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Abstract

We propose to unify a variety of existing se-
mantic classification tasks, such as seman-
tic role labeling, anaphora resolution, and
paraphrase detection, under the heading
of Recognizing Textual Entailment (RTE).
We present a general strategy to automat-
ically generate one or more sentential hy-
potheses based on an input sentence and
pre-existing manual semantic annotations.
The resulting suite of datasets enables us
to probe a statistical RTE model’s perfor-
mance on different aspects of semantics.
We demonstrate the value of this approach
by investigating the behavior of a popular
neural network RTE model.

1 Introduction

The Recognizing Textual Entailment (RTE) task
aims to assess a system’s ability to do textual
inference—i.e. derive valid conclusions from tex-
tual clues (Dagan et al., 2006, 2013; Bar-Haim
et al., 2006; Giampiccolo et al., 2007, 2009; Ben-
tivogli et al., 2009, 2010, 2011). In this task, a
system judges whether “typically, a human read-
ing [the sentential context, or text] T would infer
that [the sentential hypothesis] H is most likely
true” (Dagan et al., 2006).

Recent efforts in textual inference have focused
on the Stanford Natural Language Inference (SNLI)
dataset. SNLI is made up of hundreds of thou-
sands of text-hypothesis pairs, wherein the texts are
image captions drawn from the Flickr30k corpus
(Young et al., 2014) and the hypotheses are elicited
from crowdsourcing workers based on those cap-
tions (but not the corresponding image). While
SNLI has led to significant methodological im-
provements, its collection protocol does not lend
itself to understanding the types of semantic knowl-

edge necessary for properly understanding a partic-
ular example. Researchers compete on which sys-
tem achieves the highest score on a test set, but this
itself does not lead to an understanding of which
linguistic properties are better captured by a quan-
titatively superior system.

In contrast, datasets such as FraCaS (Cooper
et al., 1996) are precisely designed to illustrate
a range of semantic phenomenon that a text un-
derstanding system should handle. But though
this careful design enables fine-grained probes
into a system’s semantic capabilities, FraCaS-like
datasets tend not to be large-scale enough for recent
work in data-driven computational semantics. Ask-
ing experts, such as those who constructed FraCaS,
to author hundreds of thousands of examples is not
practical, just as the existing elicitation protocol
behind SNLI will not lead to cleanly partitioned
sets of examples that focus specifically on certain
kinds of semantic inference.

Our proposal is to leverage existing large-scale
semantic annotation collections as a source of tar-
geted textual inference examples. This strategy
requires only minor effort in developing dataset-
specific generation capabilities to recast annota-
tions into a shared universal representation: natural
language sentences.

We demonstrate the use of this strategy in two
steps. First, we construct three recasted datasets
from three existing semantic resources that target
three distinct semantic phenomena:1 (i) the Seman-
tic Proto-Roles v1 (SPR) dataset (Reisinger et al.,
2015), which contains likelihood judgments about
the semantic proto-role properties (Dowty, 1991) of
verbal arguments found in PropBank (Palmer et al.,
2005), (ii) the FrameNet Plus (FN+) dataset, which
contains likelihood judgments about the paraphrase
validity of frame triggers (Pavlick et al., 2015), and

1These recasted datasets are made publicly available at
http://decomp.net.
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(iii) the Definite Pronoun Resolution (DPR) dataset,
which contains annotations relevant to complex
anaphora resolution (Rahman and Ng, 2012). We
use these recasted datasets to train a recent neural
RTE model (Bowman et al., 2015) and measure its
performance. We show that complex anaphora is
the most difficult semantic phenomenon for neu-
ral RTE models to capture, followed by predicting
thematic proto-role properties. Perhaps unsurpris-
ingly, given the nature of the RTE task, paraphras-
ing seems to be the easiest phenomenon to model.

