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Abstract

Non-contiguous word sequences are
widely known to be important in mod-
elling natural language. However they are
not explicitly encoded in common text
representations. In this work we propose
a model for text processing using string
kernels, capable of flexibly representing
non-contiguous sequences. Specifically,
we derive a vectorised version of the
string kernel algorithm and their gradi-
ents, allowing efficient hyperparameter
optimisation as part of a Gaussian Process
framework. Experiments on synthetic data
and text regression for emotion analysis
show the promise of this technique.

1 Introduction

Text representations are a key component in any
Natural Language Processing (NLP) task. A com-
mon approach for this is to average word vectors
over a piece of text. For instance, a bag-of-words
(BOW) model uses one-hot encoding as vectors
and it is still a strong baseline for many tasks.
More recently, approaches based on dense word
representations (Turian et al., 2010; Mikolov et al.,
2013) also showed to perform well.

However, averaging vectors discards any word
order information from the original text, which
can be fundamental for more involved NLP prob-
lems. Convolutional and recurrent neural net-
works (CNNs/RNNs) can keep word order but still
treat a text fragment as a contiguous sequence of
words, encoding a bias towards short- over long-
distance relations between words. Some RNN
models like the celebrated LSTMs (Hochreiter

∗This work was partially done while the first author was
at The University of Sheffield, United Kingdom.

and Schmidhuber, 1997) perform better in cap-
turing these phenomena but still have limitations.
Recent work (Tai et al., 2015; Eriguchi et al.,
2016) showed evidence that LSTM-based mod-
els can be enhanced by adding syntactic infor-
mation, which can encode relations between non-
contiguous words. This line of work requires the
employment of accurate syntactic parsers, restrict-
ing their applicability to specific languages and/or
text domains.

In this work we propose to revisit an approach
which goes beyond contiguous word representa-
tions: string kernels (SKs). Their main power
comes from the ability to represent arbitrary non-
contiguous word sequences through dynamic pro-
gramming algorithms. Our main contribution is a
model that combines SKs with Gaussian Processes
(GPs) (Rasmussen and Williams, 2006), allowing
us to leverage efficient gradient-based methods to
learn kernel hyperparameters. The reasoning be-
hind our approach is that by optimising hyperpa-
rameters in a fine-grained way we can guide the
kernel to learn better task-specific text representa-
tions automatically.

To enable the learning procedure we redefine
the SK algorithm in a vectorised form and derive
its gradients. We perform experiments using syn-
thetic data, giving evidence that the model can
capture non-trivial representations. Finally, we
also show how the approach fares in a real dataset
and explain how the learned hyperparameters can
be interpreted as text representations.

2 String Kernels

Here we give a brief intuition1 on string kernels,
based on the formulation proposed by Cancedda

1We give a thorough explanation of the original SK equa-
tions in the Supplementary Material, as well as a detailed
derivation of our vectorised version with its hyperparameter
gradients.
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et al. (2003). Let |s| be the length of a string s,
sj the j−th symbol in s and s:−1 the prefix con-
taining the full string s except for the last symbol.
Define sim(a, b) as a similarity measure between
individual symbols a and b. Given two strings s
and t and a maximum n-gram length n, the string
kernel k(s, t) can be obtained using the recursion

k′0(s, t) = 1, for all s, t,

for all i = 1, . . . , n− 1 :
k′i(sa, t) = λgk

′
i(s, t) + k′′i (sa, t),

k′′i (sa, tb) = λgk
′′
i (sa, t) + λ2

msim(a, b)k′i−1(s, t),
kn(sa, t) = kn(s, t)+

λ2
m

|t|∑
j

sim(a, tj)k′n−1(s, t:−1),

k(s, t) =
n∑

i=1

µiki(s, t),

where λg and λm are decay hyperparameters for
symbol gaps and matches, respectively, and µi is
the weight for the kernel of n-gram order i. The
decay hyperparameters smooth the kernel values
when sequences are very similar to each other
while the n-gram weights help to tune the signal
coming from different subsequence lengths.

