
Learning Dependency Translation Models 
as Collections of Finite-State Head 
Transducers 

Hiyan Alshawi* 
Shannon Laboratory, AT&T Labs 

Shona Douglas* 
Shannon Laboratory, AT&T Labs 

Srinivas Bangalore* 
Shannon Laboratory, AT&T Labs 

The paper defines weighted head transducers,finite-state machines that perform middle-out string 
transduction. These transducers are strictly more expressive than the special case of standard left- 
to-right finite-state transducers. Dependency transduction models are then defined as collections 
of weighted head transducers that are applied hierarchically. A dynamic programming search 
algorithm is described for finding the optimal transduction of an input string with respect to a 
dependency transduction model. A method for automatically training a dependency transduc- 
tion model from a set of input-output example strings is presented. The method first searches 
for hierarchical alignments of the training examples guided by correlation statistics, and then 
constructs the transitions of head transducers that are consistent with these alignments. Experi- 
mental results are given for applying the training method to translation from English to Spanish 
and Japanese. 

1. Introduction 

We will define a dependency transduction model in terms of a collection of weighted 
head transducers. Each head transducer is a finite-state machine that differs from 
"standard" finite-state transducers in that, instead of consuming the input string left 
to right, it consumes it "middle out" from a symbol in the string. Similarly, the output 
of a head transducer is built up middle out at positions relative to a symbol in the 
output string. The resulting finite-state machines are more expressive than standard 
left-to-right transducers. In particular, they allow long-distance movement with fewer 
states than a traditional finite-state transducer, a useful property for the translation task 
to which we apply them in this paper. (In fact, finite-state head transducers are capable 
of unbounded movement with a finite number of states.) In Section 2, we introduce 
head transducers and explain how input-output positions on state transitions result 
in middle-out transduction. 

When applied to the problem of translation, the head transducers forming the de- 
pendency transduction model operate on input and output strings that are sequences 
of dependents of corresponding headwords in the source and target languages. The 
dependency transduction model produces synchronized dependency trees in which 
each local tree is produced by a head transducer. In other words, the dependency 
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model applies the head transducers recursively, imposing a recursive decomposition 
of the source and target strings. A dynamic programming search algorithm finds op- 
timal (lowest total weight) derivations of target strings from input strings or word 
lattices produced by a speech recognizer. Section 3 defines dependency transduction 
models and describes the search algorithm. 

We construct the dependency transduction models for translation automatically 
from a set of unannotated examples, each example comprising a source string and a 
corresponding target string. The recursive decomposition of the training examples 
results from an algorithm for computing hierarchical alignments of the examples, 
described in Section 4.2. This alignment algorithm uses dynamic programming search 
guided by source-target word correlation statistics as described in Section 4.1. 

Having constructed a hierarchical alignment for the training examples, a set of 
head transducer transitions are constructed from each example as described in Sec- 
tion 4.3. Finally, the dependency transduction model is constructed by aggregating the 
resulting head transducers and assigning transition weights, which are log probabili- 
ties computed from the training counts by simple maximum likelihood estimation. 

We have applied this method of training statistical dependency transduction mod- 
els in experiments on English-to-Spanish and English-to-Japanese translations of tran- 
scribed spoken utterances. The results of these experiments are described in Section 5; 
our concluding remarks are in Section 6. 

2. Head Transducers 

2.1 Weighted Finite-State Head Transducers 
In this section we describe the basic structure and operation of a weighted head trans- 
ducer. In some respects, this description is simpler than earlier presentations (e.g., 
Alshawi 1996); for example, here final states are simply a subset of the transducer 
states whereas in other work we have described the more general case in which final 
states are specified by a probability distribution. The simplified description is adequate 
for the purposes of this paper. 

Formally, a weighted head transducer is a 5-tuple: an alphabet W of input symbols; 
an alphabet V of output symbols; a finite set Q of states q0 . . . . .  qs; a set of final states 
F c Q; and a finite set T of state transitions. A transition from state q to state q' has 
the form 

(q,q',w,v,o~,fl, cl 

where w is a member of W or is the empty string c; v is a member of V or ¢; the integer 
o~ is the input position; the integer fl is the output position; and the real number c is 
the weight or cost of the transition. A transition in which oz = 0 and fl = 0 is called a 
head transition. 

