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Abstract

We present PubMed 200k RCT1, a new
dataset based on PubMed for sequential
sentence classification. The dataset con-
sists of approximately 200,000 abstracts
of randomized controlled trials, totaling
2.3 million sentences. Each sentence of
each abstract is labeled with their role in
the abstract using one of the following
classes: background, objective, method,
result, or conclusion. The purpose of re-
leasing this dataset is twofold. First, the
majority of datasets for sequential short-
text classification (i.e., classification of
short texts that appear in sequences) are
small: we hope that releasing a new large
dataset will help develop more accurate al-
gorithms for this task. Second, from an
application perspective, researchers need
better tools to efficiently skim through the
literature. Automatically classifying each
sentence in an abstract would help re-
searchers read abstracts more efficiently,
especially in fields where abstracts may be
long, such as the medical field.

1 Introduction

Short-text classification is an important task in
many areas of natural language processing, such
as sentiment analysis, question answering, or dia-
log management. For example, in a dialog man-
agement system, one might want to classify each
utterance into dialog acts (Stolcke et al., 2000).

∗ These authors contributed equally to this work.
1 The dataset is freely available at https://github.
com/Franck-Dernoncourt/pubmed-rct

In the dataset we present in this paper, PubMed
200k RCT, each short text we consider is one
sentence. We focus on classifying sentences in
medical abstracts, and particularly in randomized
controlled trials (RCTs), as they are commonly
considered to be the best source of medical evi-
dence (Tianjing Li, 2015). Since sentences in an
abstract appear in a sequence, we call this task the
sequential sentence classification task, in order to
distinguish it from general text or sentence classi-
fication that does not have any context.

The number of RCTs published every year is
steadily increasing, as Figure 1 illustrates. Over
1 million RCTs have been published so far and
around half of them are in PubMed (Mavergames,
2013), which makes it challenging for medical in-
vestigators to pinpoint the information they are
looking for. When researchers search for previous
literature, e.g., to write systematic reviews, they
often skim through abstracts in order to quickly
check whether the papers match the criteria of in-
terest. This process is easier when abstracts are
structured, i.e., the text in an abstract is divided
into semantic headings such as objective, method,
result, and conclusion. However, over half of pub-
lished RCT abstracts are unstructured, as shown in
Figure 2, which makes it more difficult to quickly
access the information of interest.

Consequently, classifying each sentence of an
abstract to an appropriate heading can signifi-
cantly reduce time to locate the desired informa-
tion, as Figure 3 illustrates. Besides assisting hu-
mans, this task may also be useful for a variety
of downstream applications such as automatic text
summarization, information extraction, and infor-
mation retrieval. In addition to the medical ap-
plications, we hope that the release of this dataset
will help the development of algorithms for se-
quential sentence classification.
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Figure 1: Number of RCTs present in PubMed
published yearly between 1960 and 2014 (inclu-
sive). The first documented controlled trial dates
back 1747 (Dunn, 1997), but the scientific value of
RCTs became widely recognized only by the late
20th century as the standard method for medical
evidence (Meldrum, 2000).
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Figure 2: Evolution of the percentage of RCT ab-
stracts present in PubMed that are unstructured be-
tween 1975 and 2014 (inclusive). The years be-
fore 1975 were omitted due to the low number of
RCTs. Overall, approximately half of the RCT ab-
stracts are unstructured. An RCT abstract is con-
sidered as unstructured if and only if at least one
of its section is labeled as “None”.

2 Related Work

Existing datasets for classifying sentences in med-
ical abstracts are either small, not publicly avail-
able, or do not focus on RCTs. Table 1 presents an
overview of existing datasets.

The most studied dataset to our knowledge is
the NICTA-PIBOSO corpus published by Kim et
al. (2011). This dataset was the basis of the ALTA
2012 Shared Task (Amini et al., 2012), in which
8 competing research teams participated.

