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Abstract

Embedding based approaches are shown
to be effective for solving simple Ques-
tion Answering (QA) problems in recent
works. The major drawback of current ap-
proaches is that they look only at the sim-
ilarity (constraint) between a question and
a head, relation pair. Due to the absence of
tail (answer) in the questions, these mod-
els often require paraphrase datasets to ob-
tain adequate embeddings. In this pa-
per, we propose a dual constraint model
which exploits the embeddings obtained
by Trans* family of algorithms to solve
the simple QA problem without using any
additional resources such as paraphrase
datasets. The results obtained prove that
the embeddings learned using dual con-
straints are better than those with single
constraint models having similar architec-
ture.

1 Introduction

Recent progress in Knowledge Bases (KB) related
technologies enable us to enhance an atomic fact
repository of inter-entity relationship. For exam-
ple KB completion aims to infer unknown entities
in atomic facts, which is represented in the form
of triplets (h, r, t) where h, r, t represent a head en-
tity, relationship and a tail entity respectively, e.g.
(Barack Obama, Nationality, USA) which corre-
sponds to the factual knowledge that “the nation-
ality of Barack Obama is USA”. Freebase1 and
DBPedia2 contain such atomic facts about enti-
ties in the real world. However, the real chal-
lenge for leveraging such knowledge in practical
applications consists of mapping natural language

1https://developers.google.com/freebase/
2http://wiki.dbpedia.org/

questions to their corresponding entries in thus en-
hanced KBs.

Current embedding based QA models such as
(Bordes et al., 2014a,b, 2015; Golub and He,
2016) are focusing on a sequential inference of
predicting the pair of (h,r) from the given question
(q), then inferring (t) corresponding to the pre-
dicted pair (h,r) using any KB completion models
e.g. Trans* family models. This is a reasonable
approach since such a type of questions contain
information about both the head entity and the re-
lation. However, once the first step of inference
fails to match the correct (h,r) pair, it is hopeless
for the second step to answer the correct entity.
In order to avoid this problem, they use additional
resources such as question paraphrases or entity
aliases.

In this paper, we propose a completely differ-
ent approach which uses a Trans* family based
scoring function to predict the pair of (h,r) from q,
and also maps q to t simultaneously. We learn em-
beddings for question words, entities and relations
from the KB simultaneously bringing them into an
euclidean space. Proposed dual constraint concur-
rent inference achieved better performance on a
standard dataset than single constraint sequential
inference methods without using any additional
resources.

2 Related Work

Our work is inspired by the recent advances in
solving simple QA problems using embedding ap-
proaches such as (Bordes et al., 2014a,b, 2015)
which show that these approaches are very ef-
fective in mapping natural language questions to
the corresponding triplet in a KB. They learn
the embeddings for each question by a Bag Of
Words (BOW) representation. (Jain, 2016) fo-
cuses on the positions of the question words and
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incorporate them into the model. Some models
such as (Yih et al., 2015; Dai et al., 2016) fo-
cus on deep networks to encode question words
and KB constituents. (Dai et al., 2016) have mod-
eled the probability of predicting head and relation
jointly, proposing two neural networks for learn-
ing the embeddings. (Golub and He, 2016) in-
troduced attention mechanism for character level
LSTM encoding of questions and entities for em-
bedding question words and KB constituents. (Yin
et al., 2016) proposed to use char-CNN to en-
code the entities and word-CNN with maxpooling
to encode relations. (Yu et al., 2017) focused on
the different granularity of relation representation.
(Lukovnikov et al., 2017) have used rich entity in-
formation to get more powerful KB constituents
encodings. Note that all these models focused on
a single constraint sequential inference that uses
similarities between q and (h,r) pairs to learn em-
beddings. Our method applies a dual constrained
concurrent inference that uses similarities between
q and t on top of (h,r) pairs while leveraging em-
beddings pre-trained by the Trans* family of algo-
rithms.

Various Trans* family models such as TransE
(Bordes et al., 2013),TransH(Wang et al.,
2014),TransR (Lin et al., 2015) are proposed
to learn low dimension embeddings of KB con-
stituents using relations in KB as translations over
entity embedding space.

3 Proposed Method

We propose an embedding based approach where
both question words and KB constituents are
mapped into a common low dimensional embed-
ding space.