The interpretation of q, q', w, and v in transitions is similar to left-to-right transduc- 
ers, i.e., in transitioning from state q to state qt, the transducer "reads" input symbol 
w and "writes" output symbol v, and as usual if w (or v) is e then no read (respec- 
tively write) takes place for the transition. The difference lies in the interpretation of 
the read position c~ and the write position ft. To interpret the transition positions as 
transducer actions, we consider notional input and output tapes divided into squares. 
On such a tape, one square is numbered 0, and the other squares are numbered 1, 2 . . . .  
rightwards from square 0, and - 1 , - 2  . . . .  leftwards from square 0 (Figure 1). 

A transition with input position ~ and output position fl is interpreted as reading 
w from square c~ on the input tape and writing v to square fl of the output tape; if 
square fl is already occupied, then v is written to the next empty square to the left of 
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<q, q ' ,  w, v, a, fl,, c> 
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Figure 1 
Transition symbols and positions. 

fl if fl < 0, or to the right of fl if fl > 0, and similarly, if input  was already read from 
position a, w is taken from the next  unread square to the left of a if a < 0 or to the 
right of c~ if a ~ 0. 

The operat ion of a head t ransducer  is nondeterministic.  It starts by  taking a head 
transition 

{q, q', w0, v0, 0, 0, c} 

where  w0 is one of the symbols (not necessarily the leftmost) in the input  string. (The 
valid initial states are therefore implicitly defined as those with an outgoing head 
transition.) w0 is considered to be at square 0 of the input  tape and v0 is ou tput  at 
square 0 of the output  tape. Further state transitions may  then be taken until a final 
state in F is reached. For a derivation to be valid, it must  read each symbol  in the 
input  string exactly once. At the end of a derivation, the output  string is formed by  
taking the sequence of symbols on the target tape, ignoring any empty  squares on this 
tape. 

The cost of a derivation of an input  string to an output  string by  a weighted 
head t ransducer  is the sum of the costs of transitions taken in the derivation. We can 
now define the string-to-string transduction function for a head t ransducer  to be the 
function that maps  an input  string to the output  string produced  by  the lowest-cost 
valid derivation taken over  all initial states and initial symbols. (Formally, the function 
is partial in that it is not  defined on an input  when  there are no derivations or when  
there are multiple outputs  with the same minimal cost.) 

In the transducers p roduced  by  the training me thod  described in this paper, the 
source and target positions are in the set { -1 ,0 ,1} ,  though we have also used hand-  
coded transducers (Alshawi and Xia 1997) and automatically trained transducers (A1- 
shawl and Douglas 2000) with a larger range of positions. 

2.2 Relationship to Standard FSTs 
The operat ion of a traditional left-to-right t ransducer can be simulated by a head 
t ransducer  by  starting at the leftmost input  symbol and setting the positions of the 
first transition taken to a = 0 and fl = 0, and the positions for subsequent  transitions 
to o~ = 1 and fl = 1. However ,  we can illustrate the fact that head transducers are more 
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a : a  

a:a ~ b:b 

0:0 

Figure 2 
Head transducer to reverse an input string of arbitrary length in the alphabet {a, b}. 

expressive than left-to-right transducers by the case of a finite-state head transducer 
that reverses a string of arbitrary length. (This cannot be performed by a traditional 
transducer with a finite number of states.) 

For example, the head transducer described below (and shown in Figure 2) with 
input alphabet {a, b} will reverse an input string of arbitrary length in that alphabet. 
The states of the example transducer are Q = {ql, q2} and F = {q2}, and it has the 
following transitions (costs are ignored here): 

{ql, q2,a,a,O,O} 
<ql, q2, b, b, 0, 0> 

<q2,q2,a,a,-1,1} 
(q2, q2, b, b, -1,1} 

The only possible complete derivations of the transducer read the input string right 
to left, but write it left to right, thus reversing the string. 

Another similar example is using a finite-state head transducer to convert a palin- 
drome of arbitrary length into one of its component halves. This clearly requires the 
use of an empty string on some of the output transitions. 

3. Dependency Transduction Models 

3.1 Dependency Transduction using Head Transducers 
In this section we describe dependency transduction models, which can be used for 
machine translation and other transduction tasks. These models consist of a collection 
of head transducers that are applied hierarchically. Applying the machines hierarchi- 
cally means that a nonhead transition is interpreted not simply as reading an input- 
output pair (w, v), but instead as reading and writing a pair of strings headed by (w, v) 
according to the derivation of a subnetwork. 