Our goal is optimise the kernel hyperparame-
ters in a fine-grained way using gradient-based
methods. For this, we first redefine the kernel in
a vectorised form. This not only eases gradient
derivations but also allow our implementation to
capitalise on recent advances in parallel process-
ing and linear algebra libraries for better perfor-
mance.2 Given two strings s and t, the equations
for our vectorised version are defined as

S = EsET
t ,

K′0 = 1,

K′i = D|s|K′′i D|t|,

K′′i = λ2
m(S�K′i−1),

ki = λ2
m

∑
j,k

(S�K′i)j,k,

k(s, t) = µTk,

where Es and Et are matrices of symbol embed-
dings for each string, � is the Hadamard product

2Our open-source implementation is based on TensorFlow
(Abadi et al., 2015).

and D` ∈ R` × R` is the matrix

D` =


0 λ0

g λ1
g . . . λ

|`|−2
g

0 0 λ0
g . . . λ

|`|−3
g

...
...

...
. . .

...
0 0 0 . . . λ0

g

0 0 0 . . . 0


with ` ∈ {|s|, |t|} being the corresponding string
length for s or t. The purpose of D is to unroll
the recursion from the original kernel equations.
For the matrices E, we focus on dense word em-
beddings but they could also be one-hot vectors,
simulating hard matching between symbols.

Given this formulation, the hyperparameter gra-
dients can be easily derived. From the vectorised
definition, we can see that gradients with respect
to µ are simply k, the intermediate n-gram spe-
cific kernel values. For λg and λm the gradients
simply follow the kernel equations in an analo-
gous manner. Note that the gradient calculations
do not affect the time or space complexity of the
main kernel, and in practice they can be obtained
together using a single algorithm since they share
many common terms.

Finally, we incorporate the kernel into a Gaus-
sian Process regression model (henceforth, GP-
SK). We assume the label y for an input string s
is sampled from a function f(s) ∼ GP(0, k(s, t)),
with t iterating over all other strings in a dataset.
With this, we can define the marginal likelihood as

log p(y|s,θ) = log
∫

f
p(y|s,θ, f)p(f),

=− yTG−1y
2

− log |G|
2

− n log 2π
2

,

where G is the Gram matrix with respect to the
training set s and θ is the set of kernel hyperpa-
rameters. By taking its derivative and plugging in
the kernel gradients, we can optimise its hyperpa-
rameters using gradient-based methods.3

2.1 Complexity and Runtime Analysis
The original string kernel algorithm has complex-
ity O(n|s||s′|), i.e., quadratic in the size of the
largest string. Our vectorised version is cubic,
O(n`3), where ` = max(|s|, |s′|), due to two ma-
trix multiplications in the equations for K′i. An-
other way of reaching this result is to realise that

3We refer the reader to Rasmussen and Williams (2006,
Chap.5) for an in-depth explanation of this procedure.
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K′′i is actually not needed anymore: all calcula-
tions can be made by updating K′i only. In fact,
Lodhi et al. (2002) introduced the term k′′ as a
way to reduce the complexity fromO(n|s||s′|2) to
O(n|s||s′|). The complexity for the gradient cal-
culations is also O(n`3).

However, even though our vectorised version
has higher complexity, in practice we see large
gains in runtime. We assess this empirically
running the following experiment with synthetic
strings:

• We employ characters as symbols with a one-
hot encoding as the embedding, using all En-
glish ASCII letters, including uppercase (52
symbols in total);

• The maximum subsequence length is set to 5;

• 100 instances are generated randomly by uni-
formly sampling a character until reaching
the desired string length.

We test our kernels with lengths ranging from 10
to 100.

Figure 1 shows wall-clock time measurements
as the string lengths increase.4 It is clear that the
vectorised version is vastly faster than the original
one, with up to two orders of magnitude. Com-
paring the CPU and GPU vectorised implemen-
tations, we see that we can reap benefits using
a GPU when dealing with long sentences. GPU
processing can be further enhanced by allowing
portions of the Gram matrix to be calculated in
batches instead of one instance at a time.

These results are intriguing because we do not
expect a quadratic complexity algorithm to be out-
performed by a cubic one. It is important to note
that while we made efforts to optimise the code,
there is no guarantee that either of our implemen-
tations is making the most of the underlying hard-
ware. We plan to investigate these matters in more
detail in the future.