In the next section (§2), we discuss previous
work in RTE, focusing in particular on the devel-
opment of RTE datasets. We then discuss our data
creation process (§3) as well as the results of a
small validation (§4). Finally, we report on the
setup and results of our three experiments (§5) and
then conclude (§6).

2 Background and Prior Work

The current paper touches on both the broad theme
of understanding continuous approaches to natu-
ral language understanding as well as the more
narrow focus on textual entailment. We begin by
discussing how the current paper fits within the
broader context and then specify its place within
textual entailment.

2.1 Approaches to logical form

All approaches to natural language understanding
utilize intermediate logical forms that are inter-
pretable to varying degrees. On one end of the
spectrum are approaches that utilize declarative log-
ical forms. In such approaches, semantic parsers
first convert a sequence into a meaning representa-
tion that expresses the semantics needed for infer-
ence. In this case, each individual component of
the logical form is clearly interpretable. Tremen-
dous energies within computational linguistics have
been spent on building declarative, component-
wise-interpretable logical forms such as Hobbsian
Logic (Hobbs, 1985), Discourse Representation
Theory (Kamp et al., 2011), the Rochester Inter-
active Planning System (Allen et al., 2007), Mini-
mal Recursion Semantics (Copestake et al., 2005),
Episodic Logic (Schubert and Hwang, 2000), Com-
binatory Categorical Grammar (Steedman, 2000),
Semantic Role Labeling (Gildea and Jurafsky,
2002), Framenet Parsing (Fillmore et al., 2003)
and Abstract Meaning Representation (Banarescu
et al., 2013).

Opposite the above approaches are methods that
utilize vector space-based logical forms. Recent
work on word and string embeddings (Mikolov
et al., 2013; Pennington et al., 2014) has produced
vector space representations that can be induced
from large corpora in an unsupervised manner that
have been used to initialize the training of neural
networks for tasks as complex as English-to-French
machine translation (Sutskever et al., 2014). Vector
space-based intermediate forms are not commonly
recognized as logical forms but in light of recent
work (Bouchard et al., 2015) it seems worthwhile
to reconsider this view.

An argument in favor of declarative, inter-
pretable logical forms is that one can directly ob-
serve the specific mistakes made by a system in the
interpretive process of mapping natural language
strings to logical forms—e.g., it is possible to find
out whether a prepositional phrase was attached
incorrectly, or the wrong sense of a particular word
was selected, causing a cascade of downstream
errors. Neural systems that use vector space repre-
sentations for textual inference, instead of logical
forms, lack such modularity and interpretability,
and therefore it is very difficult to figure out the
cause of a particular error in a neural network.

Much prior work has aimed to improve the in-
terpretability of neural networks, focusing in par-
ticular on extracting rules from the activations of
feed forward networks (Towell and Shavlik, 1993;
Thrun, 1993; Fu, 1994; Thrun, 1995). In recent
years, this focus has shifted to understanding and
visualizing other architectures such as Convolu-
tional Neural Networks and Recurrent Neural Net-
works (Zeiler and Fergus, 2014; Karpathy et al.,
2015), though the guiding principle remains the
same: understanding the behavior of neural net-
works in terms of its activations.

The current paper also presents a strategy for
understanding the behavior of neural RTE systems
used for solving the task of RTE, but we take a
different route. Instead of explaining the behav-
ior of neural networks in terms of its parameters
and activations, we benchmark their performance
on datasets that each require distinct types of se-
mantic reasoning for high performance. In this
sense, our motivation and strategy is similar to the
reasoning behind the bAbI dataset for question an-
swering (Weston et al., 2016). Weston et al. argue
that, in order to measure the progress towards build-
ing dialogue agents, it can be useful to evaluate the
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ID Dataset Label Text Hypothesis

1 SPR entailed
The network must refund money to the advertisers
and loses considerable revenue and prestige.

The network was altered or somehow changed
during or by the end of the losing.

2 SPR entailed
He turned himself in to authorities in New York
earlier this year.

He changes location during the turning.

