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Abstract

CKIP takes part in solving the Dimen-
sional Sentiment Analysis for Chinese
Phrases (DSAP) share task of IJCNLP
2017. This task calls for systems that
can predict the valence and the arousal
of Chinese phrases, which are real val-
ues between 1 and 9. To achieve this,
functions mapping Chinese character se-
quences to real numbers are built by re-
gression techniques. In addition, the
CKIP phrase Valence-Arousal (VA) pre-
dictor depends on knowledge of modifier
words and head words. This includes the
types of known modifier words, VA of
head words, and distributional semantics
of both these words. The predictor took
the second place out of 13 teams on phrase
VA prediction, with 0.444 MAE and 0.935
PCC on valence, and 0.395 MAE and
0.904 PCC on arousal.

1 Introduction

Sentiment analysis can be a useful tool in under-
standing public opinions for items of various sub-
jects, such as movies, hotels, and political figures,
from unstructured texts. The problem is often de-
fined in two different ways: one that assigns texts
to discrete categories, and the other that seeks to
get every sample a real value for each dimension
(Calvo and Mac Kim, 2013).

For the Dimensional Sentiment Analysis for
Chinese Phrases (DSAP) share task of IJCNLP
2017, two dimensions are used to capture the emo-
tions people put in phrases: valence, which cap-
tures the positive-negative polarity of phrases, and

Type Count VA Label
Negation Word 4 No

Modal Word 6 No
Degree Word 42 No

Head Word 2802 Yes
Phrase 2250 Yes

Table 1: Training data statistics for DSAP.

arousal, which represents the degree of excite-
ment. The values of both dimensions are limited
to a closed interval between 1 and 9, where 1 rep-
resents most negative for valence and calmest for
arousal.

The DSAP shared task calls for systems that
automatically predict VA for Chinese phrases to
overcome the scarcity of labeled Chinese phrases
and words. Lists of words for different types of
modifiers are provided. This includes negation
words like 不 and 沒有, modal words like 本來
and 應該, and degree words like 有點 and 更加.
In addition, some head words with VA annotations
are also provided (Yu et al., 2016). Finally, a train-
ing data of VA-annotated phrases with their mod-
ifier types, e.g. (deg neg, 稍微不小心), are pro-
vided. Table 1 shows the statistics of the training
data.

However, besides predicting VA for phrases of
which the VA of the head words are known, a
seemingly separate task of predicting the VA of
unseen words is also required for the competition.
Hence, effectively, multiple predictors were built
to solve the 4 different problems: phrase valence,
phrase arousal, word valence, and word arousal.
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Hyper-parameter Trial Range Final Setting
Valence Arousal

C 10−3, 10−2, 10−1, 100, 101, 102, 103 101 101

ε 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103 10−2 10−1

γ 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 954−1 10−2 954−1

Table 2: Grid search hyper-parameters for SVR-RBF.

2 Phrase VA Predictors

Two predictors are constructed and trained simi-
larly for the phrase valence problem and phrase
arousal problem. The predictors can be separated
into two stages: one that acquires an embedding
for a given phrase, and the other that performs the
mapping to VA values based on regression analy-
ses.

2.1 Word Segmentation

The first step is to segment a phrase into words.
One general way of doing this is to use a pop-
ular existing Chinese word segmentation system
(Ma and Chen, 2004). However, to best utilize the
given knowledge about modifiers and head words
with known VA, we developed a simple longest-
match segmentation system which uses given data
files to make its decision.

For each phrase that are given as a sequence of
characters, we first try to match trailing characters
to a head word with known VA. Then iteratively
leading characters are matched with known modi-
fier words, resulting in a segmented phrase with a
sequence of types of its modifiers. For the training
data, this matching scheme successfully segments
most phrases with correct modifier sequences. The
two exceptions are documented below.

First, for the phrase 不是, no head word with
known VA can be found. One general solution to
this situation is to use word VA predictors to gen-
erate the VA of its head word (either不是 or是).
However, since this phrase is actually not a good
sentiment-expressing phrase, we think it is better
to simply exclude it from the training data.

The other exception is a set of phrases that ends
in不爽, e.g. 十分不爽. Although both爽 and不
爽 are words with known VA,不爽 should be pre-
ferred in resolving the segmentation ambiguity ac-
cording to our longest match principle. However,
the resulting modifier type sequence (degree) of
(十分,不爽) would be different from the provided
(degree,negation) of (十分,不,爽). Recognizing

both segmentation can be correct, we choose to
split不 and爽 as this reduces data sparsity.