3 Experiments

We assess our approach empirically with two sets
of experiments using natural language sentences
as inputs in a regression setting.5 The first one

4Experiments were done in a machine with an Intel Xeon
E5-2687W 3.10GHz as CPU and a GTX TITAN X as GPU.

5Code to replicate the experiments in this section
is available at https://github.com/beckdaniel/
ijcnlp17_sk. This also include the performance exper-
iments in Section 2.1.

Figure 1: Wall-clock time measurements for the
SK versions using different string lengths. Time is
measured in seconds and correspond to the calcu-
lation of a 100 × 100 Gram matrix with random
strings of a specific length.

uses synthetically generated response variables,
providing a controlled environment to check the
modelling capacities of our method. The second
set uses labels from an emotion analysis dataset
and serve as a proof of concept for our approach.

3.1 Synthetic Labels
Consider an ideal scenario where the data is dis-
tributed according to a GP-SK. Here we aim at an-
swering two questions: 1) whether we can retrieve
the original distribution through optimisation and
2) whether a simpler model can capture the same
distribution. The first gives us evidence on how
feasible is to learn such a model while the second
justify the choice of a SK compared to simpler al-
ternatives.

To answer these questions we employ the fol-
lowing protocol. First we define a GP-SK with the
following hyperparameter values:

λg = 0.5 λm = 0.2 σ2 = 0.1

µ1 = 1.0 µ2 = 0.5 µ3 = 0.25

where σ2 is the label GP noise. This choice of hy-
perparameter values is arbitrary: our goal is sim-
ply to check if we can retrieve these values through
optimisation. The same procedure could be ap-
plied for different values.

After defining the GP-SK model we calculate
the its corresponding Gram matrix using a set of
sentences and their respective word embeddings.
This matrix contains the covariances of a multi-
variate Gaussian distribution with mean vector 0
and we can sample from this Gaussian to create
synthetic labels. As inputs we use a random sam-
ple of sentences from the Penn Treebank (Marcus
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et al., 1993) and represent each word as a 100d
GloVe embedding (Pennington et al., 2014).6

The data sampled from the procedure above
is used to train another GP-SK with randomly
initialised hyperparameters, which are then opti-
mised. We run this procedure 20 times, using the
same inputs but sampling new labels every time.

Hyperparameter stability Figure 2 shows the
hyperparameter values retrieved after optimisa-
tion, for increasing training set sizes. The decay
hyperparameters are the most stable ones, being
retrieved with high confidence independent of the
dataset size. The original noise value is also ob-
tained but it needs more instances (1000) for that.

The n-gram coefficients are less stable com-
pared to the other hyperparameters, although
the uncertainty seems to diminish with larger
datasets. A possible explanation is the presence
of some level of overspecification, meaning that
very different coefficient values may reach similar
marginal likelihoods, which in turn corresponds to
multiple plausible explanations of the data. Solu-
tions for this include imposing bounds to the coef-
ficients or fixing them, while freely optimising the
more stable hyperparameters.

Predictive performance To evaluate if the GP-
SK models can be subsumed by simpler ones, we
assess the predictive performance on a disjoint test
set containing 200 sentences. Test labels were
sampled from the same GP-SK distribution used
to generate the training labels, simulating a setting
where all the data follows the same distribution.

Figure 3 shows results across different training
set sizes, in Pearson’s r correlation. We compare
with GP baselines trained on averaged embed-
dings, using either a linear or a Squared Exponen-
tial (SE)7 kernel. The SK model outperforms the
baselines, showing that even a non-linear model
can not capture the GP-SK distribution.

To investigate the influence of hyperparameter
optimisation, we also show results in Figure 3 for a
SK model with randomly initialised hyperparame-
ter values. Clearly, optimisation helps to improve
the model, even in the low data scenarios.

3.2 Emotion Analysis
As a first step towards working with real world
data, we employ the proposed approach in an emo-

6nlp.stanford.edu/projects/glove. We use
the version trained on Wikipedia and Gigaword.

7Also known as RBF kernel.

Figure 2: String kernel hyperparameter optimisa-
tion results. Original hyperparameter values are
shown as black lines while each box corresponds
to a specific dataset size. Red lines show the me-
dian values, while box limits correspond to the
[0.25, 0.75] quantiles.