3 SPR not-entailed Later, he marketed glue. He changes location during the marketing.
4 SPR not-entailed So he asked the IRS if the plan would work. The asking caused a change in the IRS.

5 FN+ entailed An agreement is to be signed in late 10/92. An agreement is to be inked in late 10/92.
6 FN+ entailed So our work must continue. So our labor must continue.
7 FN+ not-entailed Friday had beautiful weather. Friday had beautiful forecast.
8 FN+ not-entailed Your support will help them go to work. Your support will allow them go to work.

9 DPR entailed The bird ate the pie and it died. The bird ate the pie and the bird died.
10 DPR not-entailed The bird ate the pie and it died. The bird ate the pie and the pie died.
11 DPR entailed The bird ate the pie and it was ruined. The bird ate the pie and the pie was ruined.
12 DPR not-entailed The bird ate the pie and it was ruined. The bird ate the pie and the bird was ruined.

Table 1: Examples of text-hypothesis pairs generated from the SPR, FN+, and DPR datasets.

ability of systems to perform different kinds of
question answering tasks that require specific types
of reasoning. Our strategy for building specific
datasets that can probe the ability of machine learn-
ing systems to perform specific types of reasoning
is similar to theirs; however, instead of construct-
ing completely artificial datasets, we recast datasets
constructed on top of natural text.

2.2 Approaches to textual entailment

Research in textual entailment, at least in its most
recent form, was catalyzed by the RTE shared
task (Dagan et al., 2006; Bar-Haim et al., 2006;
Giampiccolo et al., 2007, 2009; Bentivogli et al.,
2009, 2010, 2011). With each iteration of this
shared task, manually annotated examples were
created for testing competing systems. But even
after multiple iterations, the amount of available
data for RTE was still small. The Sentences In-
volving Compositional Knowledge (SICK) corpus
was released with the goal of alleviating this prob-
lem (Marelli et al., 2014).

A significant further contribution was made with
the Stanford Natural Language Inference (SNLI)
corpus, which uses crowdsourcing to gather two
orders of magnitude more examples than all pre-
vious datasets (Bowman et al., 2015). SNLI en-
abled fully supervised training of powerful machine
learning models like neural networks. A number
of researchers have pursued this direction by ap-
plying completely supervised neural models for
sequential data to the problem of textual entail-
ment (Rocktäschel et al., 2015; Mou et al., 2015;
Shuohang and Jing, 2015; Liu et al., 2016; Cheng
et al., 2016; Parikh et al., 2016; Munkhdalai and
Yu, 2016).

But though the state of the art performance of
neural sequential models has steadily increased
over the past year, it appears that this area has
reached a point where the paradigm of training and
evaluating on a single general-purpose RTE dataset
has become insufficient for reaching the next level
of improvements. It is still informative to measure
the performance of a new RTE model on the SNLI
dataset, but this black-box evaluation does not help
us understand the fine-grained aspects of a model’s
capability in performing particular types of natural
language inference, such as its ability to handle
coreference, paraphrasing, or its ability to judge
thematic properties of a named entity. The issue
of lack of understandability is especially important
for neural models, which are notoriously difficult
to interpret.

To address this issue, we take inspiration from
the FraCaS dataset (Cooper et al., 1996) and con-
struct a suite of targeted datasets that separately
test a system’s ability to perform individual bits of
interpretation such as paraphrasing, semantic role
labeling, and coreference. In contrast to the origi-
nal FraCaS data set, which is relatively small and
which could not support the training of purely lexi-
cal neural RTE classifiers, we pursue the strategy of
automatically converting semantic classifications—
i.e., human judgments about semantic properties—
into labeled examples for textual entailment. This
strategy allows us to construct textual entailment
datasets that are of the same order of magnitude as
SNLI—and hence support data-driven training of
large neural networks—but that are also focused
on specific semantic properties.