For example, the head transducer shown in Figure 3 can be applied recursively in 
order to convert an arithmetic expression from infix to prefix (Polish) notation (as noted 
by Lewis and Stearns [1968], this transduction cannot be performed by a pushdown 
transducer). 

In the case of machine translation, the transducers derive pairs of dependency 
trees, a source language dependency tree and a target dependency tree. A dependency 
tree for a sentence, in the sense of dependency grammar (for example Hays [1964] and 
Hudson [1984]), is a tree in which the words of the sentence appear as nodes (we do 
not have terminal symbols of the kind used in phrase structure grammar). In such a 
tree, the parent of a node is its head and the child of a node is the node's dependent. 

The source and target dependency trees derived by a dependency transduction 
model are ordered, i.e., there is an ordering on the nodes of each local tree. This 
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b b ~ C ~  b:b b:b 

Figure 3 
Dependency transduction network mapping bracketed arithmetic expressions from infix to 
prefix notation. 

I I want to make a collect call I 

• , 

[ quiero hac~ una llamada de cobr~ I 

Figure 4 
Synchronized dependency trees derived for transducing I want to make a collect call into quiero 
hacer una llamada de cobrar. 

means, in particular, that the target sentence can be constructed directly by a simple 
recursive traversal of the target dependency tree. Each pair of source and target trees 
generated is synchronized in the sense to be formalized in Section 4.2. An example is 
given in Figure 4. 

Head transducers and dependency transduction models are thus related as fol- 
lows: Each pair of local trees produced by a dependency transduction derivation is the 
result of a head transducer derivation. Specifically, the input to such a head transducer 
is the string corresponding to the flattened local source dependency tree. Similarly, the 
output of the head transducer derivation is the string corresponding to the flattened 
local target dependency tree. In other words, the head transducer is used to convert 
a sequence consisting of a headword w and its left and right dependent words to a 
sequence consisting of a target word v and its left and right dependent words (Fig- 
ure 5). Since the empty string may appear in a transition in place of a source or target 
symbol, the number of source and target dependents can be different. 

The cost of a derivation produced by a dependency transduction model is the 
sum of all the weights of the head transducer derivations involved. When applying a 
dependency transduction model to language translation, we choose the target string 
obtained by flattening the target tree of the lowest-cost dependency derivation that 
also generates the source string. 

We have not yet indicated what weights to use for head transducer transitions. 
The definition of head transducers as such does not constrain these. However, for a 
dependency transduction model to be a statistical model for generating pairs of strings, 
we assign transition weights that are derived from conditional probabilities. Several 
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Iw1 ..- wk.ll ~÷1 ..-'~nl 

Iv ,  
Figure 5 
Head transducer converts the sequences of left and right dependents (wl ... wk-l/ and 
(wk+i • • • w,) of w into left and right dependents (vl... vj-1) and {Vj+I... Vp) of v. 

probabilistic parameterizations can be used for this purpose including the following 
for a transition with headwords  w and v and dependent  words w' and v': 

P(q', w', v', fllw, v, q). 

Here q and q' are the from-state and to-state for the transition and a and fl are the 
source and target positions, as before. We also need parameters P(q0, ql]w, v) for the 
probability of choosing a head transition 

(qo, ql, w,v,O,O) 

given this pair of headwords.  To start the derivation, we need parameters 
P(roots(wo, vo)) for the probability of choosing w0,v0 as the root nodes of the two 
trees. 

These model  parameters can be used to generate pairs of synchronized depen- 
dency trees starting with  the topmost  nodes of the two trees and proceeding recur- 
sively to the leaves. The probability of such a derivation can be expressed as: 

P( oots(wo, vo) )P(Dwo,vo) 

where P(Dw,v) is the probability of a subderivation headed by w and v, that is 

P(Dw,v) = P(qo, qllw, v) H P(qi+l, Wi, Vi,~i, fli]w,v, qi)P(Dwi,vl) 
1 K i l n  

for a derivation in which the dependents  of w and v are generated by n transitions. 

