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Abstract

Building a system to detect Chinese gram-
matical errors is a challenge for natural-
language processing researchers. As Chi-
nese learners are increasing, developing
such a system can help them study Chinese
more easily. This paper introduces a bi-
directional long short-term memory (BiL-
STM) - conditional random field (CRF)
model to produce the sequences that in-
dicate an error type for every position
of a sentence, since we regard Chinese
grammatical error diagnosis (CGED) as a
sequence-labeling problem. Among the
participants this year of CGED shard task,
our model ranked third in the detection-
level and identification-level results. In the
position-level, our results ranked second a-
mong the participants.

1 Introduction

With China’s rapid development, more and more
foreign people have begun to learn Chinese. Writ-
ing is an important part of language learning, and
grammar is the basis of writing. Traditional learn-
ing methods rely on artificial work to point out
grammatical errors in an article. This requires
more time and labor costs. Thus, it is quite practi-
cal to develop a system that can automatically cor-
rect the grammatical errors in an article. This is
the aim of the CGED shared task.

In the shared task, Chinese-grammar errors are
divided into four types: redundant words, word-
selection errors, missing words, and incorrec-
t word order (Lee et al., 2016). They are represent-
ed as uppercase letters “R”, “S”, “M”, and “W”,
respectively. For each sentence, the task should
first determine whether the sentence is correct. If

the sentence is incorrect, it should indicate the spe-
cific error types and their locations.

In this paper, the CGED task is treated as a se-
quence labeling problem, which is a classic natural
language processing problem. The traditional so-
lutions are a series of statistical learning methods,
including the hidden Markov model (HMM), the
maximum-entropy Markov model (MEMM), and
the conditional random field.

The HMM model makes two assumptions.
First, that the current implicit state is only related
to the last implied state; second, that the current
output state is only related to the current implied
state (Dugad and Desai, 1996). However, the real-
ity is not so simple. A CRF uses the entire output
sequence and two adjacent implicit states to find
a conditional probability (Lafferty et al., 2001).
It can fit more complex situations. Practice has
proven that the CRF works better than other mod-
els.

Recently, artificial neural networks have been
used to do natural language processing tasks. For
the sequence labeling problem, because of its e-
qual length output, a recurrent neural network
(RNN) is an appropriate model. It is more capable
of understanding the information context; howev-
er, this is not a good method for learning state
transfer laws. To improve the problems of explod-
ing and vanishing gradients, new RNN units, e.g.,
long short-term memory (LSTM) and gated recur-
rent units (GRUs) (Chung et al., 2014), have been
proposed.

In this study, we propose a BiLSTM-CRF mod-
el. Our model combines statistical learning with
neural networks. The BiLSTM is used to obtain
information about long or short distances in two
directions (Huang et al., 2015). It then feeds the
information to the CRF. Thus, the CRF can better
use conditional probabilities to fit the data without
handmade features. The CRF and LSTM models
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are also used as part of the experiment to compare
the models’ performance.

The rest of this paper is organized as follows.
Section 2 describes our model in detail. Section
3 presents our experiment, including the data pre-
processing and results. Conclusions are drawn in
Section 4.

2 Proposed Model

The proposed model consists of three major parts:
the word-embedding layer, the bi-directional LST-
M layer, and the CRF layer. CRF is a traditional s-
tatistical learning method for sequence labeling. It
has two limits. First, it heavily depends on hand-
crafted features. Second, it cannot capture long
distance context information. The context infor-
mation for a CGED task is very important. For
example, here are two correct sentences.

• “只有努力，才能过的更好。” (Only you
work hard, you can be better.)

• “只要努力，就能过的更好。” (As long as
you work hard, you will be able to be better.)

It is impossible to determine whether the sentence,
“才能过的更好。” is correct without the previous
context information. On the other hand, handcraft-
ed features greatly increase the workload. Thus,
our model combines an RNN with a CRF to im-
prove the above problems. To capture informa-
tion from two directions (Ma and Hovy, 2016), we
use a bi-directional RNN instead of a unidirection-
al RNN. In addition, an LSTM cell is selected to
avoid vanishing and exploding gradients (Sunder-
meyer et al., 2012).

