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Abstract

Multi-task learning (MTL) has recently
contributed to learning better representa-
tions in service of various NLP tasks.
MTL aims at improving the performance
of a primary task, by jointly training on a
secondary task. This paper introduces au-
tomated tasks, which exploit the sequen-
tial nature of the input data, as secondary
tasks in an MTL model. We explore next
word prediction, next character prediction,
and missing word completion as potential
automated tasks. Our results show that
training on a primary task in parallel with
a secondary automated task improves both
the convergence speed and accuracy for
the primary task. We suggest two meth-
ods for augmenting an existing network
with automated tasks and establish bet-
ter performance in topic prediction, senti-
ment analysis, and hashtag recommenda-
tion. Finally, we show that the MTL mod-
els can perform well on datasets that are
small and colloquial by nature.

1 Introduction

Recurrent neural networks have demonstrated
formidable performance in NLP tasks ranging
from speech recognition (Hinton et al., 2012) to
neural machine translation (Bahdanau et al., 2014;
Wu et al., 2016). In NLP, multi-task learning has
been found to be beneficial for seq2seq learning
(Luong et al., 2015; Cheng et al., 2016), text rec-
ommendation (Bansal et al., 2016), and catego-
rization (Liu et al., 2015).

Despite the popularity of multi-task learning,
there has been little work done in generalizing the
application of MTL to all sequential tasks. To ac-
complish this goal, we use the concept of auto-
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mated tasks. Similar work in multi-task learning
frameworks proposed in (Liu et al., 2016) and (Lu-
ong et al., 2015) are both trained on multiple la-
beled datasets. Though we have seen evidence of
research using external unlabeled datasets in pre-
training (Dai and Le, 2015) and semi-supervised
multi-task frameworks (Ando and Zhang, 2005),
to our knowledge there is no work dedicated to
using tasks derived from the original dataset in
multi-task learning with deep recurrent networks.
With automated tasks, we are able to use MTL for
almost any sequential task.

We present two ways of using automated multi-
task learning: (1) the MRNN, a multi-tasking
RNN where the tasks share an LSTM layer, and
(2) the CRNN, a cascaded RNN where the net-
work is augmented with a concatenative layer su-
pervised by the automated task. Examples of ei-
ther network are shown in Figure 1.

In summary, our main contributions are:

e We introduce the concept of automated tasks
for multi-task learning with deep recurrent
networks.

e We show that using the CRNN and the
MRNN trained in parallel on a secondary au-
tomated task allows the network to achieve
better results in sentiment analysis, topic pre-
diction, and hashtag recommendation.

2 Automated Multi-task Learning

We generalize multi-task learning by incorporat-
ing automated tasks with our two MTL models:
the CRNN and the MRNN. In the following sub-
sections, we describe the automated tasks, the
models, and their respective training methods.

2.1 Automated Tasks

The set of automated tasks we suggest include (1)
next word prediction, (2) next character predic-
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Figure 1: MRNN (a) and CRNN (b) model

tion, and (3) missing word completion.

For word and character generation, we trained a
language model to predict the next word or charac-
ter given the words or characters from the previous
K steps. For the missing word completion task,
we removed a random non-stop-word from each
document and replaced it with a UNK placeholder.
The removed word is fed into a word2vec model
trained on Google News (Le and Mikolov, 2014)
and the resulting vector is the target. We per-
formed regression to minimize the mean squared
error of predicting the missing word vector given
the text. We generated predictions by finding the
target word vector with the highest cosine similar-
ity to the output vector.

2.2 MRNN

The multi-tasking RNN, MRNN, is an MTL
model that we use to train our primary and auto-
mated tasks in parallel. The MRNN’s initial layers
are shared, and the later layers branch out to sepa-
rate tasks. A basic example of an MRNN is shown
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in Figure 1.

The MRNN is constructed such that the primary
task and automated task(s) share a body of units.
This body is supervised by both the primary and
automated task(s) and learns internal representa-
tions for both tasks.

2.3 CRNN

(Sggaard and Goldberg, 2016) showed that a
higher-level task can benefit from making use of
a shared representation learned by training on a
lower-level task. Similarly, the CRNN assumes
that the primary task has a hierarchical relation-
ship with the automated task. A basic example of
a CRNN is shown in Figure 1.

Specifically, we designed the CRNN to use the
representations learned from an automated task as
a concatenative input (Ghosh et al., 2016; Lipton
et al., 2015) for the primary task. Furthermore,
such a model can be supervised on an identical
task at different network layers.

3 Experiments

We evaluate the performance of our models on
binary sentiment analysis of the Rotten Tomato
Movie Review dataset, topic prediction on the AG
News dataset, and hashtag recommendation on a
Twitter dataset. For each of these datasets, we
compared the results from the MRNN and CRNN
to a corresponding LSTM model. We separately
tuned the hyper-parameters for each model with
the validation sets and took the average results
across the multiple runs. Note that the baseline
LSTM models are 2-layered. Our MTL models
and the LSTM baseline have the exact same num-
ber of parameters along the primary task stream.