With our strategy we can also quantify the types
of semantic phenomenon that an existing semanti-
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cally undifferentiated dataset contains. For exam-
ple, if a neural model trained on the SNLI dataset
performs poorly on a test set from another domain
that exercises the trained model’s ability to perform
anaphora resolution, then it can be inferred that ei-
ther the original dataset did not contain enough
examples of anaphora resolution, or that the statis-
tical model failed to capture that phenomenon.

Finally, we note that the idea of converting
question-answer pairs into text-hypothesis pairs
is not novel: the RTE dataset for the second
RTE Shared task was created by manually con-
verting existing Information Extraction, Informa-
tion Retrieval and QA pairs from manually cu-
rated datasets such as ACE, MUC, TREC and
CLEF (Bar-Haim et al., 2006). The main contri-
bution of the current work is to show that such
conversion need not be done manually; automatic
conversion of some semantic datasets can be done
with a high enough quality to create large-scale
RTE datasets.

3 Data Creation Process

In order to create annotated RTE datasets that can
probe specific aspects of understanding, our strat-
egy is to rewrite semantic classifications into the
form of textual entailment pairs. As mentioned
above, we define a semantic classification dataset
to be a text corpus, along with manual annotations
of a particular meaning-related aspect of the data.
Here, we describe how to apply this strategy to
the SPR, FN+, and DPR datasets, but there exist
many further datasets to which this strategy can be
applied.

The SPR dataset Semantic Proto-Role Labeling
(SPRL) is the problem of assigning a likelihood
value for a particular proto-role property holding
of a particular argument of a particular predicate
(Reisinger et al., 2015; White et al., 2016; Teichert
et al., 2017). These proto-role properties are in-
spired by the thematic proto-role theory proposed
by Dowty (1991), who argued that, for the purpose
of determining the mapping from predicates’ se-
mantic roles to its syntactic arguments, semantic
roles should be viewed not as categories, but rather
as sets of entailments that arguments must satisfy
in the context of an event kind.

For purposes of recasting, we use the SPR1
dataset, which was collected by Reisinger et al.
(2015) and contains likelihood judgments for the
twelve proto-role properties listed in Table 2.

Role property How likely or unlikely is it that...

instigation ARG caused the PRED to happen?
volition ARG chose to be involved in the PRED?
awareness ARG was/were aware of being involved in the PRED?
sentient ARG was/were sentient?
change of location ARG changed location during the PRED?
exists as physical ARG existed as a physical object?
existed before ARG existed before the PRED began?
existed during ARG existed during the PRED?
existed after ARG existed after the PRED stopped?
change of possession ARG changed possession during the PRED?
change of state ARG was/were altered or somehow changed during or by the

end of the PRED?
stationary ARG was/were stationary during the PRED?
location of event ARG described the location of the PRED?
physical contact ARG made physical contact with someone or something else

involved in the PRED?
was used ARG was/were used in carrying out the PRED?
pred changed arg The PRED caused a change in ARG?

Table 2: Questions posed to SPR annotators.

These judgments were collected by providing the
annotator with a sentence in which a predicate and
an argument of that predicate were highlighted and
asking them to answer, on a five-point scale from
1 (very unlikely) to 5 (very likely), how likely or
unlikely each property was to hold of the argument
in the context of the predicate.2

For example, given (1), with the antibody as the
highlighted argument and killed as the highlighted
predicate, the annotator’s job was to answer ques-
tions like the one in (2).

(1) The antibody killed the virus.

(2) How likely or unlikely is it that the antibody
caused the killing to happen?

For the purposes of SPRL task, Teichert et al.
(2017) propose to collapse the five-point scale to
a binary variable by mapping response 1–3 to not-
entailed and 4–5 to entailed and predicting the
resulting binary variable. Collapsing across proper-
ties, the current state-of-the-art F1 for the resulting
task of predicting this binary variable is reported
by Teichert et al. (2017) at 81.7.

