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Abstract

We present Segment-level Neural CRF,
which combines neural networks with a
linear chain CRF for segment-level se-
quence modeling tasks such as named
entity recognition (NER) and syntactic
chunking. Our segment-level CRF can
consider higher-order label dependencies
compared with conventional word-level
CRF. Since it is difficult to consider all
possible variable length segments, our
method uses segment lattice constructed
from the word-level tagging model to re-
duce the search space. Performing exper-
iments on NER and chunking, we demon-
strate that our method outperforms con-
ventional word-level CRF with neural net-
works.

1 Introduction

Named entity recognition (NER) and syntactic
chunking are segment-level sequence modeling
tasks, which require to recognize a segment from
a sequence of words. A segment means a se-
quence of words that may compose an expres-
sion as shown in Figure 1. Current high per-
formance NER systems use the word-level lin-
ear chain Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) with neural networks. Espe-
cially, it has been shown that the combination
of LSTMs (Hochreiter and Schmidhuber, 1997;
Gers et al., 2000), convolutional neural networks
(CNNs) (LeCun et al., 1989), and word-level CRF
achieves the state-of-the-art performance (Ma and
Hovy, 2016). Figure 1 shows an overview of the
word-level CRF for NER.

However, the word-level neural CRF has two
main limitations: (1) it captures only first-order
word label dependencies thus it cannot capture
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Figure 1: The difference between word-level CRF
and segment-level CRF. The segment-level CRF
can consider higher-order label dependencies.

segment-level information; (2) it is not easy to in-
corporate dictionary features directly into a word-
level model since named entities and syntactic
chunks consist of multiple words rather than a sin-
gle word. To overcome the limitation of first-order
label dependencies, previous work propose the
higher-order CRF, which outperforms first-order
CRF on NER task (Sarawagi and Cohen, 2005)
and morphological tagging task (Mueller et al.,
2013).

In this paper, we extend a neural CRF from
word-level to segment-level and propose Segment-
level Neural CRF. Our method has two main
advantages: (1) segment-level linear chain CRF
can consider higher-order word label dependen-
cies (e.g., the relations between named entities and
the other words); (2) it is easy to incorporate dic-
tionary features into the model directly since a dic-
tionary entry and a segment (e.g., a named entity)
are in one-to-one correspondence.

Our experiments on chunking and NER demon-
strate that our method outperforms conventional
word-level neural CRF.
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2 Word-level Neural CRF

As a baseline method, we use word-level neu-
ral CRF proposed by (Ma and Hovy, 2016) since
their method achieves state-of-the-art performance
on NER. Specifically, they propose Bi-directional
LSTM-CNN CRF (BLSTM-CNN-CRF) for se-
quential tagging. Here, we briefly review their
BLSTM-CNN-CRF model.

Let wt be the t-th word in an input sentence
and Ct = c

(1)
t , . . . , c

(k)
t be the character sequence

of wt. BLSTM-CNN-CRF uses both word-level
embedding wt ∈ Rdword and character-level em-
bedding ct ∈ Rdchar . Given a word sequence
X = w1, . . . , wn, the model outputs a score vector
ot as follows.

ct = CNNchar(Ct),
xt = wt ⊕ ct,

ht = Bi-LSTM(xt,ht−1,ht+1) (1)

= LSTMf (xt,ht−1)⊕ LSTMb(xt,ht+1),
ot = softmax(WTGht + bTG),

where CNNchar is the character-level CNN func-
tion, ⊕ is the concatenation of two vectors,
LSTMf is the forward LSTM function, LSTMb

is the backward LSTM function, Bi-LSTM is the
Bi-LSTM function, respectively. Then, WTG ∈
R|T |×dhidden is the weight matrix to learn, bTG ∈
R|T | is the bias vector to learn, |T | is the size of
tag set T , dhidden is the size of hidden layer of Bi-
LSTM, and ot ∈ R|T | is the score vector in which
each element is the probability of a possible tag.

In BLSTM-CNN-CRF, CRF is applied to the
output layer. The conditional probability of CRF
is defined as follows:

ϕ(yi−1, yi, o
(yi)
i ) = exp(o(yi)

i + Ayi−1,yi),

p(y|o;A) =

n∏
i=1

ϕ(yi−1, yi, o
(yi)
i )

∑
y′∈Y

n∏
i=1

ϕ(y′i−1, y
′
i, o

(y′i)
i )

,

where ϕ(yi−1, yi, o
(yi)
i ) is the potential function1,

yi ∈ {0, . . . , |T |−1} is the index of tag, o(j)
i is the

j-th element of the vector oi. Then, A ∈ R|T |×|T |

is a transition score matrix, Ayi−1,yi is a transition
1While (Ma and Hovy, 2016) define ϕ(yi−1, yi, oi) =

exp(Wyi−1,yioi + Ayi−1,yi) as the potential function where
W is the weight vector corresponding to label pair (yi−1, yi),
we use the simple potential function here.

score for jumping from tag yi−1 to yi, and Y indi-
cates all possible paths.