3.2 Transduction Algor i thm 
To carry out translation with  a dependency transduction model, we apply a dynamic 
programming search to find the optimal derivation. This algorithm can take as input 
either word strings, or word lattices produced by a speech recognizer. The algorithm 
is similar to those for context-free parsing such as chart parsing (Earley 1970) and 
the CKY algorithm (Younger 1967). Since word  string input is a special case of word 
lattice input, we need only describe the case of lattices. 

We now present a sketch of the transduction algorithm. The algorithm works 
bottom-up, maintaining a set of configurations. A configuration has the form 

In1, n2, w, v, q, c, t] 

corresponding to a bottom-up partial derivation currently in state q covering an input 
sequence between nodes nl and n2 of the input lattice, w and v are the topmost  
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nodes in the source and target derivation trees. Only the target tree t is stored in the 
configuration. 

The algorithm first initializes configurations for the input words, and then per- 
forms transitions and optimizations to develop the set of configurations bottom-up: 

Initialization: For each word edge between nodes n and n ~ in the lattice 
with source word w0, an initial configuration is constructed for any head 
transition of the form 

(q, q', w0, v0, 0, 0, c} 

Such an initial configuration has the form: 

[n, n t, w0, v0, q~, c, v0] 

Transition: We show the case of a transition in which a new configuration 
results from consuming a source dependent wl to the left of a headword 
w and adding the corresponding target dependent Vl to the right of the 
target head v. Other cases are similar. The transition applied is: 

(q, q~, Wl, Vl, -1 ,1 ,  c'} 

It is applicable when there are the following head and dependent 
configurations: 

[n2,n3,w,v,q,c,t] 
[nl, n2, Wl, Vl, qf, Cl, tl] 

where the dependent configuration is in a final state qf. The result of 
applying the transition is to add the following to the set of 
configurations: 

In1, n3, w, v, q', c + Cl q- C', t'] 

where Y is the target dependency tree formed by adding tl as the 
rightmost dependent of t. 

Optimization: We also require a dynamic programming condition to 
remove suboptimal (sub)derivations. Whenever there are two 
configurations 

[n, n', w, v, q, Cl, tl] 

[n, n', w, v, q, C2, t2] 

and c2 > Cl, the second configuration is removed from the set of 
configurations. 

If, after all applicable transitions have been taken, there are configurations span- 
ning the entire input lattice, then the one with the lowest cost is the optimal derivation. 
When there are no such configurations, we take a pragmatic approach in the trans- 
lation application and simply concatenate the lowest costing of the minimal length 
sequences of partial derivations that span the entire lattice. A Viterbi-like search of 
the graph formed by configurations is used to find the optimal sequence of deriva- 
tions. One of the advantages of middle-out transduction is that robustness is improved 
through such use of partial derivations when no complete derivations are available. 
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4. Training Method 

Our training method for head transducer models only requires a set of training exam- 
ples. Each example, or bitext, consists of a source language string paired with a target 
language string. In our experiments, the bitexts are transcriptions of spoken English 
utterances paired with their translations into Spanish or Japanese. 

It is worth emphasizing that we do not necessarily expect the dependency repre- 
sentations produced by the training method to be traditional dependency structures 
for the two languages. Instead, the aim is to produce bilingual (i.e., synchronized, see 
below) dependency representations that are appropriate to performing the translation 
task for a specific language pair or specific bilingual corpus. For example, headwords 
in both languages are chosen to force a synchronized alignment (for better or worse) 
in order to simplify cases involving so-called head-switching. This contrasts with one 
of the traditional approaches (e.g., Dorr 1994; Watanabe 1995) to posing the transla- 
tion problem, i.e., the approach in which translation problems are seen in terms of 
bridging the gap between the most natural monolingual representations underlying 
the sentences of each language. 

The training method has four stages: (i) Compute co-occurrence statistics from the 
training data. (ii) Search for an optimal synchronized hierarchical alignment for each 
bitext. (iii) Construct a set of head transducers that can generate these alignments with 
transition weights derived from maximum likelihood estimation. 