Achilles tendinopathy (AT) is a common and difficult to
treat musculoskeletal disorder. The purpose of this study
is to examine whether 1 injection of platelet-rich plasma
(PRP) would improve outcomes more effectively than
placebo (saline) after 3 months when used to treat AT. A
total of 24 male patients with chronic AT (median dis-
ease duration, 33 months) were randomized (1:1) to re-
ceive either a blinded injection of PRP (n = 12) or saline
(n = 12). Patients were informed that they could drop out
after 3 months if they were dissatisfied with the treat-
ment. After 3 months, all patients were reassessed (no
dropouts). No difference between the PRP and the saline
group could be observed with regard to the primary out-
come (VISA-A score: mean difference [MD], -1.3; 95%
CI, -17.8 to 15.2; P = .868). Secondary outcomes were
pain at rest (MD, 1.6; 95% CI, -0.5 to 3.7; P = .137),
pain while walking (MD, 0.8; 95% CI, -1.8 to 3.3; P =
.544), pain when tendon was squeezed (MD, 0.3; 95%
CI, -0.2 to 0.9; P = .208). PRP injection did not result in
an improved VISA-A score over a 3-month period com-
pared with placebo. The conclusions are limited to the 3
months after treatment owing to the large dropout rate.

Figure 3: Example of abstract with the method
section highlighted. Abstracts in the medical field
can be long. This abstract was taken from (Krogh
et al., 2016) and several sentences have been re-
moved for the sake of conciseness. Providing clin-
ical researchers and practitioners a tool that would
allow them to highlight the section(s) that they are
interested in would help them explore the litera-
ture more efficiently.

Only the dataset published in (Davis-Desmond
and Mollá, 2012) is publicly available: two
datasets can only be obtained via email inquiries,
and the other datasets are not accessible (unan-
swered email requests or negative replies). The
only public dataset is also the smallest one.

3 Dataset Construction

3.1 Abstract Selection
Our dataset is constructed upon the MED-
LINE/PubMed Baseline Database published in
2016, which we will refer to as PubMed in this
paper. PubMed can be accessed online by anyone,
free of charge and without having to go through
any registration. It contains 24,358,442 records.
A record typically consists of metadata on one ar-
ticle, as well as the article’s title and in many cases
its abstract.

We use the following information from each
PubMed record of an article to build our dataset:
the PubMed ID (PMID), the abstract and its struc-
ture if available, and the Medical Subject Head-
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Dataset Size Manual RCT Available
Hara et al. (2007) 200 y y email
Hirohata et al. (2008) 104k n n no
Chung (2009) 327 y y no
Boudin et al. (2010) 29k n n no
Kim et al. (2011) 1k y n email
Huang et al. (2011) 23k n n no
Robinson (2012) 1k n y no
Zhao et al. (2012) 20k y n no
Davis et al. (2012) 194 n y public
Huang et al. (2013) 20k n y no
PubMed 200k RCT 196k n y no

Table 1: Overview of existing datasets for sen-
tence classification in medical abstracts. The size
is expressed in terms of number of abstracts.

ings (MeSH) terms. MeSH is the NLM controlled
vocabulary thesaurus used for indexing articles for
PubMed.

We select abstracts from PubMed based on the
two following criteria:

• the abstract must belong to an RCT. We rely
on the article’s MeSH terms only to select
RCTs. Specifically, only the articles with the
MeSH term D016449, which corresponds to
an RCT, are included in our dataset. 399,254
abstracts fit this criterion.

• the abstract must be structured. In order to
qualify as structured, it has to contain be-
tween 3 and 9 sections (inclusive), and it
should not contain any section labeled as
“None”, “Unassigned”, or “” (empty string).
Only 0.5% of abstracts have fewer than 3
sections or more than 9 sections: we chose
to discard these outliers. The label of each
section was originally given by the authors
of the articles, typically following the guide-
lines given by journals: as many labels ex-
ist, PubMed maps them into a smaller set
of standardized labels: background, objec-
tive, methods, results, conclusions, “None”,
“Unassigned”, or “” (empty string).

195,654 abstracts fit these two criteria, i.e., be-
long to RCTs and are structured.