Figure 3: Prediction results, averaged over 20
runs. “SK (rdm)” corresponds to string kernel with
random hyperparameter values and “SK (opt)”,
with optimised hyperparameters.

tion analysis setting, where the goal is to model la-
tent emotions in text. We use the “Affective Text”
dataset from the SemEval2007 shared task (Strap-
parava and Mihalcea, 2007), composed of 1,250
News headlines annotated with 6 scores, one per
emotion. Scores are in the [0−100] range and were
provided by human judges. The models, baselines
and embeddings are the same used in Section 3.1.
Instead of using a fixed split, we perform 10-fold
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NLPD ↓ MAE ↓ r ↑
SK 4.06 10.53 0.586

Linear 4.09 11.03 0.539
SE 4.03 10.09 0.611

Table 1: Emotion analysis results, averaged over
all emotions and cross-validation folds.

λg 7.36 × 10-7 λm 0.0918

µ1 12.37 µ2 33.73 µ3 154.51
µ4 2.58 µ5 8.54

Table 2: SK hyperparameter values for a single
model predicting the emotion surprise.

cross validation and average the results.
Table 1 compares the performance of GP-SK

with the baselines trained on averaged embed-
dings. Besides Pearson’s r correlation, we also
compare the models in terms of Mean Absolute
Error (MAE) and Negative Log Predictive Density
(NLPD), a metric that takes into account the full
predictive distribution into account (Quiñonero-
Candela et al., 2006). The main figure is that GP-
SK outperforms the linear baseline but lags behind
the SE one. This shows that non-linearities present
in the data can not be captured by the GP-SK
model. Since the string kernel is essentially a dot
product over exponentially-sized vectors, it is not
surprising that it is unable to capture non-linear
behaviour. This gives us evidence that developing
non-linear extensions of string kernels could be a
promising avenue for future work.

Inspecting hyperparameters Probing the hy-
perparameters can give us insights about what
kind of representation the kernel is learning. On
Table 2 we show the values for one of the models
that predict the emotion surprise. We can see that
λg has a very low value, while the µ values show
a preference for subsequences up to 3 words. This
lets us conclude that the kernel learned a text rep-
resentation close to contiguous trigrams.

4 Related Work

String kernels were originally proposed for text
classification (Lodhi et al., 2002; Cancedda et al.,
2003) while recent work apply them for native lan-
guage identification (Ionescu et al., 2014) and sen-
timent analysis (Giménez-Pérez et al., 2017), with
promising results. Hyperparameter optimisation
in these works is done via grid search and could

potentially benefit from our proposed approach.
Gaussian Processes have been recently em-

ployed in a number of NLP tasks such as emo-
tion analysis (Beck et al., 2014), detection of tem-
poral patterns in microblogs (Preoiuc-Pietro and
Cohn, 2013), rumour propagation in social media
(Lukasik et al., 2015) and translation quality esti-
mation (Cohn and Specia, 2013; Shah et al., 2013;
Beck et al., 2016). These previous works encode
text inputs as fixed-size vectors instead of working
directly on the text inputs.

Among other recent work that aim at learning
general structured kernels, the most similar to ours
is Beck et al. (2015), who use GPs to learn tree
kernels. Lei et al. (2017) unroll string kernel com-
putations and derive equivalent neural network ar-
chitectures. In contrast, our work put the learning
procedure inside a GP model, inheriting the ad-
vantages of Bayesian model selection procedures.
Nevertheless, many of their kernel ideas could be
applied to a GP setting, which we leave for future
work.

5 Conclusion

In this paper we provided the first steps in combin-
ing string kernels and Gaussian Processes for NLP
tasks, allowing us to learn the text representations
used by the kernels by optimising its hyperparam-
eters in a fine-grained way. Experiments showed
promising results in capturing text patterns that are
not modelled by simpler baselines.

For future work, we plan to extend the model
to account for non-linear representations, using
approaches such as Arc-cosine kernels (Cho and
Saul, 2009) and also applying the ideas from Lei
et al. (2017). Another important avenue to pursue
is to scale the model to larger datasets using recent
advances in Sparse GPs (Titsias, 2009; Hensman
et al., 2013). These in turn can enable richer ker-
nel parameterisations not only for strings but other
structures as well.
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