4.1 Computing Pairing Costs 
For each source word w in the data set, assign a cost, the translation pairing cost 
c(w, v) for all possible translations v into the target language. These translations of the 
source word may be zero, one, or several target language words (see Section 4.4 for 
discussion of the multiword case). The assignment of translation pairing costs (effec- 
tively a statistical bilingual dictionary) may be done using various statistical measures. 
For this purpose, a suitable statistical function needs to indicate the strength of co- 
occurrence correlation between source and target words, which we assume is indicative 
of carrying the same semantic content. Our preferred choice of statistical measure for 
assigning the costs is the ~ correlation measure (Gale and Church 1991). We apply 
this statistic to co-occurrence of the source word with all its possible translations in 
the data set examples. We have found that, at least for our data, this measure leads to 
better performance than the use of the log probabilities of target words given source 
words (cf. Brown et al. 1993). 

In addition to the correlation measure, the cost for a pairing includes a distance 
measure component that penalizes pairings proportionately to the difference between 
the (normalized) positions of the source and target words in their respective sentences. 

4.2 Computing Hierarchical Alignments 
As noted earlier, dependency transduction models are generative probabilistic models; 
each derivation generates a pair of dependency trees. Such a pair can be represented 
as a synchronized hierarchical alignment of two strings. A hierarchical alignment 
consists of four functions. The first two functions are an alignment mapping f from 
source words w to target words f(w) (which may be the empty string ~), and an 
inverse alignment mapping from target words v to source words fr(v). The inverse 
mapping is needed to handle mapping of target words to ~; it coincides w i t h f  for pairs 
without source ~. The other two functions are a source head-map g mapping source 
dependent words w to their heads g(w) in the source string, and a target head-map 
h mapping target dependent words v to their headwords h(v) in the target string. An 
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g 

show me nonstop flights to boston 

muestreme los vuelos sin escalas a boston 

g 

show me 

z ' \  
muestr~me 

nonstop flights to boston 

los vuelos sin escalas a boston 

Figure 6 
A hierarchical alignment: alignment mappings f and f' ,  and head-maps g and h. 

example hierarchical alignment is shown in Figure 6 (f and f '  are shown separately 
for clarity). 

A hierarchical alignment is synchronized (i.e., it corresponds to synchronized de- 
pendency trees) if these conditions hold: 

N o n o v e r l a p :  If wl # w2, thenf(wl)  •f(w2), and similarly, if Vl • V2, thenf ' (vl)  # 
d'(v2). 

S y n c h r o n i z a t i o n :  if f (w)  = v and v # e, then f (g(w))  = h(v), and f ' (v) = w. 
Similarly, ifd'(v) = w and w # e, thend'(h(v)) = g(w), andf(w)  = v. 

P h r a s e  c o n t i g u i t y :  The image under f of the maximal substring dominated by a 
headword w is a contiguous segment of the target string. 

(Here w and v refer to word tokens not symbols (types). We hope that the context of 
discussion will make the type-token distinction clear in the rest of this article.) The 
hierarchical alignment in Figure 6 is synchronized. 

Of course, translations of phrases are not always transparently related by a hier- 
archical alignment. In cases where the mapping between a source and target phrase is 
unclear (for example, one of the phrases might be an idiom), then the most reasonable 
choice of hierarchical alignment may be for f and f '  to link the heads of the phrases 
only, all the other words being mapped to e, with no constraints on the monolingual 
head mappings h and g. (This is the approach we take to compound lexical pairings, 
discussed in Section 4.4.) 

In the hierarchical alignments produced by the training method described here, 
the source and target strings of a bitext are decomposed into three aligned regions, 
as shown in Figure 7: a head region consisting of headword w in the source and its 
corresponding targetf(w) in the target string, a left substring region consisting of the 
source substring to the left of w and its projection under f on the target string, and 
a right substring region consisting of the source substring to the right of w and its 
projection u n d e r f  on the target string. The decomposition is recursive in that the left 
substring region is decomposed around a left headword wl, and the right substring 

53 



Computational Linguistics Volume 26, Number 1 

[ 

Figure 7 
Decomposing source and target strings around heads w and f(w). 

region is decomposed around a right headword Wr. This process of decomposition 
continues for each left and right substring until it only contains a single word. 

For each bitext there are, in general, multiple such recursive decompositions that 
satisfy the synchronization constraints for hierarchical alignments. We wish to find 
such an alignment that respects the co-occurrence statistics of bitexts as well as the 
phrasal structure implicit in the source and target strings. For this purpose we define 
a cost function on hierarchical alignments. The cost function is the sum of three terms. 
The first term is the total of all the translation pairing costs c(w,f(w)) of each source 
word w and its translation f(w) in the alignment; the second term is proportional to 
the distance in the source string between dependents wd and their heads g(wa); and the 
third term is proportional to the distance in the target string between target dependent 
words va and their heads h(va). 