At test time, the predicted sequence is obtained
by finding the highest score in a all possible paths
using Viterbi algorithm as follows:

ỹ = argmax
y∈Y

p(y|oi;A).

3 Segment-level Neural CRF

In this section, we describe our proposed method.
Our segment-level neural CRF consists of the fol-
lowing two steps:

(i) A segment lattice is constructed from a se-
quence of words by pruning unlikely BIO
tags to reduce a search space. This is because
it is difficult to consider all possible variable
length segments in practice.

(ii) We use a linear chain CRF to find the highest
score path on the segment lattice.

3.1 Constructing Segment Lattice
A segment lattice is a graph structure where each
path corresponds to a candidate segmentation path
as shown in the lower part of Figure 1. The
segment lattice is a kind of semi-Markov model
(Sarawagi and Cohen, 2005). To construct the
segment lattice, we firstly give an input sentence
to the word-level tagging model, then obtain the
score vector ot for each word that gives the prob-
abilities of possible BIO tags. Then, we generate
the candidate BIO tags whose scores are greater
than the threshold T . After that, we construct the
segment lattice by generating admissible segments
from the candidate BIO tags. For example, we
generate the PERSON segment from the candidate
BIO tags {B-PER, I-PER, E-PER}.

The threshold T is a hyper-parameter for our
model. We describe how to choose the threshold
T in Section 4.3. While it has been shown that
the CRF layer is required to achieve the state-of-
the-art performance in Ma and Hovy (2016), we
observe that the CRF has no significant effect on
the final performance for the lattice construction.
Therefore, we use BLSTM-CNN (without CRF)
as the word-level tagging model in this paper.

3.2 Segment-level Vector Representation
To find the highest score path in the segment
lattice, we use a standard linear chain CRF at
segment-level. Since each segment has vari-
able length, we need to obtain fixed-dimensional
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Figure 2: Details of the Segment-level Neural
CRF model.

segment-level vector representation for neural net-
works.

Figure 2 shows the details of the segment-level
neural CRF model. Let ui = wb, wb+1, . . . , we be
the i-th segment in a segment lattice, b is the start-
ing word index, and e is the ending word index. To
obtain the fixed-dimensional vector ui ∈ Rdnode

for the segment ui, we apply a CNN to the hidden
vector sequence hb:e = hb,hb+1, . . . ,he by Eq.
(1), and compute the score vector zi as follows:

ri = CNNnode(hb:e),
zi = softmax(WLSri + bLS),

where CNNnode is the CNN function for the seg-
ment vector, WLS ∈ R|N |×dnode is the weight
matrix to learn, bLS ∈ Rdnode is the bias vector
to learn, |N | is the size of named entity type set
N , dnode is the size of the segment vector, and
zi ∈ R|N | is the score vector in which each ele-
ment is the probability of a possible NE type.

Finally, we apply a linear chain CRF to find the
highest score path in the segment lattice as we de-
scribe in Section 2.

3.3 Dictionary Features for NER
In this subsection, we describe the use of two addi-
tional dictionary features for NER. Since an entry
of named entity dictionary and the segment in our
model are in one-to-one correspondence, it is easy
to directly incorporate the dictionary features into
our model. We use following two dictionary fea-
tures on NER task.

Binary feature The binary feature ei ∈ Rddict

indicates whether the i-th segment (e.g., a named
entity) exists in the dictionary or not. We use the
embedding matrix Wdict ∈ R2×ddict , where ddict

is the size of the feature embedding. e ∈ {0, 1} is
the binary index which indicates whether the seg-
ment exists in the dictionary or not. Using the in-
dex e, we extract the column vector ei ∈ Rddict

from Wdict and concatenate the segment vector
ri and ei. The concatenated segment vector r′i
is defined as r′i = ri ⊕ ei. Wdict is a ran-
domly initialized matrix and updated in the train-
ing time. To incorporate the popularity of the
Wikipedia entity into our method, we also con-
catenate one-dimensional vector constructed from
the page view count for one month period into ei.
The page view count is normalized by the number
of candidate segments in the segment lattice. The
Wikipedia dictionary is constructed by extracting
the titles of all Wikipedia pages and the titles of all
redirect pages from the Wikipedia Dump Data2.

Wikipedia embedding feature Another addi-
tional feature is the Wikipedia embeddings pro-
posed by Yamada et al. (2016). Their method
maps words and entities (i.e., Wikipedia entities)
into the same continuous vector space using the
skip-gram model (Mikolov et al., 2013). We use
only the 300 dimensional entity embeddings in
this paper. Please refer to Yamada et al. (2016)
for more detail.

4 Experiments

4.1 Datasets

We evaluate our method on two segment-level se-
quence tagging tasks: NER and text chunking3.

For NER, we use CoNLL 2003 English NER
shared task (Tjong Kim Sang and De Meulder,
2003). Following previous work (Ma and Hovy,
2016), we use BIOES tagging scheme in the word-
level tagging model.