Binarized proto-role property judgments can be
readily converted to text-hypothesis pairs by simply
treating the original sentence as the text and con-
verting the questions listed in Table 2 to statements
for use as hypotheses. For example, (1) would
be treated as a text, and (3) would be treated as a
hypothesis generated from (2).

(3) The antibody caused the killing to happen.

In this case, the annotator gave a 5 (very likely)
response to (2), and so in our recasted dataset, the
resulting pair is labeled entailed.

2Annotators were also given the option of saying that the
question was not applicable (NA). We filter these these re-
sponses from our dataset.
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I Three women enjoying a balloon joyride.
Three women are on a balloon ride.

I A woman sings into a microphone indoors.
a women sings

I The kid is sliding down a tan plastic slide.
The kid is sliding.

I A black dog is playing in water with a green toy.
the dog has a toy

I A woman with glasses and a pink hat rides her bike.
A woman with glasses and a pink hat rides her bike

Table 3: Examples of artifacts in the SNLI dataset that pro-
mote hypothesis sentences to be substrings of the evidence
sentences, specially in case of entailments. The bullet marked
sentences are the evidence sentences and the hypothesis sen-
tences below them.

This is a simple and inexpensive way of cre-
ating entailment pairs, with the benefit that this
annotation scheme probes for fundamental seman-
tic information from an annotator. Also, note that,
since Reisinger et al. collect annotations for the
twelve types of proto-role properties mentioned
above, the errors made by a neural RTE model
can be automatically subcategorized into these 12
categories, further aiding in interpretation.

One potential criticism of our method is that,
because our hypothesis sentences are constructed
by filling in templates, they do not have the same
syntactic diversity as the free elicitation method
used by Bowman et al.. We suggest that this is not
a problem for two reasons.

First, since our goal is to distinguish between
the kinds of semantic phenomenon that can be ac-
curately modeled by statistical RTE models, the
lack of diversity is not an obstacle as long as the
particular phenomenon that we wish to probe is
being covered properly. Second, even the method
used by Bowman et al. of enlisting workers on
the Amazon Mechanical Turk (AMT) Platform to
write hypotheses sentences in response to an im-
age caption is not without its drawbacks since their
method introduces artifacts such as the fact that the
hypotheses sentences in SNLI are on average half
the length of the text prompts. We believe that this
happens because workers on AMT have an incen-
tive to spend the least amount of time possible in
constructing their responses. In Table 3, we list a
few such examples.

The FN+ dataset In Frame Semantics (Fillmore
et al., 2003), the primary unit of lexical analysis
is the frame, which captures the central proper-
ties of a concept, situation, or event. The largest
resource for frame annotated sentences with infor-
mation about evoked frames, their trigger phrases,

Dataset Sentences Label Percentage
Entailed Not-Entailed

FN+ 154,605 43.45 56.55
SPR 154,607 34.80 65.20
DPR 3,661 49.99 50.01

Total 312,873 39.13 60.87

SNLI† 569,033 33.41 66.59

Table 4: Number of text-hypothesis pairs generated from
each dataset along with percentage of entailing v. non-
entailing sentences. SNLI included for comparison.

and frame arguments is the FrameNet dataset (Fill-
more and Baker, 2001), which despite its scale, still
suffers from lexical sparsity.

In order to alleviate this problem of lexical
sparsity Rastogi and Van Durme (2014) use the
Paraphrase Database (Ganitkevitch et al., 2013)
to automatically paraphrase trigger tokens that
evoke frames inside sentences from the FrameNet
dataset. These paraphrases are noisy, and their
quality is not high enough for our use. How-
ever, these paraphrases were subsequently man-
ually rated by Pavlick et al., who asked annota-
tors to “judge each paraphrase in terms of how
well it preserved the meaning of the original sen-
tence” (Pavlick et al., 2015). These ratings were
collected on a scale from 1 to 5, where 5 meant that
the paraphrase retained all of the meaning of the
original sentence and 1 meant that paraphrase did
not mean anything close to the original phrase. We
generate our text–hypothesis pairs using the manual
judgments of meaning retention on these sentence–
paraphrase pairs collected by Pavlick et al..