Single Constrained Sequential Inference: In
the common euclidean space of question and KB
constituents embeddings, assume d1 to be eu-
clidean distance between question embedding (q)
and additive vector of head entity and relation
(h+r). As shown in Figure 1[a] current QA mod-
els try to minimize d1 so as to predict head entity
and relation pair (h,r) from the question(q), con-
sequently they have a single constraint such that
corresponding q and h+r should be closer to each
other. Assume d2 to be an euclidean distance be-
tween tail entity embedding (t) and (h+r). Trans*
family of algorithms try to minimize d2 so as to
predict tail entity (t) from a pair of (h,r). Cur-
rent models minimize d1 and d2 in the two distinct

Figure 1: [a] Single constrained QA models min-
imize the distance (d1) between Question Embed-
dings (q) and head entity, relation pair (h,r) and
Trans* family of algorithms minimize distance
(d2) between tail entity (t) and (h,r). [b] Our model
minimize the distance (d3) between q and t along
with d1 thus applying the second constraint on q.

steps, indirectly bringing q closer to t.
Dual Constrained Concurrent Inference: A

QA system is preferably able to directly retrieve
an answer entity upon a submission of a question.
The problem here is that a simple factoid question
does not contain sufficient information of the an-
swer entity by definition. Thus our model should
learn question embeddings such that q should be
closer to t as well as (h+r). Assume d3 to be
an euclidean distance between (q) and (t) in the
same vector space as earlier model, as can be seen
in Figure 1[b], our model minimizes d1 + d3 i.e.
bringing q closer to both h+r and t. This is im-
plemented as a dual constraint in objective func-
tion when learning q, which reduces the degree
of freedom of q, resulting in a better euclidean
space in comparison with single constrained mod-
els. Thanks to these constraints we do not need
any additional resources such as question para-
phrase datasets while achieving on a par perfor-
mance with the current models.

3.1 TransR

TransR (Lin et al., 2015) is an algorithm to learn
low dimensional vector representations of entities
and relations in the Knowledge Base. TransR
adopts a score function f r to measure the credi-
bility of a KB triplet (h, r, t) such that the score
is low when (h, r, t) is likely to be true and high
otherwise.

TransR represents entities and relations in dis-
tinct vector spaces i.e. entity space and relation
space. For each triplet, let h ∈ Rk,t ∈ Rk be
an entity embedding of either head or tail respec-
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Figure 2: Overview of our learning diagram

tively and r ∈ Rd be a relation embedding, where
k and d are the dimensions of embeddings of enti-
ties and relations respectively. It also trains a rela-
tion specific projection Matrix Mr ∈ Rk×d, which
projects entities from the entity space to a corre-
sponding relation space. With this projection ma-
trix, projected vectors of entities are defined as,

hr = hMr, tr = tMr.

The score function is defined as:

f r = ‖hr + r− tr‖22.

Constraints are enforced on the norms of em-
beddings h, r, t and projection matrices, i.e.
∀ h, r, t we have ‖h‖2 ≤ 1, ‖r‖2 ≤ 1, ‖t‖2 ≤
1, ‖hMr‖2 ≤ 1, ‖tMr‖2 ≤ 1.

Margin based score function is defined as objec-
tive for training purpose which is as follows:

C=
∑

(h, r, t)∈S

∑
(h′, r, t′)∈S′

max(0, fr(h,t)+γ− fr(h
′,t′))

where max(x,y) returns the larger value between
x and y, γ is the margin parameter, S is the set of
correct triplets from dataset and S′ is the set of cor-
rupted triplets generated by using various negative
sampling methods for training purpose.

3.2 Model

As shown in Figure 2, our model pre-trains the en-
tity (h,t) and relation (r) embeddings with TransR,
whereas encoding questions into q ∈ Rd where
d is the size of question embedding. Questions
should be closer to the sum of (h) and (r) of the
corresponding triplet in the KB, similarly the an-
swer of the question should be closer to the vec-
tor of tail entity (t). We propose a score function
g(h, r, t, q) such that the score is low if (h, r, t) is
the triplet corresponding to the question (q) and
high otherwise. Scores of the question embedding
are defined as:

1. This indicates how close a question is to the
combination of head entity (h) and relation
(r) embeddings in TransR relation space

g1 = ‖hr + r− q‖22

2. This indicates how close a question is to the
tail entity (t) embedding in a TransR relation
space.

g2 = ‖tr − q‖22

Then the final score of the question is defined
as:

g = g1 + g2.

Additional constraints are enforced on norms of
embeddings such that ‖q‖2 ≤ 1. Due to a dual
constraint mentioned above on the question em-
bedding (q), the degree of freedom is reduced con-
siderably, which leads to fast training.

3.3 Training

Similar to previous studies involving embedding
models (Bordes et al., 2014a,b, 2015), our model
is trained with a ranking criterion. The objective
of the learning is that the positive triplet should be
closer to the natural language question than any
other negative triplet by a certain margin γ in the
embedding space. Thus we adopt a margin-based
objective function for training purpose as follows:

L =
∑

(h, r, t, q)∈S

∑
(h′, r′, t′,q)∈S′

max(0, g1(h, r, q) +

γ − g1(h′,r′, q)) +max(0, g2(t,q) + γ − g2(t′,q))

where max(x,y) and γ are same as defined earlier.
S is the set of correct pairs of a triplet and a ques-
tion from the dataset and S′ is the set of pairs of a
negative triplet and a question as S.