For text chunking, we use the CoNLL 2000 En-
glish text chunking shared task (Tjong Kim Sang
and Buchholz, 2000). Following previous work
(Søgaard and Goldberg, 2016), the section 19 of
WSJ corpus is used as the development set. We
use BIOES tagging scheme in the word-level tag-
ging model and measure performance using F1
score in all experiments.

4.2 Model Settings

To generate a segment lattice, we train word-level
BLSTM-CNN with the same hyper-parameters
used in Ma and Hovy (2016): one layer 200 di-
mentional Bi-directional LSTMs for each direc-
tion, 30 filters with window size 3 in character-

2The dump data of Wikipedia is available in Wikimedia
http://dumps.wikimedia.org/. We use the dump
data at 2016-09-20.

3Our code will be available from http://xxxx
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Oracle
Threshold Train Dev Test
T=0.05 99.93 99.71 99.27
T=0.0005 99.99 99.96 99.71
T=0.00005 100.0 99.98 99.83

Table 1: Threshold T and Oracle score on NER.

Test
Prec. Recall F1

BLSTM-CNN 89.04 90.40 89.72
BLSTM-CNN-CRF3 90.82 91.11 90.96
Our method 91.07 91.50 91.28
+ Binary Dict 91.05 91.69 91.37
+ WikiEmb Dict 91.29 91.58 91.44
+ Binary + WikiEmb 91.47 91.62 91.55
Ma and Hovy (2016) 91.35 91.06 91.21
Table 2: Result of CoNLL 2003 English NER.

level CNN, and 100 dimentional pre-trained word
embedding of GloVe (Pennington et al., 2014). At
input layer and output layer, we apply dropout
(Srivastava et al., 2014) with rate at 0.5. In our
model, we set 400 filters with window size 3 in
CNN for segment vector. To optimize our model,
we use AdaDelta (Zeiler, 2012) with batch size 10
and gradient clipping 5. We use early stopping
(Caruana et al., 2001) based on performance on
development sets.

4.3 How to choose threshold

The threshold T is a hyper-parameter for our
model. We choose the threshold T based on how
a segment lattice maintains the gold segments in
the training and development sets. The threshold
T and the oracle score are shown in Table 1. In
our experiment, the T = 0.00005 is used in NER
task and T = 0.0005 is used in chunking task.

4.4 Results and Discussions

The results of CoNLL 2003 NER is shown in Ta-
ble 2. By adding a CRF layer to BLSTM-CNN,
it improves the F1 score from 89.72 to 90.96.
This result is consistent with the result of (Ma and
Hovy, 2016). By using segment-level CRF, it fur-
ther improves the F1 score from 90.96 to 91.28.
Furthermore, by using the binary dictionary fea-
ture, it improves the F1 score from 91.28 to 91.37
and by using the Wikipedia embedding feature, it

3This is same method in (Ma and Hovy, 2016) and this
F-1 score is the result of our implementation.

Test
Prec. Recall F1

BLSTM-CNN 90.85 91.92 91.38
BLSTM-CNN-CRF 94.67 94.43 94.55
Our method 94.55 95.12 94.84

Table 3: Result of CoNLL 2000 Chunking.

improves the F1 score from 91.28 to 91.44. Even-
tually, we achieve the F1 score 91.55 with two dic-
tionary features.

The results of CoNLL 2000 Chunking is shown
in Table 3. Similar to NER task, by adding a
CRF layer to BLSTM-CNN, it improves the F1
score from 91.38 to 94.55. Furthermore, by using
segment-level CRF, it improves the F1 score from
94.55 to 94.84.

In both experiments, it improves the F1 score
by using segment-level CRF. On the NER experi-
ment, the additional dictionary features help to ob-
tain further improvement.

5 Related Work

Several different neural network methods have
been proven to be effective for NER (Collobert
et al., 2011; Chiu and Nichols, 2016; Lample
et al., 2016; Ma and Hovy, 2016). Ma and Hovy
(2016) demonstrate that combining LSTM, CNN
and CRF achieves the state-of-the-art performance
on NER and chunking tasks.

Mueller et al. (2013) show that higher-order
CRF outperforms first-order CRF. Our work dif-
fers from their work in that it can handle segments
of variable lengths and thus it is easy to incorpo-
rate dictionary features directly.

Zhuo et al. (2016) propose Gated Recursive
Semi-CRF, which models a sequence of segments
and automatically learns features. They combine
Semi-CRF (Sarawagi and Cohen, 2005) and neu-
ral networks. However they report the F1 score
89.44% on NER and 94.734 on Chunking which
are lower than the scores of our method.

Kong et al. (2016) propose segmental recurrent
neural networks (SRNNs). SRNNs are based on
Bi-LSTM feature extractor and uses dynamic pro-
gramming algorithm to reduce search space.

6 Conclusion

In this paper, we propose the segment-level se-
quential modeling method based on a segment lat-

4This is under the setting without external resource. They
add Brown clusters features and report the F1 score 95.01.
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tice structure. Our experimental results show that
our method outperforms conventional word-level
neural CRF. Furthermore, two additional dictio-
nary features help to obtain further improvement
on NER task.
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