The hierarchical alignment that minimizes this cost function is computed using 
a dynamic programming procedure. In this procedure, the pairing costs are first re- 
trieved for each possible source-target pair allowed by the example. Adjacent source 
substrings are then combined to determine the lowest-cost subalignments for suc- 
cessively larger substrings of the bitext satisfying the constraints stated above. The 
successively larger substrings eventually span the entire source string, yielding the 
optimal hierarchical alignment for the bitext. This procedure has O(n 6) complexity 
in the number of words in the source (or target) sentence. In Alshawi and Douglas 
(2000) we describe a version of the alignment algorithm in which heads may have 
an arbitrary number of dependents, and in which the hierarchical alignments for the 
training corpus are refined by iterative reestimation. 

4.3 Constructing Transducers 
Building a head transducer involves creating appropriate head transducer states and 
tracing hypothesized head transducer transitions between them that are consistent 
with the hierarchical alignment of a bitext. 

The main transitions that are traced in our construction are those that map heads, 
wl and Wr, of the right and left dependent phrases of w to their translations as indi- 
cated by the alignment function f in the hierarchical alignment. The positions of the 
dependents in the target string are computed by comparing the positions off(wt) and 
f(Wr) to the position of v = f(w). 

In order to generalize from instances in the training data, some model states aris- 
ing from different training instances are shared. In particular, in the construction de- 
scribed here, for a given pair (w, v) there is only one final state. (We have also tried 
using automatic word-clustering techniques to merge states further, but for the lim- 
ited domain corpora we have used so far, the results are inconclusive.) To specify 
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Figure 8 
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States and transitions constructed for the "swapping" decomposition shown in Figure 7. 

the sharing of states we make use of a one-to-one state-naming function ¢ from se- 
quences of strings to transducer states. The same state-naming function is used for 
all examples in the data set, ensuring that the transducer fragments recorded for 
the entire data set will form a complete collection of head transducer transition net- 
works. 

Figure 7 shows a decomposition in which w has a dependent  to either side, v 
has both dependents to the right, and the alignment is "swapping"  (f(wl) is to the 
right off(wr)). The construction for this decomposition case is illustrated in Figure 8 
as part of a finite-state transition diagram, and described in more detail below. (The 
other transition arrows shown in the diagram will arise from other bitext alignments 
containing (w,f(w)) pairings.) Other cases covered by our algorithm (e.g., a single left 
source dependent  but  no right source dependent,  or target dependents  on either side 
of the target head) are simple variants. 

The detailed construction is as follows: 

1. Construct a transition from sl = ¢(initial) to S 2 = O ' ( w , f ( w ) ,  head) mapping 
the source headword  w to the target head f(w) at position 0 in source 
and target. (In our training construction there is only one initial state sl.) 

2. Since the target dependentf(wr) is to the left of target dependent f (wl)  
(and we are restricting positions to {-1,  0, +1}) the Wr transition is 
constructed first in order that the target dependent  nearest the head is 
output  first. 
Construct a transition from s2 to s3 = c~(w,f(w), swapping, Wr,f(Wr) 
mapping the source dependent  Wr at position +1 to the target dependent  
f(Wr) at position +1. 

3. Construct a transition from s3 to s4 = cr(w,f(w),final) mapping the source 
dependent  wl at position -1 to the target dependentf (wl)  at position +1. 

If instead the alignment had been as in Figure 9, in which the source dependents  
are mapped  to target dependents  in a parallel rather than swapping configuration 
(the configuration of sin escalas and Boston around flights:los vuelos in Figure 6), the 
construction is the same, except for the following differences: 

. 

. 

Since the target dependent f (wl)  is to the left of target dependentf(Wr), 
the wl transition is constructed first in order that the target dependent  
nearest the head is output  first. 

The source and target positions are as shown in Figure 10. Instead of 
s t a t e  s3,  we use a different state ss = ¢(w,f(w),parallel, wl,f(wl)). 
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j J  

Figure 9 
Decomposing source and target strings around heads w and f(w)--"parallel'. 

w :f(w) ?\oo 
Figure 10 

-1 :+1 

w / f ( w  , ) 

+1 :+ 1 

States and transitions constructed for the "parallel" decomposition shown in Figure 9. 