3.4 Negative Triplet generation

For generating negative triplets we use a method
known as candidates as negatives, which is pro-
posed by (Bordes et al., 2015). In this method,
non-supported triplets are chosen randomly from
the set of candidate triplets.

4 Experiments

4.1 Knowledge Base and Dataset

We use FB2M as our base KB which is an ex-
tract of the Freebase with about 2M entities and
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5k relations. We use SimpleQuestions3 dataset
introduced by (Bordes et al., 2015) for training
and testing purposes. This dataset consists of a
total of 108,442 natural language questions in En-
glish written by human English speaking annota-
tors each paired with a corresponding triplet from
FB2M that provides the answer. Out of whole data
75,910 data points were used for Training, 10,845
for validation and 21,687 for testing purpose.

4.2 Experimental Setup
TransR embeddings TransR embeddings of size
64 initialized randomly with uniform distribution
were pre-trained with Probabilistic Negative Sam-
pling method proposed by (Kanojia et al., 2017).
Question Encoding Question is represented as se-
quence of words (x1, x1, ..., x|q|). Low dimension
vectors for each word in vocabulary are learnt and
each word xi is mapped to its vector. Word em-
bedding size was set at 64 and initialized with ran-
dom uniform distribution. We experimented with
two methods to encode questions from individual
question word embeddings:

Bag-of-Words (BOW) : It is a sum of individ-
ual word embeddings i.e.

q =
∑|q|

i=1 xi

Long Short Term Memory
(LSTM)(Hochreiter and Schmidhuber, 1997):
Each question is encoded using LSTM with
dynamic RNN units with hidden layer size of 64
and forget bias as 1.0. Output of the last LSTM
unit was taken as the question encoding.
We experimented with Batch size as 512, margin
(γ) at 0.1 and Adam optimizer with learning rate
of 0.001.
Candidate Pruning: Calculation of score for
all triplets from the dataset is an memory and
time wise prohibitive operation. Thus, at first
we prune the facts to generate candidate facts
similar to (Jain, 2016). Then only these candidate
facts are scored by feeding them as input to
our network. To generate these candidate facts,
we match all possible n-grams of words of the
question to Freebase entities and discard all
n-grams (and their matched entities) that are a
subsequence of another n-gram. All facts having
one of the remaining entities as subject are added
to candidate fact list. Facts with lowest score
(g) out of candidates is retrieved as answer to
the question. We evaluate our model based on

3https://research.fb.com/downloads/babi/

Setup Path-level Accuracy(%)
Random Guess 4.9

Word Position(Jain, 2016) 59.7
Memory NW (Bordes et al., 2015) 62.7
Dual constrained BOW encoding 61.03
Dual constrained LSTM encoding 64.05

Table 1: Experimental Results on SimpleQues-
tion dataset for FB2M settings.

path-level accuracy in which prediction is correct
if the head entity (h) and relation (r) of retrieved
triplet are correct.

5 Results

The results of our experiments are shown in Ta-
ble 1. We observe that our model gains 2-5% im-
provement in the path level accuracy than single
constrained word level embeddings approaches by
(Bordes et al., 2015; Jain, 2016) who have similar
architecture to ours. Note that they use additional
resources such as question paraphrase dataset and
entity aliases while our model uses original dataset
only. There are recent studies such as (Yin et al.,
2016; Lukovnikov et al., 2017; Yu et al., 2017)
which reported better accuracies on the same test
set, by adopting either char-level CNNs or richer
representations of entities/relations. Note that our
dual constraint concurrent inference can be easily
incorporated into such methods thus our method is
complementary to their methods. We also report
comparisons between different question encoding
methods of our model. LSTM encoding outper-
forms BOW as it captures syntactic clues to map
question onto the KB.

6 Conclusion and Future Work

In this work we show that Translation Embeddings
learned using Trans* family of algorithms enable
our model to learn the latent relationships between
question and triplet using a unique score function.
This results in a better performance in contrast
with single constrained models as the essence of
the triplet is inherently passed to the model in the
form of embeddings. It also eliminates the need
to use additional datasets to achieve good perfor-
mance. The added dual constraint enforces the
model to reduce the dual euclidean distance be-
tween question and triplet pairs, thereby generat-
ing adequate embeddings. Note that the dual con-
strained method can be extended to recent state of
the art systems which use rich networks to obtain
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better results.
In future, we hope to apply this method to richer

embeddings obtained using deep networks. As
shown in (Golub and He, 2016) character level
encodings based models have been proven to be
more precise compared to word level models for
a simple QA task. We hope to extend our model
to character level ones. Also the entity accuracy
is comparatively lower than the relation accuracy
which can be improved by using better entity link-
ers in questions.
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