We trained four models for four error types be-
cause there may be two or more errors in one posi-
tion. Each model is given the original text index as
input, its label sequence outputs 0 for correct and
1 for error.

The model includes three layers: a word-
embedding layer to transfer the word index into
word embedding, a BiLSTM layer to extract the
information and features for each position, and a
CRF layer to decode and produce labels. The three
layers are introduced in the following sections.

2.1 Embedding Layer

A diagram of the embedding layer’s structure is
shown in Figure 1. It shows a pre-trained word-
embedding lookup table. Every line of this table

W1 W2 W3 W4         Wn

V1 V2 V3 V4         Vn

...

...

...

...

... ...

Original text index

Word embedding 

look-up table

Word vector

Figure 1: Embedding Layer

stands for one Chinese word. Therefore, the orig-
inal text of the training data should be turned into
a sequence of indexes for every word. This lay-
er takes a sequence that contains the word indices,
e.g., w1, w2,. . . , wi,. . . , wn where wi, is an in-
dex number indicating the position of the original
word in the table. Then, the layer finds the word
vector for every index and outputs them in a new
sequence, e.g., v1, v2,. . . , vi,. . . , vn where vi is a
word vector.

If the dimensionality of the original text index is
N and the dimensionality of the word vector isM ,
the dimensionality of the output sequence should
be M ∗N .

2.2 Bi-directional LSTM Layer

An RNN can effectively extract features from the
entire sentence because of its ability to capture
context information. For the reasons mentioned
above, a bi-directional LSTM network was cho-
sen.

An LSTM is a special type of RNN unit that
can learn long-term dependency information. It is
designed to avoid the long-term dependence prob-
lem. An LSTM can remove or increase the infor-
mation to a cell state using a well-designed struc-
ture called a “gate”. The gate determines whether
information should pass. The LSTM uses the
following formulas (Hochreiter and Schmidhuber,
1997):

it = σ(Wvivt +Whiht−1 + bi) (1)

ft = σ(Wvfvt +Whfht−1 + bf ) (2)

ct = ftct−1+it tanh(Wvcvt+Whcht−1+bc) (3)

ot = σ(Wvovt +Whoht−1 + bo) (4)
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Figure 2: Bi-directional LSTM Layer

ht = ot tanh(ct) (5)

where v is the input vector from the embedding
layer. σ is the sigmoid activation function. i is the
input gate, f is the forget gate, and o is the out-
put gate. Parameters {Wvi, Whi, Wvf , Whf , Wvc,
Whc, Wvo, Who, bi, bf , bc, bo} are the weights
and biases of an LSTM cell. c is the cell vector
and h is the hidden cell. K represents the output
dimensionality of the LSTM unit. N is the dimen-
sionality of the word vector. The size of the last
four bias vectors are K and the others are N ∗K.
Figure 2 shows a bi-directional LSTM network.
The embedding output is fed into two LSTM lay-
ers with forward and backward directions. Two
outputs from two layers at one position are linked
into a new vector as the layer’s output.

The dimensionality of the input is M ∗ N . M
is the length of the original text. Each word vec-
tor of input is also called an RNN time step. For
instance, v1, v2,. . . , vi,. . . , vn is input, each vi

is a time step. For each time step, vi is fed into
two LSTMs; the forward LSTM layer produces
an output vector oi−forward with dimensionali-
ty K, and the backward LSTM layer produces
oi−backward. Therefore, the result of a time step
is xi(oi−forward, oi−backward) and the dimension-
ality is 2 ∗K, which is the result of combining the
two layers’ output. Thus, the dimensionality of the
final output is M ∗ (2 ∗K).

