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Abstract

In Multilabel Learning (MLL) each train-
ing instance is associated with a set of
labels and the task is to learn a func-
tion that maps an unseen instance to its
corresponding label set. In this paper,
we present a suite of—MLL algorithm
independent—post-processing techniques
that utilize the conditional and directional
label-dependences in order to make the
predictions from any MLL approach more
coherent and precise. We solve a con-
straint optimization problem over the out-
put produced by any MLL approach and
the result is a refined version of the input
predicted label set. Using proposed tech-
niques, we show absolute improvement of
3% on English News and 10% on Chinese
E-commerce datasets for P@K metric.

1 Introduction

The Multiclass Classification problem deals with
learning a function that maps an instance to its one
(and only one) label from a set of possible labels
while in MLL each training instance is associated
with a set of labels and the task is to learn a func-
tion that maps an (unseen) instance to its corre-
sponding label set. Recently, MLL has received
a lot of attention because of modern applications
where it is natural that instances are associated
with more than one class simultaneously. For in-
stance, MLL can be used to map news items to
their corresponding topics in Yahoo News, blog
posts to user generated tags in Tumblr, images to
category tags in Flickr, movies to genres in Net-
flix, and in many other web-scale problems. Since
all of the above mentioned applications are user-
facing, a fast and precise mechanism for automati-
cally labeling the instances with their multiple rel-

evant tags is critical. This has resulted in the de-
velopment of many large-scale MLL algorithms.

The most straightforward approach for MLL is
Binary Relevance that treats each label as an in-
dependent binary classification task. This quickly
becomes infeasible if either the feature dimension
is large or the number of labels is huge or both.
Modern approaches either reduce the label dimen-
sion, e.g., PLST, CPLST (Chen and Lin, 2012),
Bayesian CS (Kapoor et al., 2012), LEML (Yu
et al., 2014), RIPML (Soni and Mehdad, 2017),
SLEEC (Bhatia et al., 2015), or feature dimension
or both (such as WSABIE and DocTag2Vec (Chen
et al., 2017)). The inference stage for all of these
approaches produce a score for each potential la-
bel and then a set of top-scored labels is given as
the prediction.

A potential problem with the above mentioned
algorithms is that they lack the knowledge of cor-
relation or dependency between the labels. Let us
look at a toy example: our training data is such that
whenever the label mountain is active then the la-
bel tree is also active. Therefore MLL algorithm
should take advantage of this correlation embed-
ded in the training data to always infer the label
tree when mountain is one of the label. On the
other hand, if tree is an active label then mountain
may not be a label. Exploiting this directional and
conditional dependency between the labels should
allow us to predict a more coherent set of labels.
It would—to some extend—also save the MLL al-
gorithm from making wrong predictions since if
some wrong labels (say we predict a wrong la-
bel politics) are predicted along with correct la-
bels (when true labels are tree and mountain) then
the overall set of predicted labels would not be co-
herent. Inclusion of this external knowledge about
labels shows significant improvements when there
is a lack of training data for some labels.

There have been many attempts (Dembszynski

61



et al., 2010) of using label-hierarchies or label-
correlation information as part of the MLL train-
ing process. For instance, the label-correlation in
training data is used in (Tsoumakas et al., 2009);
(Guo and Gu, 2011) uses conditional dependen-
cies among labels via graphical models. Some of
the other relevant works that use this information
as part of the training are (Huang and Zhou, 2012;
Kong et al., 2013; Younes et al., 2008) and refer-
ences therein. Since these approaches use label de-
pendency information as part of the training stage,
we foresee following issues:

• Using pre-trained model: In some cases we
want to use a pre-trained MLL model that
did not use the label-dependency information
during training and retraining a new model is
not an option. The use of pre-trained models
has become very common since not everyone
has the hardware capability to train complex
models using large amounts of data.

• Label-dependency information not available
during training or else one may want to use
updated or new label-dependency informa-
tion after the model is trained.

• Expensive training and inference: Almost all
algorithms that utilize the label-dependence
as side-information are either expensive dur-
ing training, or inference, or both.

In this paper, we present a suite of post-
processing techniques that utilize the conditional
and directional label-dependences in order to
make the predictions from any MLL approach
more coherent and precise. It is to be noted that
the proposed techniques are algorithm indepen-
dent and can even be applied over the predictions
produced by approaches that use this or any other
label-dependency information as part of the train-
ing. Our techniques involve solving simple con-
straint optimization problems over the outputs pro-
duced by any MLL approach and the result is a re-
fined version of the input prediction by removing
spurious labels and reordering the labels by utiliz-
ing the additional label-dependency side informa-
tion. We show benefits of our approach on Chinese
e-commerce and English news datasets.