While the sentence–paraphrase pairs that are la-
beled entailed and rated 3.0 and above are usually
grammatically correct, the sentences with an aver-
age rating below 3 and labeled entailed sometimes
contain a grammatical errors, and some are rated
neutral or contradictory. Therefore, we remove
sentences with an average rating less than or equal
to 3.0 and greater than 2.5. All of the sentence
pairs that were rated less than 2.5 were not valid
entailments and they were labeled as not-entailed.

As an example, consider (4), which is a sentence
from FrameNet.

(4) So our work must continue.

The word work triggers a frame and is replaced by
its paraphrase labor by Pavlick et al. to create (5).

(5) So our labor must continue.

We consider the first sentence to be the text and the
second sentence to be the hypothesis. The annota-
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Dataset Accuracy Grammaticality

FN+ 85 77
SPR 94 92
DPR 98 96
SNLI 91 96

Table 5: Accuracy of the labels assigned to the RTE pairs and
the grammaticality of the hypothesis sentences. 100 random
RTE pairs from each dataset were selected and each pair was
assigned a value of 1 if it was correctly labeled/grammatical
and 0 otherwise. We report the average score as a percentage
in two separate columns for each dataset.

tors on Mechanical Turk gave this pair of sentences
an average rating of around 4, and so we consider
this pair of sentences as an instance of the entailed
relation.

The DPR dataset Definite Pronoun Resolution
is the problem of identifying the correct antecedent
for a definite pronoun—e.g. he/him, she/her, it,
etc.—in one clause, given two potential antecedents
in a preceding clause. Data generation for this
task is done manually and relies on the concept
of twin sentences. Twin sentences are (minimally)
biclausal sentences that share a (linearly) initial
clause containing at least two non-pronominal re-
ferring expressions but differ on a non-initial clause
containing a pronoun that could corefer with either
of the two referring expressions in the initial clause
but which is biased to corefer with only one.

This concept is exemplified in (6), where the bee
and the flower are the two referring expressions in
the initial clause for both (6a) and (6b), and it is
the pronoun.

(6) The bee landed on the flower because...
a. ...it wanted pollen.
b. ...it had pollen.

In (6a), it is biased to corefer with the bee, and in
(6b), it is biased to corefer with the flower.

In order to assign the correct antecedent of it
in both sentences, a computational system would
presumably need world-knowledge about bees and
flowers. The DPR dataset is a collection of such
problems and their solutions, collected by Rahman
and Ng (2012) as a step towards solving the Wino-
grad Schema Challenge (Hector et al., 2012). The
ranking-based system that Rahman and Ng present
obtains an accuracy of 73.1% on their dataset. This
result—which, to our knowledge, remains the best
posted on this dataset—outperforms a random base-
line as well as various systems based on the Stan-
ford resolver (Lee et al., 2011).

Dataset Sentence

FN+
12:06 a.m. hrh: i was per the berkeley main

library when it hit.

SPR Me existed as a physical object.

DPR
John could not understand his waiter,

because the his waiter spoke Spanish.

SNLI A person in on concrete.

Table 6: Examples of ungrammatical hypothesis sentences
from each of our datasets and SNLI.

Each DPR coreference problem-solution pair
can be converted to two annotated entailment prob-
lems by substituting the target pronoun with the
two expressions that it could corefer with. Thus,
two RTE pairs are generated for each DPR pair:
one that is entailed and one that is not entailed.

For example, (6a) is rewritten to (7a) and (7b).

(7) a. The bee landed on the flower because the
bee wanted pollen.

b. The bee landed on the flower because the
flower wanted pollen.