Other states are the same as for the first case. The resulting states and transitions are 
shown in Figure 10. 

After the construction described above is applied to the entire set of aligned bi- 
texts in the training set, the counts for transitions are treated as event observation 
counts of a statistical dependency transduction model with the parameters described 
in Section 3.1. More specifically, the negated logs of these parameters are used as the 
weights for transducer transitions. 

4.4 Mul t iword  Pairings 
In the translation application, source word w and target word v are generalized so 
they can be short substrings (compounds) of the source and target strings. Exam- 
ples of such multiword pairs are show me:muestrdme and nonstop:sin escalas in Fig- 
ure 6. The cost for such pairings still uses the same ~ statistic, now taking the ob- 
servations to be the co-occurrences of the substrings in the training bitexts. How- 
ever, in order that these costs can be comparable to the costs for simple pairings, 
they are multiplied by the number of words in the source substring of the pair- 
ing. 

The use of compounds in pairings does not require any fundamental changes to 
the hierarchical alignment dynamic programming algorithm, which simply produces 
dependency trees with nodes that may be compounds. In the transducer construction 
phase of the training method, one of the words of a compound is taken to be the pri- 
mary or "real" headword. (In fact, we take the least common word of a compound to 
be its head.) An extra chain of transitions is constructed to transduce the other words 
of compounds, if necessary using transitions with epsilon strings. This compilation 
means that the transduction algorithm is unaffected by the use of compounds when 
aligning training data, and there is no need for a separate compound identification 
phase when the transduction algorithm is applied to test data. Some results for dif- 
ferent choices of substring lengths can be found in Alshawi, Bangalore, and Douglas 
(1998). 
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5. Experiments 

5.1 Evaluation Method 
In order to reduce the time required to carry out training evaluation experiments, 
we have chosen two simple, string-based evaluation metrics that can be calculated 
automatically. These metrics, simple accuracy and translation accuracy, are used to 
compare the target string produced by the system against a reference human transla- 
tion from held-out data. 

Simple accuracy is computed by first finding a transformation of one string into 
another that minimizes the total weight of insertions, deletions, and substitutions. (We 
use the same weights for these operations as in the NIST ASR evaluation software 
[National Institute of Standards and Technology 1997].) Translation accuracy includes 
transpositions (i.e., movement) of words as well as insertions, deletions, and substi- 
tutions. We regard the latter metric as more appropriate for evaluation of translation 
systems because the simple metric would count a transposition as two errors: an in- 
sertion plus a deletion. (This issue does not arise for speech recognizers because these 
systems do not normally make transposition errors.) 

For the lowest edit-distance transformation between the reference translation and 
system output, if we write I for the number of insertions, D for deletions, S for substi- 
tutions, and R for number of words in the reference translation string, we can express 
simple accuracy as 

simple accuracy = 1 - ( I  + D + S ) / R .  

Similarly, if T is the number of transpositions in the lowest weight transformation 
including transpositions, we can express translation accuracy as 

translation accuracy = 1 - ( I  ~ + D ~ + S + T ) / R .  

Since a transposition corresponds to an insertion and a deletion, the values of I ~ and D ~ 
for translation accuracy will, in general, be different from I and D in the computation of 
simple accuracy. For Spanish, the units for string operations in the evaluation metrics 
are words, whereas for Japanese they are Japanese characters. 

5.2 English-to-Spanish 
The training and test data for the English-to-Spanish experiments were taken from 
a set of transcribed utterances from the Air Travel Information System (ATIS) corpus 
together with a translation of each utterance to Spanish. An utterance is typically a sin- 
gle sentence but is sometimes more than one sentence spoken in sequence. Alignment 
search and transduction training was carried out only on bitexts with sentences up 
to length 20, a total of 13,966 training bitexts. The test set consisted of 1,185 held-out 
bitexts at all lengths. Table 1 shows the word accuracy percentages (see Section 5.1) 
for the trained model, e2s, against the original held-out translations at various source 
sentence lengths. Scores are also given for a "word-for-word" baseline, sww, in which 
each English word is translated by the most highly correlated Spanish word. 