2 Problem Description and Approaches

MLL is the problem of learning a function
f : I → 2L that maps an instance in I to one of

the sets in the power set 2L where L is the set of
all possible labels. For a specific instance, MLL
predicts a subset S ⊂ L. Our goal is to learn a
subset L ⊂ S such that L is a refined version of S.

Given a set of constraints on input labels, one
can define an objective function that would poten-
tially minimize inconsistencies between the final
set of labels. Intuitively, labels may be interde-
pendent, thus certain subsets are more coherent
than the others. Label dependency can manifest
either through human-curated label taxonomy or
conditional probabilities. We propose two post-
processing techniques in this paper to improve
predicted outputs of any MLL algorithm. In the
following subsections, we present details of each
technique.

2.1 Steiner Tree Approximation

We formulate label coherence problem as a Steiner
Tree Approximation problem (Gilbert and Pollak,
1968). Consider the following: input is a set of
predicted labels S = R ∪ O, where R is a set
of coherent (required) labels and O is a set of in-
coherent (optional) labels. Labels are connected
by directed weighted edges, thus form a graph G.
The goal is to find a tree T = (L,E,W ) where L
is a set of labels R ⊂ L ⊂ S that includes all of
the coherent labels and may include some of the
optional labels O, E is the set of directed edges
connecting nodes in L and W is set of weights as-
signed to the edges. For faster and approximate so-
lutions, one can reduce Steiner tree problem to di-
rected minimum spanning tree (MST) (Mehlhorn,
1988) and can be solved using Edmond’s algo-
rithm (Edmonds, 1967). MST has been applied in
several previous works on document summariza-
tion (Varadarajan and Hristidis, 2006), text detec-
tion in natural images (Pan et al., 2011), and de-
pendency parsing (McDonald et al., 2005). In this
work, we first construct a directed graph of labels
and then apply MST to obtain a tree of coherent
labels. On applying MST, we choose vertices with
top-K edge weights. Our goal is to find a tree that
minimizes the following objective function:

costd(T ) :=
∑

(u,v)∈E

d(u, v),

where u and v are nodes, d(u, v) = 1 −W (u, v).
The edge weights W are determined by the con-
ditional probabilities of co-occurrence of labels.
Directionality of the edges are determined by the
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following criterion:{
Li → Lj , Pr(Li|Lj) ≤ Pr(Li|Lj)
Li ← Lj , otherwise,

where Pr(Li|Lj) is the probability that label Li is
active given label Lj is active.

Once the directed graph is constructed based on
above criterion, Edmond’s algorithm recursively
eliminates edges between a root node and one of
the other nodes with minimum edge weights. In
case of cycles, the edges are eliminated randomly.
In essence, this algorithm selects highest-value
connected-component in the directed graph. Thus,
we are left with coherent labels.

2.2 0-1 Knapsack
Assigning labels to an instance with a budget can
be considered as a resource allocation problem.
0-1 Knapsack is a popular resource allocation
problem where capacity of the knapsack is limited
and it can be filled with only a few valuable items.
Items are added to the knapsack by maximizing
the overall value of the knapsack subject to the
combined weight of the items under budget. Many
previous works in NLP have used Knapsack for-
mulation, particularly in summarization (Lin and
Bilmes, 2010; Ji et al., 2013; Hirao et al., 2013;
McDonald, 2007). We formulate label assignment
problem as a resource allocation problem, where
we maximize total value of assigned labels. We
determine individual value of a label based on the
log likelihood of the label and its dependent labels.
Intuitively, a label is included in the knapsack only
when its dependent labels increase the overall log-
likelihood.

maximize
∑
k∈S

∑
i∈Dk

log(Pr(Lk|Li))

s.t.
∑
k∈S

|Dk| ≤ C,

where Dk ⊂ S − Lk is a subset of input labels
S that are conditionally dependent on label Lk i.e.
Pr(Lk|Li) > 0 for i ∈ Dk. To include a label Lk

in the knapsack (i.e., in L), we optimize the total
sum of the log conditional probabilities of labels
Lk under the constraint that the total number of
dependent labels are within the budget C—total
number of permissible labels. The problem can
be understood as a maximization of values of as-
signed labels. This problem is solved using a dy-
namic programming algorithm that runs in poly-
nomial time (Andonov et al., 2000).