2.2 Phrase Features

Having acquired the correct segmentation of
phrases, the next question is then how a phrase
embedding should be generated for this specific
problem. This includes how word embeddings are
generated, and how they are combined into phrase
embeddings. In addition, some other phrase fea-
tures that are useful for the problem should be con-
catenated to these embeddings.

Due to the sparsity of labeled Chinese phrases
and words for sentiment analysis, we use unsu-
pervised word embeddings without further tun-
ing. The corpus on which we compute the distri-
butional semantics of Chinese words comes from
both the Chinese Gigaword corpus (Graff and
Chen, 2003) and the Sinica Corpus (Chen et al.,
1996). The former contains over 735 million Chi-
nese characters from the Central News Agency of
Taiwan, and the latter contains over 17 million
Chinese characters from documents of balanced
topics. We use the GloVe algorithm (Pennington
et al., 2014) to obtain 300-dimensional word em-
beddings from a union of these corpora. The re-
sulting 517,015 embeddings cover all words in the
training phrases.

To combine word embeddings of phrases to
phrase embeddings, we notice the sparsity of
available phrase and hence take a simple approach.
Observing all given phrases are a compound of
one to two modifier words and one head word,
we append the word embeddings of the modifier
words of a phrase to the word embedding of its
head word. With zero paddings to the phrases with
only one modifier word, 900-dimensional phrase
embeddings are acquired for all phrases.

Finally, two additional features are concate-
nated to these embeddings. The first is a 2-
dimensional VA vector of the head word of each
phrase. The second is a 52-dimensional vector in-
dicating which of the 52 modifiers exist in each
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phrase. As a result, a 954-dimensional feature vec-
tor is composed for every phrase.

2.3 Regression Models

We deploy a series of regression models to gradu-
ally approach the problem from the most general-
izable models to the most powerful ones, includ-
ing ridge regression, Support Vector Regression
with RBF kernels (SVR-RBF), and multi-layered
feed-forward Neural Networks (NN).

The ridge regression is an L2-regularized linear
model which is the simplest and fastest because
the optimization has an analytical solution. The
SVR-RBF adds a non-linear feature transforma-
tion before a linear tube regression, leaving many
hyper-parameters to be decided but still guaran-
teeing global optimum for each set of hyper-
parameter values. Finally, NN-flavored models
are so powerful that every real-valued functions
with close-interval domains can be approximated
as good as required. However, there is not a guar-
anteed selection of training schedules of parame-
ters to reach the global optimum.

We acknowledge the sparsity of the labeled data
of this task as well as the difficulties in analyzing
the non-linear relationships between features and
targets of many natural language tasks. Hence, all
these models are explored and searched for good
hyper-parameters to give an empirical comparison
and a suggestion of the best model.

3 Word VA Predictors

As described by Wang and Ma (2016), three pre-
dictors are constructed to solve the dimensional
sentiment analysis problem for Chinese words.

3.1 E-HowNet-Based Predictor

The first word VA predictor is based on E-
HowNet, an expert-built ontology containing the
definitions of and relations between about 90 thou-
sand Chinese words. With the knowledge of the
sets of synonyms (synsets), the VA of unlabeled
words can be predicted by its synonyms of which
VA are known.

If multiple labeled synonyms exist for an unla-
beled word, the known VA are averaged to give
a single prediction. However, if no labeled syn-
onyms of a word can be found, the predictor would
fail to predict its VA.

3.2 Word Embedding-Based Predictor
The second predictor relies on distributional se-
mantics of words to determine their similarity. For
every unlabeled word, top 10 similar words with
known VA are selected, and their VA are averaged
as the prediction.

The predictor gains from the fact that most
words have pre-trained word embeddings, and
hence seldom fails. However, the root cause
of failure, the sparsity of labeled words, is not
resolved. While the E-HowNet-based predictor
gives better results by enforcing synonymity, the
embedding-based predictor traded performance
for coverage by considering all labeled words in
selecting the most similar ones. As a result, the
VA of 惡夢 (nightmare) might be used for 美夢
(good dream) because its word embedding is the
closest among all labeled words. Averaging the
VA of the 10 most similar words other than select-
ing the most similar one as the prediction some-
how alleviates this problem.