5.3 English-to-Japanese 
The training and test data for the English-to-Japanese experiments was a set of tran- 
scribed utterances of telephone service customers talking to AT&T operators. These 
utterances, collected from real customer-operator interactions, tend to include frag- 
mented language, restarts, etc. Both training and test partitions were restricted to bi- 
texts with at most 20 English words, giving 12,226 training bitexts and 3,253 held-out 
test bitexts. In the Japanese text, we introduce "word" boundaries that are convenient 
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Table 1 
Simple accuracy/translation accuracy (percent) for the trained 
English-to-Spanish model (e2s) against the word-for-word baseline 
(sww). 

Length < 5 < 10 G 15 < 20 All 

sww 45.1/45.8 46.7/48.6 46.5/48.2 45.5/47.1 45.2/46.9 
e2s 75.4/75.8 76.3/78.0 75.4/77.0 74.4/76.0 73.3/75.0 

Table 2 
Simple accuracy/translation accuracy as percentages of Japanese 
characters, for the trained English-to-Japanese model (e2j) and the 
word-for-word baseline (jww). 

Length G 5 < 10 G 15 ~ 20 All 

jww 75.8/78.0 45.2/50.4 40.0/45.4 37.2/42.8 37.2/42.8 
e2j 89.2/89.7 74.0/76.6 68.6/72.2 66.4/70.1 66.4/70.1 

for the training process. These word boundaries are parasitic on the word boundaries 
in the English transcriptions: the translators are asked to insert such a word boundary 
between any two Japanese characters that are taken to have arisen from the translation 
of distinct English words. This results in bitexts in which the number of multichar- 
acter Japanese "words" is at most the number of English words. However, as noted 
above, evaluation of the Japanese output is done with Japanese characters, i.e., with 
the Japanese text in its natural format. Table 2 shows the Japanese character accuracy 
percentages for the trained English-to-Japanese model, e2j, and a baseline model, jww, 
which gives each English word its most highly correlated translation. 

5.4 Note on Experimental Setting 
The vocabularies in these English-Spanish and English-Japanese experiments are only 
a few thousand words; the utterances are fairly short (an average of 7.3 words per utter- 
ance) and often contain errors typical of spoken language. So while the domains may 
be representative of task-oriented dialogue settings, further experimentation would 
be needed to assess the effectiveness of our method in situations such as translat- 
ing newspaper articles. In terms of the training data required, Tsukada et al. (1999) 
provide indirect empirical evidence suggesting accuracy can be further improved by 
increasing the size of our training sets, though also suggesting that the learning curve 
is relatively shallow beyond the current size of corpus. 

6. Concluding Remarks 

Formalisms for finite-state and context-free transduction have a long history (e.g., 
Lewis and Stearns 1968; Aho and Ullman 1972), and such formalisms have been ap- 
plied to the machine translation problem, both in the finite-state case (e.g., Vilar et al. 
1996) and the context-free case (e.g., Wu 1997). In this paper we have added to this 
line of research by providing a method for automatically constructing fully lexicalized 
statistical dependency transduction models from training examples. 

Automatically training a translation system brings important benefits in terms of 
maintainability, robustness, and reducing expert coding effort as compared with tra- 
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ditional rule-based translation systems (a number  of which are described in Hutchins  
and Somers [1992]). The reduct ion of effort results, in large part, from being able 
to do wi thout  artificial intermediate representations of meaning; we do not  require 
the deve lopment  of semantic mapping  rules (or indeed any rules) or the creation of 
a corpus including semantic annotations. Compared  with left-to-right transduction,  
middle-out  t ransduction also aids robustness because, when  complete derivations are 
not  available, partial derivations tend to have meaningful  headwords .  

At the same time, we believe our  me thod  has advantages over  the approach de- 
veloped initially at IBM (Brown et al. 1990; Brown et al. 1993) for training translation 
systems automatically. One advantage is that our  method  at tempts to model  the nat- 
ural decomposi t ion of sentences into phrases. Another  is that the compilat ion of this 
decomposi t ion into lexically anchored finite-state head transducers produces  imple- 
mentat ions that are much  more  efficient than those for the IBM model.  In particular, 
our  search algori thm finds optimal transductions of test sentences in less than "real 
t ime" on a 300MHz processor, that is, the time to translate an utterance is less than 
the time taken to speak it, an impor tant  consideration for our  speech translation ap- 
plication. 
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