In the following experiments, we use 512
LSTM cells for all models trained on the Rotten
Tomato dataset and 128 LSTM cells for the AG
News and Twitter datasets. Before each output
layer, we have a single fully connected layer con-
sisting of 512 hidden units for the Rotten Tomato
dataset and 128 hidden units for the AG News and
Twitter datasets. We use a batch size of 128 and
apply gradient clipping with the norm set to 1.0 on
all the parameters for all experiments.

We found that missing word completion is espe-
cially detrimental to our MTL models. We believe
that removing a word from each document, which
consists almost exclusively of short sequences,
discards a large portion of the useful information.



Dataset Doc. Count | Categories | Avg. WC
RTMR 10662 2 20
AGNews 127600 4 34
Twitter | 5964 71 70%*

Table 1: Dataset statistics. (*character count)

Thus, the quantitative results of the missing word
completion experiments have been omitted from
this paper. We hypothesize that missing word
completion is more useful for datasets with longer
documents where discarding individual words will
not have a major effect on each document.

3.1 Data

The Rotten Tomato Movie Review (RTMR)'
(Pang and Lee, 2005) dataset consists of 5331 pos-
itive and 5331 negative review snippets. The task
is to predict review sentiment. The dataset is ran-
domly split into 90% for the training and valida-
tion sets and 10% for test set (Dai and Le, 2015).

The AG News? (Zhang et al., 2015) dataset con-
sists of 120,000 training and 7,600 testing docu-
ments. The task is to classify the documents into
one of four topics. Following (Wang and Tian,
2016), we took 18,275 documents from the train-
ing set as validation data.

The Twitter dataset consists of 5,964 tweets.
The task is to predict one of the 71 hashtag labels.
We collected 300,000 tweets using the Twitter
API. We removed all retweets, URLs, uncommon
symbols, and emojis. We lowercased all the char-
acters in the tweets. We kept the tweets with the 71
most popular English hashtags, and removed the
hashtags from the tweets. We used an 80/10/10
split of the remaining data. Although Twitter’s
Developer Policy prevents us from releasing the
dataset, the entire data collection pipeline will be
made available upon publication.

4 Rotten Tomatoes

4.1 Training Details

The primary task for the Rotten Tomatoes dataset
is sentiment analysis. We used word genera-
tion as the automated task. The input is a 300-
dimensional word2vec vector for each word. The
primary task output consists of two softmax units,
representing a positive or negative review. The au-
tomated task output is next word prediction of the
word2vec representation, and hence is a 300 unit
tanh layer. For LSTM we use a learning rate of

1 . .
cs.cornell.edu/people/pabo/movie-review-data/

2di .unipi.it/gulli/AG_corpus_of_news_articles.html
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0.0001. For the MTL models, we need to tune
the learning rate hyper-parameter of the automated
task. Instead of tuning the primary and automated
task hyper-parameters separately, we found an al-
ternative method for tuning the learning rates us-
ing the following equation where 7.1 is the only
learning rate hyper-parameter. [7,cq,) i Optimized
on the validation set.

7 actual )

Urpeim(epoch) = epoch + (2 o

ey

lrauto(ep()Ch) = ITactual — lrprim(epOCh)

We apply this type of learning rate modulation in
order to simulate network pre-training on the au-
tomated task in the earlier epochs, learn shared
representations in the intermediate epochs through
multi-task learning, and train more exclusively on
the primary task during the later epochs. We used
an {7 ,cuar of 0.01.

The MTL and LSTM models both use word-
level word2vec representations trained on Google
News (Le and Mikolov, 2014). The primary sen-
timent analysis task is trained using Adam opti-
mizer (Kingma and Ba, 2014) on cross-entropy
loss while the automated word generation task is
trained using mean-squared error. We continue to
use Adam optimizer in the rest of our experiments.

4.2 Results

We compare our experimental results with (1) SA-
LSTM (Dai and Le, 2015), an LSTM initialized
with a sequence auto-encoder, and (2) the adver-
sarial model (Miyato et al., 2016), an LSTM-based
text classification model with perturbed embed-
dings. We choose these two models because they
are both LSTM-based and are thus comparable to
our models. Non-LSTM models, such as convolu-
tional neural networks, have been able to achieve
higher accuracy on sentiment analysis with the
Rotten Tomatoes dataset (Kim, 2014). All of our
networks beat the variant of the SA-LSTM that
does not use outside data for pre-training. How-
ever, the adversarial (Miyato et al., 2016) and SA-
LSTM (Dai and Le, 2015) models, using external
unlabeled datasets, outperform our MTL models.
With the MRNN, we achieve a 1.5% gain in ac-
curacy over SA-LSTM, and 1% over the vanilla
LSTM network. With the CRNN, we achieve sim-
ilar results compared to the vanilla LSTM net-
work. We hypothesize that the reason the CRNN
under-performs the MRNN is due to the lack of
a clear hierarchy between sentiment analysis and