3 Experiments

The goal of this section is to emphasize on
the fact that our post-processing techniques are
MLL algorithm independent. For that we apply
our approaches over the predictions from mul-
tiple MLL algorithms for two datasets: Yahoo
News dataset in English and Chinese E-commerce
dataset. Since MLL is generally used in applica-
tions where precision of predictions are important,
we use Precision@K for K = 1, 2 and 3 as our
metric.

3.1 Datasets

• Yahoo News MLL Dataset (English)1: This
is one of the few publicly available large
scale datasets for MLL. It contains 38968 Ya-
hoo News articles in English for training and
10000 for testing. These are manually la-
beled with their corresponding category la-
bels; overall, there are 413 possible labels.

• Chinese E-commerce MLL dataset: This
is a propriety dataset that contains product
descriptions of 230364 e-commerce products
in Chinese for training and 49689 for testing.
Each product is tagged with labels about the
product categories; overall there are 240 tags.

3.2 MLL Approaches

Since our post-processing techniques are MLL al-
gorithm independent, we picked three MLL ap-
proaches to apply our post-processing techniques:
Naive Bayes, CNN, and DocTag2Vec. From
our perspective, we can treat these approaches as
black-box that for a given instance generate the set
of predicted labels S ⊂ L.

• Naive Bayes (NB) MLL: Given a sequence
of words, the probability of a tag is evaluated
by multiplying the prior probability of the tag
and the probabilities of observing the words
given the tag, pre-computed from the training
data.

• CNN MLL (Kim, 2014): Originally de-
signed for text classification tasks, the model
views sequence of word embeddings as a ma-
trix and applies two sequential operations:
convolution and max-pooling. First, features

1available publicly via Webscope:
https://webscope.sandbox.yahoo.com/catalog.php?
datatype=l&did=84
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Dataset MLL Approach P@K Default
Highest Priors

Baseline-1
Greedy

Baseline-2 MST Knapsack

Yahoo News DocTag2Vec
1 0.6821 0.6277 0.5927 0.6942 0.6976 (+1.5%)
2 0.6461 0.6132 0.5836 0.6689 (+2.2%) 0.6568
3 0.6218 0.6052 0.5750 0.6485 (+2.6%) 0.6203

Chinese Ecom DocTag2Vec
1 0.5309 0.5718 (+4.0%) 0.5563 0.5510 0.5331
2 0.5454 0.5748 (+2.9%) 0.5664 0.5716 0.5442
3 0.4813 0.4928 0.5802 0.5820 (+10%) 0.4884

Chinese Ecom CNN
1 0.8554 0.7658 0.6898 0.8483 0.8479
2 0.7387 0.7164 0.6545 0.7814 (+4.2%) 0.7450
3 0.6095 0.5921 0.6646 0.7249 (+11.5%) 0.6287

Chinese Ecom NB
1 0.8752 0.8526 0.7545 0.8982 0.9057 (+3.0%)
2 0.8481 0.8167 0.6738 0.8456 0.8538 (+0.5%)
3 0.7913 0.7519 0.7129 0.8101 (+1.8%) 0.7385

Table 1: P@K for various values of K for the two datasets considered and for different MLL algorithms.
Here default means not using a coherence stage. In brackets are shown the improvements in precision
over default by the best performing coherence approach.

are extracted by a convolution layer with sev-
eral filters of different window size. Then
the model applies a max-over-time pooling
operation over the extracted features. The
features are then passed through a fully con-
nected layer with dropout and sigmoid acti-
vations where each output node indicates the
probability of a tag.

ail

• DocTag2Vec (Chen et al., 2017): Re-
cently proposed DocTag2Vec embeds in-
stances (documents in this case), tags, and
words simultaneously into a low-dimensional
space such that the documents and the tags
associated with them are embedded close to
each other. Inference is done via a SGD step
to embed a new document, followed by k-
nearest neighbors to find the closed tags in
the space.

3.3 Post-Processing Techniques
• Highest Priors (Baseline-1): Given the train-

ing data, compute the prior probabilities of
each label and re-rank labels in S according
to the decreasing order of these prior proba-
bilities to produce the new set L.