2.3 CRF Layer

Because of the importance of the relationships be-
tween neighboring tags in CGED, a CRF is select-
ed to capture the relationship. The CRF is a type of
undirected discriminative graph model. In general,
a CRF is a Markov random field with an observa-
tion set. A general CRF is defined as a Markov
random field with random variable Y under the
condition of random variable X . Y constitutes a
Markov random field represented by an undirected
graph, as in the formula below (Sutton and Mccal-

X1 X2 X3 Xn

Input

Y1 Y2 Y3 YnCRF Layer  

Figure 3: CRF Layer

lum, 2010):

P (Yv|X,Yw, w 6= v)=P (Yv|X,Yw, w ∼ v) (6)

where operator∼means that w and v have a pub-
lic edge. X is the input variable or state sequence,
and Y is the output variable or tag sequence. In
our problem, we assume that X and Y have the
same linear structure, as shown in Figure 3.

The conditional probability of random variable
y with value x is given as follows:

P (y|x) =

n∏
i=1

Mi(yi−1, yi, x)

Z(x)
(7)

The denominator is a normalization item:

Z(x) =
∑
y

n∏
i=1

Mi(yi−1, yi, x) (8)

whereMi(y′, y′′, x) is a potential function, x is the
input vector produced by the BiLSTM layer and y
is the labeling of the input sentence.

3 Experiment

This section describes the contents of the ex-
periment, including the training data processing,
choice of parameters, experimental results, etc.

3.1 Dataset
The word embedding was trained using the
word2vec toolkit with the Chinese Wikipedia cor-
pus. According to the experimental results, the
word-embedding results from word2vec are bet-
ter than GloVe (Yang et al., 2016). In addition to
the CGED17 training data, the HSK (i.e., Chinese
Proficiency Test) training data from CGED16 was
used. The number of training sets is 20,048, with
10,447 from CGED17 and 9,601 from CGED16.

For the reasons mentioned above, four models
for every error type were selected. Thus, we pre-
processed training sets for four error type models.
For each error type, the position’s label is 0 if cor-
rect, or 1 if erroneous. The training-data text was
transferred into the word-index sequence, accord-
ing to the pre-trained word-embedding table.

75



Model Acc Pre Rec F1
CRF 0.1805 0.1136 0.1483 0.1287

LSTM 0.1696 0.1824 0.0816 0.1128
BiLSTM-CRF 0.3325 0.2769 0.3502 0.3093

Table 1: Comparative results of three models.

3.2 Implementation Details

The experiment contains three models for compar-
ison: CRF, LSTM, and BiLSTM-CRF. CRF rep-
resents the statistical learning method, which is
the best simple statistical learning model in a vari-
ety of sequence labeling tasks. LSTM is a typical
neural network model for sequence labeling. The
above two models were used as the baseline for the
experiment. The last model, proposed in this pa-
per, combines both neural network and statistical
learning models.

The CRF model was implemented using the
CRF++ toolkit. CRF++ is an open-source, easy-
to-use implementation of CRF, written in C++.
The LSTM model and the BiLSTM-CRF mod-
el were implemented using the Keras framework
with a Tensorflow backend. The CRF layer im-
plementation in the BiLSTM-CRF model used K-
eras contrib.

The training data for the three models comes
from CGED16 or CGED17. Hence, the training
data is regarded as a hyper-parameter. It will be
CGED16 or CGED17 or a combination of both. In
addition, there is a public hyper-parameter for the
three models. The hyper-parameter for the CR-
F model is c, which controls the over-fitting of
the training data. The hyper-parameters for LSTM
and BiLSTM-CRF include the LSTM cell number
and the training epoch.

Some empirical parameters are given as candi-
date values for the model. A grid search algorithm
was used to find the best hyper-parameter combi-
nations.

To evaluate the model’s performance, we used
four metrics such as accuracy (Acc), precision
(Pre), recall (Rec) and F1-score (F1) for all three
models on CGED16 HSK test data. Table 1 shows
the best results for each model on position-level.
The results show that the BiLSTM-CRF model has
the best results in Table 1.

3.3 Experimental Results

Five teams submitted 13 results. We submit-
ted three running results. The three results were
produced by the three BiLSTM-CRF models that

Parameter Dataset LSTM cell Epoch
Run1 CGED16,17 120 22
Run2 CGED16,17 100 18
Run3 CGED16 100 18

Table 2: Parameter selection for BiLSTM-CRF
models.