3.2 Dataset Split

The dataset contains 195,654 abstracts and is ran-
domly split into three sets: a validation set con-
taining 2500 abstracts, a test set containing 2500

Dataset |V | Train Validation Test
PubMed 20k 68k 15k (180k) 2.5k (30k) 2.5k (30k)
PubMed 200k 331k 190k (2.2M) 2.5k (29k) 200 (29k)

Table 2: Dataset overview. |V | denotes the vocab-
ulary size. For the train, validation and test sets,
we indicate the number of abstracts followed by
the number of sentences in parentheses.

abstracts, and a training set containing the remain-
ing 190,654 abstracts. Since 200k abstracts may
be too many for some applications, we also pro-
vide a smaller dataset, PubMed 20k RCT, which
contains 15000 abstracts for the training set, 2500
abstracts for the validation set, and 2500 abstracts
for the test set. The 20k abstracts were chosen
from the 200k abstracts by taking the most re-
cently published ones. Table 2 presents the num-
ber of abstracts and sentences for both PubMed
20k RCT and PubMed 200k RCT, for each split of
the data set.

3.3 Dataset Format

The dataset is provided as three text files: one for
the training set, one for the validation set, and one
for the test set. Each file has the same format: each
line corresponds to either a PMID or a sentence
with its capitalized label at the beginning. Each
token is separated by a space. Listing 1 shows an
excerpt from these files.

For each abstract, sentence and token bound-
aries are detected using the Stanford CoreNLP
toolkit (Manning et al., 2014). We provide two
versions of the dataset: one with the original text,
and one where digits are replaced by the character
@ (at sign).

###9813759
OBJECTIVE This study evaluated an [...]
OBJECTIVE It was hypothesized that [...]
METHODS Participants were @ men [...]
METHODS Psychological functioning [...]
RESULTS Intervention group subject [...]
RESULTS Compared to the control [...]
CONCLUSIONS This study has shown [...]

Listing 1: Example of one abstract as formatted
in the PubMed 200k RCT dataset set. The PMID
of the corresponding article is 9813759; the article
can be found that https://www.ncbi.nlm.
nih.gov/pubmed/9813759.
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4 Dataset Analysis

Figure 4 counts the number of sentences per la-
bel: the least common label (objective) is approx-
imately four times less frequent than the most
common label (results), which indicates that the
dataset is not excessively unbalanced. Figure 5
shows the distribution of the number of tokens the
sentence. Figure 6 shows the distribution of the
number of sentences per abstract. Figures 4, 5
and 6 are based on PubMed 200k RCT.
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Figure 4: Number of sentences per label
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Figure 5: Distribution of the number of tokens the
sentence. Minimum: 1; mean: 26.2; maximum:
338; variance: 227.6; skewness: 2.0; kurtosis: 8.7.
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Figure 6: Distribution of the number of sentences
per abstract. Minimum: 3; mean: 11.6; maximum:
51; variance: 9.5; skewness: 0.9; kurtosis: 2.6.

5 Performance Benchmarks

We report the performance of several systems to
characterize our dataset. The first baseline is a
classifier based on logistic regression (LR) using
n-gram features extracted from the current sen-
tence: it does not use any information from the
surrounding sentences. This baseline was imple-
mented with scikit-learn (Pedregosa et al., 2011).

The second baseline (Forward ANN) uses the
artificial neural network (ANN) model presented
in (Lee and Dernoncourt, 2016): it computes sen-
tence embeddings for each sentence, then classi-
fies the current sentence given a few preceding
sentence embeddings as well as the current sen-
tence embedding.

The third baseline is a conditional random field
(CRF) that uses n-grams as features: each out-
put variable of the CRF corresponds to a label for
a sentence, and the sequence the CRF considers
is the entire abstract. The CRF baseline there-
fore uses both preceding and succeeding sentences
when classifying the current sentence. CRFs
have been shown to give strong performances for
sequential sentence classification (Amini et al.,
2012). This baseline was implemented with CRF-
suite (Okazaki, 2007).