• Greedy (Baseline-2): Given the pairwise
conditional probabilities among the output la-
bels, select most probable pairs above certain
threshold τ ; we experimented with values in
range [0.01, 0.1] and used τ = 0.06 in
the final experiments.

• MST: Steiner Tree Approximation via MST.
The edge weights are computed via the con-
ditional co-occurrence of the labels in the
training data and the directionality is en-
forced via the criterion described in Section
2.1.

• 0-1 Knapsack: We set C = 15 and solve
the optimization problem described in Sec-
tion 2.2.

3.4 Results

The P@K values are shown in Table 1 for the two
datasets and for various coherency algorithms ap-
plied over multiple MLL approaches. The two
baselines—highest priors and greedy—work rea-
sonably well but the best performing approaches
are MST and Knapsack. For most of the cases
MST works well and even in the scenarios where
Knapsack beats MST, they both are close in per-
formance. By using a post-processing step for co-
herency we generally see a lift of around 2 − 4%
in most of the cases and sometimes a lift of more
than 10% is observed. We note that one can de-
sign the problem with more deeper conditions i.e.,
P (L1|L2, L3 . . . Lk) but only single label depen-
dency has been used in our experiments. With
deeper dependencies, more training data is re-
quired to reliably learn prior probabilities. Also
as the number of labels increase, the number of
conditionals increases, thus the inference becomes
computationally expensive.
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Table 2: Example tags for various Yahoo News articles. Tags highlighted in red did not appear in
true labels. Superscripts on the tags denote following D: Output from DocTag2Vec system (Default in
Table 1), Knap: Output from Knapsack, MST: Output from Steiner Tree Approximation. Tags without
superscript were not predicted at inference.

Doc 1
telecommunicationD,MST,company-legal-&-law-mattersD,Knap,MST, mergers,-acquisitions-&-takeovers

laws-and-regulations,entertainmentD, handheld-&-connected-devicesD,MST

Doc 2
fashionD,MST,clothes-&-apparel,hollywoodD,MST

celebrityD,MST,Knap,entertainmentD,MST,Knap,musicD,MST,contests-&-giveawaysD

Doc 3
handheld-&-connected-devicesD,MST,Knap,telecommunicationD,MST,Knap,money

investment-&-company-information,investment,sectors-&-industriesD,internet-&-networking-technologyD

Doc 4 autosD,MST,Knap,strikes,financial-technical-analysis,company-earningsD,Knap

Doc 5
public-transportationD,MST,Knap,travel-and-transportationD,MST,Knap

celebrity,musicD,MST,Knap,transport-accidentD,MST,Knap,entertainmentD

Doc 6 family-healthD,MST,Knap,mental-healthD,MST,biology,pregnancyD,parentingD,MST,Knap,tests-&-proceduresD

Doc 7
laws-and-regulationsD,MST,Knap,company-legal-&-law-mattersD,MST,Knap,

money,investment-&-company-information,investment,lighting-&-accessoriesD

4 Discussion and Conclusion

Table 2 illustrates MLL output of sample docu-
ments from Yahoo News corpus. We observed
Knapsack algorithm is more conservative at sub-
set selection compared to MST. Tags predicted by
Default system include tags that are related to true
tags but do not appear in the true tag subset e.g., in
Doc 1 handheld-&-connected-devices is related
to telecommunications, similarly Doc 2 and Doc
5 has one related tag and one spurious tag — in
both cases MST and KNAPSACK prune the spu-
rious tags. In Doc 2 music is related/coherent
and contest-&-giveaways is spurious/incoherent.
In Doc 5 transport-accident is related/coherent
and entertainment is a spurious tag.

In this paper we presented two post-processing
techniques to improve precision of any MLL algo-
rithm. In addition to experiments discussed in the
paper, we conducted experiments with other com-
binatorial optimization algorithms as used in pre-
vious works viz., facility location (p-median) (Al-
guliev et al., 2011; Ma and Wan, 2010; Cheung
et al., 2009; Andrews and Ramakrishnan, 2008)
and other graph-based centrality methods (Wolf
and Gibson, 2004; Li et al., 2006; Guinaudeau and
Strube, 2013). However, we did not observe sig-
nificant improvement over default (unprocessed)
output. While many approaches exist that utilize
the label-correlation and dependency information
during training, to the best of our knowledge, this
is the first work that uses this knowledge as part of
a post-processing step that is independent of MLL
algorithms.
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