Results Detection-Level
Acc Pre Rec F1

Run1 0.5796 0.65 0.7163 0.6816
Run2 0.5891 0.6417 0.7829 0.7053
Run3 0.5311 0.6298 0.6148 0.6222

Table 3: Comparative results on detection-level.

had the best three results on the CGED16 HSK
test data. The three results have different hyper-
parameters, as shown in Table 2.

The next three tables show the final test result-
s for the three BiLSTM-CRF models. Table 3
shows the detection-level results. Table 4 shows
the identification-level results. Table 5 shows the
position-level results.

The false positive (FP) rates of the three results
of BiLSTM-CRF models are 0.5796, 0.7383, and
0.614 shown in Table 6. The highest one is over
70%. This is because the model uses four sub-
models to generate the sentence label. If only one
model misjudges the label of one position, from
0 to 1, it will produce a false negative (FN) sam-
ple. Thus, the model produces a high false positive
rate. In addition, the experimental results show
that the recall of the first two results is better than
the previous in the detection level. This model is
more likely to produce positive examples.

4 Conclusion

Compared with most previous models (Lee et al.,
2016), the F1-score of the position level greatly
increased with the CGED16 HSK test data. It
was observed that neural network and statistical-
learning methods could be combined to obtain
better results. Among the participants this year,
our model ranked third in the detection-level and
identification-level results. In the position-level,

Results Identification-Level
Acc Pre Rec F1

Run1 0.4218 0.4219 0.4217 0.4218
Run2 0.3819 0.3825 0.4575 0.4167
Run3 0.3979 0.4086 0.3298 0.365

Table 4: Comparative results on identification-
level.
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Results Position-Level
Acc Pre Rec F1

Run1 0.1778 0.1262 0.1191 0.1225
Run2 0.1426 0.1056 0.1191 0.112
Run3 0.1702 0.0981 0.0698 0.0816

Table 5: Comparative results on position-Level.

Result False Positive Rate
Run1 0.5796
Run2 0.7383
Run3 0.614

Table 6: False positive rates of three results.

our results ranked second among the participants.
Our model is a combination of BiLSTM and

CRF. It combines the extraction capabilities of
the LSTM context information and the condition-
al probability of CRF’s local features. More com-
plex models contain more parameters that need to
be trained. Thus, more training data can improve
the model; too little training data may cause over-
fitting.

The shared task provided us with more in-depth
understanding about CGED. Our next step is to
obtain more training data to enhance the model.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (NSFC) under Grant
No.61702443 and No.61762091, and in part by
Educational Commission of Yunnan Province of
China under Grant No.2017ZZX030.The authors
would like to thank the anonymous reviewers and
the area chairs for their constructive comments.

References
Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,

and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. In arXiv preprint arXiv:1412.3555.

Rakesh Dugad and U B Desai. 1996. A tutorial on hid-
den markov models. In Proceedings of the IEEE,
pages 257–286.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. In arX-
iv preprint arXiv:1508.01991.

John Lafferty, Andrew Mccallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-

abilistic models for segmenting and labeling se-
quence data. In Proceedings of the International
Conference on Machine Learning (ICML-01), pages
282–289.

Lung-Hao Lee, Liang-Chih Yu, and Li-Ping Chang.
2016. Overview of nlp-tea 2016 shared task for Chi-
nese grammatical error diagnosis. In Proceedings
of the 3rd Workshop on Natural Language Process-
ing Techniques for Educational Applications (NLP-
TEA-16), pages 40–48.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (ACL-16),
pages 1064–1074.

Martin Sundermeyer, Ralf Schluter, and Hermann Ney.
2012. Lstm neural networks for language modeling.
In Proceedings of INTERSPEECH 2013, pages 601–
608.

Charles Sutton and Andrew Mccallum. 2010. An Intro-
duction to Conditional Random Fields. Now Pub-
lishers Inc.

Jinnan Yang, Bo Peng, Jin Wang, Jixian Zhang, and X-
uejie Zhang. 2016. Chinese grammatical error diag-
nosis using single word embedding. In Proceedings
of the 3rd Workshop on Natural Language Process-
ing Techniques for Educational Applications (NLP-
TEA-16), pages 155–161.

77