Dataset Model Accuracy
RTMR SA-LSTM (2015) 79.7%
RTMR SA-LSTM (2015)* 83.3%
RTMR Adversarial (2016)* | 83.4%
RTMR LSTM 80.2%
RTMR CRNN 80.1%
RTMR MRNN 81.2%
AGNews SC-LSTM-I 2016) | 92.05%
AGNews LSTM 91.59%
AGNews CRNN 92.19%
AGNews MRNN 91.93%
Twitter | LSTM 57.8%
Twitter | CRNN 61.4%
Twitter | MRNN 62.0%

Table 2: Experimental results. (*trained on exter-
nal unlabeled dataset)

word generation. We suspect that sentiment anal-
ysis is primarily keyword based and cannot fully
take advantage of the automated language model
task. Additionally, we found that the MTL mod-
els can be trained with much higher learning rates
than a standard LSTM, allowing for convergence
in many fewer epochs. The MRNN model con-
verged within the first 10 epochs, whereas the
LSTM model required approximately 30 epochs
to converge.

5 AG News

5.1 Training Details

For the AG News experiment, the primary task
is topic prediction and the automated task is
word generation. The input to the model is the
300-dimensional word2vec representations of the
words from the documents. The primary task out-
put uses a softmax layer with 4 units. The auto-
mated task output is represented by a tanh layer
with 300 units. The learning rate for the LSTM is
0.001. For the MRNN, the learning rates undergo
the same linear function as in the Rotten Tomatoes
experiment where [7cqq i 0.01.

5.2 Results

For AG News dataset, we compare our experiment
result with skip-connected LSTM (Wang and Tian,
2016), the previous state-of-the-art model on this
dataset. The CRNN outperforms state-of-the-art
by 0.14% and MRNN by 0.26%. We believe the
CRNN beats the MRNN due to a hierarchical rela-
tionship between topic prediction and word gener-
ation. We suspect that topic prediction, which re-
lies on a holistic understanding of a document, can
effectively take advantage of the language model.
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6 Twitter

We ran an experiment showing that our models can
perform well in challenging environments with lit-
tle data. We used a small dataset of 5,964 tweets.
We performed regression on the word2vec repre-
sentation of the hashtag given the tweet. We chose
regression over classification of one-hot targets
because our chosen hashtags are inherently non-
orthogonal and can benefit from semantic repre-
sentations in vector space. We trained three mod-
els: an LSTM model, the MRNN, and the CRNN.

6.1 Training Details

For the Twitter experiment, the primary task is
hashtag recommendation and the automated task
is character prediction. We use character predic-
tion as the automated task due to the large amount
of misspellings and colloquialisms in tweets.

The input to the model is the 66-dimensional
one-hot encoding of the characters corresponding
to the ASCII characters that we kept during pre-
processing. The primary task output is a tanh layer
with 300 units. The automated task output uses a
softmax layer with 66 units. For all the models we
chose a fixed learning rate of 0.001 based on our
observation that different learning rates have little
effect on the relative trend between the models on
this particular task. A constant, equal learning rate
allows us to compare the accuracy curves of each
network against epochs run.

Since several of the hashtags are very similar
to each other (i.e. #Capricorn and #Scorpio), we
marked a prediction as correct if the predicted se-
mantic vector’s top 5% (top 4) closest cosine dis-
tance words contained the target hashtag.

6.2 Results

With the MRNN, we achieve a 4.2% gain in accu-
racy over the LSTM in the Twitter dataset. With
the CRNN, we achieve a 3.6% gain in accuracy.
Additionally, we have shown in Figure 2 that both
the MRNN and CRNN models converge faster
than the LSTM model; both MTL models take ap-
proximately half of the number of epochs to reach
50% accuracy using the same constant learning
rate.

7 Conclusion

In this paper, we showed that automated multi-
task learning models can consistently outperform
the LSTM in sentiment analysis, topic prediction,



Twitter Hashtag Prediction
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Figure 2: Hashtag prediction in Twitter.

and hashtag recommendation. Note that the con-
cept of automated tasks can be extended to non-
NLP sequence tasks such as image categorization
with next row prediction as the automated task.
Because automated MTL can be integrated into
an existing network by adding a new branch to a
pre-existing graph, we can substitute bidirectional
LSTMs (Schuster and Paliwal, 1997), GRUs (Gul-
cehre et al., 2014), and vanilla RNNs for LSTMs
in our MTL models. We will experiment on these
variations in the future.
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