3.3 Character-Based Predictor
To enhance the performance of word arousal pre-
dictions, a third predictor based on individual
characters to propagate labeled arousal is built.
The heuristics is that, for many words or even
phrases in Chinese, the semantics of their char-
acters contributes strongly to the semantics of the
whole. This holds especially when the compos-
ing characters are synonyms or near synonyms,
e.g. 踴 (leap) and躍 (jump) for踴躍 (enthusias-
tic). Although the contribution is poetic, we could
leverage that the words containing similar charac-
ters might have similar arousal levels, e.g. 活躍
(active) and踴躍.

Specifically, the arousal of a character is com-
puted as the average arousal of the labeled words
that contains it. Then the arousal of a testing word
is predicted as the average arousal of its compos-
ing characters which have arousal computed.

4 Experiments

4.1 Phrase Validation Data
The hyper-parameter values of phrase VA predic-
tor models are selected by their performance on
the validation set, and the two top-performing pre-
dictors are submitted to be evaluated on the test-
ing set. However, as there are only 2250 labeled
phrases, 5-fold cross validation is used to gain
more reliable evaluations.
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Model Valence MAE Valence PCC Arousal MAE Arousal PCC
Head Word 1.535 0.432 0.794 0.667
Modifier Multiplication 0.522 0.924 0.572 0.836
Ridge 0.967 0.718 0.419 0.898
SVR-RBF 0.408 0.949 0.371 0.919
NN-(750,600,600,450) 0.334 0.966 0.361 0.922

Table 3: Cross validation results on training phrases.

Model Valence MAE Valence PCC Arousal MAE Arousal PCC
Official Linear Baseline 1.051 0.610 0.607 0.730
CKIP-Run1 0.492 0.921 0.382 0.908
CKIP-Run2 0.444 0.935 0.395 0.904
THU NGN-Run1 0.349 0.960 0.389 0.909
THU NGN-Run2 0.345 0.961 0.385 0.911

Table 4: Testing results of DSAP best submissions.

Specifically, the 2249 segmented phrases, ex-
cluding不是, are randomly shuffled and the first 5
sets of 449 phrases are used as validation samples
in turn. All models then share the same 5-fold split
of training data.

In addition, we do not group phrases with the
same head words, so for example, 也許喜歡,
本來喜歡, and 可能喜歡 might be in different
splits. This simulates the fact that unseen phrases
might have the same head words as some labeled
phrases. However, this could also suffer from
overfitting due to data sparsity.

4.2 Baseline Models
Two explainable models are tested to serve as the
baseline for the Chinese phrase VA task. The first
one, head word model, predicts the VA of a phrase
by that of its head word. The second, modifier-
multiplication model, multiplies trainable scalar
weights of known modifiers to the head word VA
(Equation 1 and Equation 2).

vp = 5 + (vh − 5)
∏

m∈M

wv
m (1)

ap = 1 + (ah − 1)
∏

m∈M

wa
m (2)

p is the testing phrase, h is the head word of p,
and M is the set of modifiers of p. v stands for
valence, a stands for arousal, and w stands for the
trainable weights of each modifier.

The modifier-multiplication model centers head
word valence around the median 5, which is pre-
sumably the neutrality of opinion polarity. On the

other hand, head word arousal are centered around
1, assuming it stands for no excitement. Note that
the models degenerate to the head word baseline
when all modifier weights default to 1.

Table 3 shows the validation results of the base-
line models as well as other models. It can be seen
that the multiplication model serves as a strong
and explainable baseline.

4.3 Phrase VA Models
Ridge
The ridge regression model has one hyper-
parameter: the regularization weight. However,
we leave it to be decided by a leave-one-out cross
validation of the training split. This gives a non-
parametric ridge regression model. As shown in
Table 3, it performs worse than the strong baseline
on valence but better on arousal.

SVR-RBF
The SVR-RBF model has three hyper-parameters:
the error parameter C, the tube parameter ε, and
the RBF kernel parameter γ. Table 2 shows the
trial range of our grid search and the selected best
set of values. This non-linear model brings a sig-
nificant improvement.

