero Stock,
editors, Aspects of Automated Natural
Language Generation. Springer-Verlag.

Mann, William C. 1983. An overview of the
nigel text generation grammar. In
Proceedings of the 21st Annual Meeting,
pages 79-84. Association for
Computational Linguistics.

Mann, William C. and Sandra A.
Thompson. 1987. Rhetorical structure
theory: Description and construction of
text structures. In Gerard Kempen, editor,
Natural Language Generation: New Results in
Artijqcial Intelligence, Psychology, and
Linguistics. Martinus Nijhoff Publishers,
Boston, MA, chapter 7, pages 85-96.

McDonald, David D. 1983. Natural
language generation as a computational
problem. In M. Brady and Robert
Berwick, editors, Computational Models of
Discourse. MIT Press, pages 209-265.

McDonald, David D. 1988. Modularity in
langauge generation: Methodological

issues. In Proceedings of the AAAI-88
Workshop on Text Planning and Generation,
St. Paul, MN, August.

McDonald, David D. 1991. On the place of
words in the generation process. In C~cile
Paris, William R. Swartout, and William
C. Mann, editors, Natural Language
Generation in Arti~cial Intelligence and
Computational Linguistics. Kluwer
Academic Publishers, Boston, MA,
chapter 9, pages 229-247.

McKeown, Kathleen R. 1985. TEXT
GENERATION: Using Discourse Strategies
and Focus Constraints to Generate Natural
Language. Cambridge University Press.

Meteer, Marie W. 1989. The "Generation Gap":
The Problem of Expressibility in Text Planning.
Ph.D. thesis, University of Massachusetts
at Amherst, Amherst, MA, December.

Meteer, Marie W. 1994. Generating event
descriptions with sage: A simulation and
generation environment. In Proceedings of
the Seventh International Workshop on
Natural Language Generation, pages 99-107,
Kennebunkport, ME, June.

Meteer, Marie W., David D. McDonald,
Scott D. Anderson, David Forster,
Linda S. Gay, Alison K. Huettner, and
Penelope Sibun. 1987. Mumble-86: Design
and implementation. Technical Report
87-87, Computer and Information Science,
University of Massachusetts at Amherst,
Amherst, MA.

Moore, Johanna D. and C4cile Paris. 1989.
Planning text for advisory dialogues. In
Proceedings of the 27th Annual Meeting,
pages 203-211, Vancouver, BC, June.
Association for Computational
Linguistics.

Nii, H. Penny. 1986a. Blackboard systems:
Blackboard application systems,
blackboard systems from a knowledge
engineering perspective. AI Magazine,
7(3):82-106.

Nii, H. Penny. 1986b. Blackboard systems:
The blackboard model of problem solving
and the evolution of blackboard
architectures. AI Magazine, 7(2):38-53.

Nilsson, Nils J. 1980. Principles of Artij~'cial
Intelligence. Tioga Publishing Co., Palo
Alto, CA.

Nirenburg, Sergei, Rita McCardell, Eric
Nyberg, Philip Werner, Scott Huffman,
Edward Kenschaft, and Irene Nirenburg.
1988. Diogenes-88. Technical Report
CMU-CMT-88-107, Center for Machine
Translation at Carnegie-Mellon
University, Pittsburgh, PA, June.

Nogier, Jean-Francois. 1989. A natural
language production system based on
conceptual graphs. Technical Report E146,

137

Computational Linguistics Volume 26, Number 2

Centre Scientifique IBM France, Paris.
Panaget, Franck. 1994. Using a textual

representation level component in the
context of discourse and dialogue
generation. In Proceedings of the Seventh
International Workshop on Natural Language
Generation, pages 127-136,
Kennebunkport, ME, June.

Paris, C~cile L. and Donia R. Scott. 1994.
Intentions, structure and expression in
multi-lingual instructions. In Proceedings of
the Seventh International Workshop on
Natural Language Generation, pages 45--52,
Kennebunkport, ME, June.

PenMan Project, The. 1989. The PenMan
documentation. Technical Report,
USC/Information Sciences Institute,
Marina del Rey, CA.

Reiter, Ehud. 1994. Has a consensus NL
generation architecture appeared, and is it
psycholinguistically plausible. In
Proceedings of the Seventh International
Workshop on Natural Language Generation,
pages 163-170, Kennebunkport, ME, June.

Reithinger, Norbert. 1990. Popel--A parallel
and incremental natural language
generation system. In C~cile Paris,
William Swartout, and William Mann,
editors, Natural Language Generation in
Artificial Intelligence and Computational
Linguistics. Kluwer Academic Publishers,
Boston, MA, pages 179-200.

Rubinoff, Robert. 1986. Adapting mumble:
Experience with natural language

generation. In Proceedings of AAAI-86,
pages 1063-1068, Philadelphia, PA,
August. American Association for
Artificial Intelligence, Morgan Kauffman.

Rubinoff, Robert. 1992. Negotiation, Feedback,
and Perspective Within Natural Language
Generation. Ph.D. thesis, CIS Department,
University of Pennsylvania, Philadephia,
PA, December. Available as Technical
Report MS-CIS-92-91.

Sibun, Penelope. 1991. Locally Organized Text
Generation. Ph.D. thesis, University of
Massachusetts at Amherst, Amherst, MA.
Available as COINS Technical Report
91-73.

Sondheimer, Norman K. and Bernhard
Nebel. 1986. A logical-form and
knowledge-base design for natural
language generation. In Proceedings of the
Fifth National Conference on Artificial
Intelligence, pages 612-618, Philadelphia,
PA, August. American Association for
Artificial Intelligence.

Thompson, Henry. 1977. Strategy and
tactics: A model for language production.
In Papers from the Thirteenth Regional
Meeting, pages 651-668. Chicago
Linguistics Society.

Wanner, Leo. 1994. Building another bridge
over the generation gap. In Proceedings of
the Seventh International Workshop on
Natural Language Generation,
pages 137-144, Kennebunkport, ME, June.

138