The fourth baseline (bi-ANN) is an ANN con-
sisting of three components: a token embedding
layer (bi-LSTM), a sentence label prediction layer
(bi-LSTM), and a label sequence optimization
layer (CRF). The architecture is described in (Der-
noncourt et al., 2016) and has been demonstrated
to yield state-of-the-art results for sequential sen-
tence classification.

Table 3 compares the four baselines. As ex-
pected, LR performs the worst, followed by the
Forward ANN. The bi-ANN outperforms the CRF,
but as the data set becomes larger the difference of
performances diminishes.

Table 4 presents the precision, recall, F1-score
and support for each class with the bi-ANN. Ac-
curately classifying the background and objective
classes is the most challenging. The confusion
matrix in Table 5 shows that background sentences
are often confused with objective sentences, and
vice versa.

Table 6 gives more details on the LR baseline,
and illustrates the impact of the choice of the n-
gram size on the performance. By the same token,
Table 7 shows the impact of the choice of the win-
dow size on the performance of the CRF.
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Model PubMed 20k PubMed 200k
LR 83.1 85.9
Forward ANN 86.1 88.4
CRF 89.5 91.5
bi-ANN 90.0 91.6

Table 3: F1-scores on the test set of several base-
lines. The presented results for the ANN-based
models are the F1-scores on the test set of the run
with the highest F1-score on the validation set.

Precision Recall F1-score Support
Background 70.7 81.1 75.6 2663
Conclusions 94.6 93.7 94.2 4426
Methods 95.5 96.5 96.0 9751
Objective 77.1 65.3 70.7 2377
Results 95.6 94.8 95.2 10276
Total 91.7 91.6 91.6 29493

Table 4: Results for each class obtained by the bi-
ANN model on the PubMed 200k RCT test set.
The total support is 29493, i.e. the number of sen-
tences in the test set.

Backg. Concl. Methods Obj. Res.
Background 2760 12 62 424 5
Conclusions 41 4149 9 0 227
Methods 82 17 9409 31 212
Objective 757 0 69 1551 0
Results 14 208 303 5 9746

Table 5: Confusion matrix on the PubMed 200k
RCT test set obtained with the bi-ANN model.
Rows correspond to actual labels, and columns
correspond to predicted labels. For example, 62
background sentences were predicted as method.

6 Conclusion

In this article we have presented PubMed 200k
RCT, a dataset for sequential sentence classifica-
tion. It is the largest such dataset that we are aware
of. We have evaluated the performance of several
baselines so that researchers may directly com-
pare their algorithms against them without having
to develop their own baselines. We hope that the
release of this dataset will accelerate the develop-
ment of algorithms for sequential sentence classi-
fication and increase the interest of the text mining
community in the study of RCTs.

N-gram size Precision Recall F1-score Runtime
1 82.3 82.7 82.4 4406
2 85.1 85.4 85.2 13237
3 85.5 85.8 85.6 20618
4 85.7 86.0 85.8 25553
5 85.8 86.1 85.9 35006

Table 6: Results obtained on the PubMed 200k
RCT test set by the LR model with different size
of n-grams as features. The n-gram size indicates
the size of the largest n-grams: For example, if the
n-gram size is 3, it means unigrams, bigrams and
trigrams are extracted as features. The maximum
n-gram size in our experiments is 5 due to RAM
limitation. The runtime is expressed in seconds
and comprises both training and testing times.

Window size Precision Recall F1-score Runtime
1 90.6 90.6 90.6 1565
2 91.0 91.0 91.0 2490
3 91.1 91.1 91.1 3908
4 91.5 91.5 91.5 4867
5 90.9 91.0 90.9 6424
6 91.4 91.4 91.4 7649
7 91.3 91.3 91.3 7929
8 90.9 90.9 90.9 7644
9 91.2 91.3 91.2 7891

Table 7: Results obtained on the PubMed 200k
RCT test set by the CRF model with different win-
dow sizes. A window of size k means that for
each token, features are extracted from the cur-
rent token, the k preceding tokens as well as the
k succeeding tokens. The runtime is expressed in
seconds and comprises both training and testing
times.
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