NN
Our feed-forward neural networks have a fix L2-
regularzation weight of 1. However, we set the
possible number of hidden layers to include 1 to
4, and possible dimensions for each layer to in-
clude 150, 300, 450, 600, and 750. With a con-
straint that a layer cannot have a higher dimension
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SVR-RBF Valence MAE Valence PCC Arousal MAE Arousal PCC
h, m, va, mod 0.41 0.95 0.37 0.92

m, va, mod 0.36 0.96 0.36 0.92
va, mod 0.45 0.93 0.40 0.90

va 1.34 0.44 0.73 0.67
mod 1.31 0.35 0.71 0.66

NN-(300,300,300) Valence MAE Valence PCC Arousal MAE Arousal PCC
h, m, va, mod 0.34 0.97 0.36 0.92

m, va, mod 0.37 0.96 0.38 0.91

Table 5: Feature analysis results by cross validation. h stands for the 300d head word embedding, m
stands for the 600d modifier embeddings, va stands for the 2d head word VA, and mod stands for the
52d modifier existence vector.

than its previous layer, this yields a total of 125
permutations of network shapes, which will eas-
ily explode were a few more dimensions and lay-
ers added. Table 3 shows the best configuration,
which surpasses other simpler models.

4.4 Phrase VA Test Results

The DSAP shared task releases 750 phrases as
the testing set. These phrases have neither VA
labels nor modifier information. We use the ap-
proaches described in Section 2.1 and Section 2.2
to segment the testing phrases and obtain their
954-dimensional feature vectors.

We submitted the predictions of SVR-RBF and
NN, the second and the best performing model in
cross validation, as CKIP-Run1 and CKIP-Run2.
Our NN model turns out to be one of the best
phrase VA predictors, second only to the submis-
sions of team THU NGN. Table 4 shows these re-
sults as well as the official baseline performance
of a linear model on word embeddings.

4.5 Phrase VA Feature Analysis

We perform an ablation analysis to shed light
on the contributions of each features that lead to
highly correlated outputs to the ground truth la-
bels. Table 5 shows the results on cross valida-
tion using decreasingly less features. It turns out
that just the head word VA plus the information of
modifier existence is enough to make highly cor-
related deductions of phrase VA (above 0.9 PCC),
but no single one of them would do. In addition,
the contribution of head word embeddings seems
to be weak.

4.6 Word VA Test Results

As in the Dimensional Sentiment Analysis of
Chinese Words (DSAW) shared task of IALP
2016, An ensemble of the three predictors, the
E-HowNet-based, the embedding-based, and the
character-based, is used to generate the final sub-
mission of testing results. A simple 5:5 ensem-
ble between the E-HowNet-based predictor and
the embedding-based predictor (before adding the
character-based predictor for arousal) turns out
to be one of the best predictors, second only to
the submissions of team THU NGN and team
AL I NLP. Specifically, 0.602 MAE and 0.858
PCC are achieved for word valence, and 0.949
MAE and 0.576 PCC are achieved for word
arousal.

5 Conclusion

We have demonstrated the approaches behind the
submissions of team CKIP on the DSAP shared
task, and the results on the testing set shows that
they are suitable for the task. For the prediction
of the valence and the arousal of Chinese phrases,
our feature analysis indicates that the non-linear
relations between the VA of the head word and the
information of modifier appearances are enough
to produce highly correlated results to the ground
truth. For the prediction of the valence and the
arousal of Chinese words, the E-HowNet ontology
shows its usefulness again.

The approaches as a whole achieve compelling
results for future takes on Chinese sentiment anal-
ysis problems, which are expected to be more so-
phisticated and toward real-world applications.

93



References
Rafael A Calvo and Sunghwan Mac Kim. 2013. Emo-

tions in Text: Dimensional and Categorical Models.
Computational Intelligence, 29(3):527–543.

Keh-Jiann Chen, Chu-Ren Huang, Li-Ping Chang, and
Hui-Li Hsu. 1996. Sinica Corpus: Design Method-
ology for Balanced Corpora. Language, 167:176.

David Graff and Ke Chen. 2003. Chinese Gigaword
LDC2003T09. Philadelphia: Linguistic Data Con-
sortium.

Wei-Yun Ma and Keh-Jiann Chen. 2004. Design of
CKIP Chinese Word Segmentation System. In-
ternational Journal of Asian Language Processing,
14(3):235–249.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global Vectors for
Word Representation. In EMNLP, volume 14, pages
1532–1543.

Hsin-Yang Wang and Wei-Yun Ma. 2016. CKIP
Valence-Arousal Predictor for IALP 2016 Shared
Task. In International Conference on Asian Lan-
guage Processing, pages 164–167.

Liang-Chih Yu, Lung-Hao Lee, Shuai Hao, Jin Wang,
Yunchao He, Jun Hu, K. Robert Lai, and Xuejie
Zhang. 2016. Building Chinese Affective Resources
in Valence-Arousal Dimensions. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 540–
545, San Diego, California. Association for Com-
putational Linguistics.

94