The two RTE pairs are then (7a)–(8a), which is
paired with the output entailed, and (7a)–(8b),
which is paired with the output not-entailed.

Statistics Table 4 summarizes the constructed
datasets as well as number of sentences and the
class category breakdown of the SNLI dataset.3

4 Data Validation

Since our data is automatically generated, we per-
formed manual validation to ensure that the gen-
erated data was high quality. To conduct this vali-
dation, we assessed a small subset of our recasted
datasets as well as the SNLI dataset.

We randomly sampled 100 RTE pairs from each
of the four datasets, and then a single annotator
rated those 400 RTE pairs on two criteria of gram-
maticality and correctness. The results of the man-
ual validation presented in Table 5 show that the
data quality of the DPR and SPR datasets is on
par with the quality of the RTE pairs in the SNLI
datasets. The grammaticality of the hypothesis sen-
tences in the FN+ dataset is worse than the other
three datasets, but its accuracy is reasonably high.

Tables 6 and 7 show examples of ungrammat-
ical hypothesis sentences and incorrectly labeled

3For the SNLI statistics, we map the two categories of
contradiction and neutral to not-entailed.
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Assigned
Category Text and Hypothesis

(FN+)
Not Entailed

I The steps passed along the path on the other side of the wall under which i crouched.
the steps passed along the path on the other outboard of the wall under which i crouched.

(SPR)
Not Entailed

I The machine employs reduced instruction-set computing, or RISC, technology.
Reduced instruction-set computing, or RISC, technology existed after the employing stopped.

(DPR)
Entailed

I A series of injections are used to battle a type of cancer in patients because they have a special
type of drug which counteracts this sickness.

A series of injections are used to battle a type of cancer in patients because patients have a special
type of drug which counteracts this sickness.

(SNLI)
Neural

I two guys playing music with a band
The guys play music

Table 7: Examples of incorrectly labeled RTE pairs from each of our datasets and SNLI.

RTE sentence pairs to illustrate the types of errors
that we make in comparison to the errors made by
mechanical turkers.

5 Experiments and Results

We now conduct experiments to measure the varia-
tion in performance of neural RTE models trained
using the datasets described above. The driving
idea is that, by analyzing the variation in accuracy
of a neural RTE model trained on different datasets
on the same test set, such as the SNLI dataset, we
can gain insights into the behavior of the model
and potentially reveal interesting information about
the SNLI dataset itself.

We first split our three datasets into train, vali-
dation, and test sets in the proportion of 80:10:10.
Prior to training we convert the SNLI test set to a
binary scheme by replacing both neutral and con-
tradiction class labels with not-entailed.

For our model, we use the LSTM-based neural
RTE model described by Bowman et al. (2015)
which was their best performing individual neu-
ral model. This model first embeds the words us-
ing 300 dimensional word embeddings created us-
ing the Glove method (Pennington et al., 2014).
Then, two LSTM neural networks (Hochreiter
and Schmidhuber, 1997) independently encode
the text and hypothesis sentences into 100 dimen-
sional vectors. These representations are concate-
nated and input to a 3-layer deep 200 dimensional
neural network classifier. The entire network is
trained by maximizing the cross-entropy of the
input-output pairs over the entire dataset using
the AdaDelta (Zeiler, 2012) update rule with L2-
regularization and Dropout. We evaluated each of
our models on all the test sets to obtain the results
in Table 8.

These results show that when the neural RTE
model is trained and tested on the same dataset, the

performance on the test set is high (above 80%) for
FN+, SPR, and SNLI. This suggests that these three
tasks are relatively amenable to the application of
neural sequence models, with the FN+ and SPR
dataset being comparable in their difficulty.

Moreover, we see that the performance of the
model trained on all four datasets is equal to chance
performance on the DPR dataset. Further, it is
consistently lower than other cross-evaluation re-
sults shown on the off-diagonals of Table 8. This
suggests that complex anaphora resolution is dif-
ficult for our model to capture, especially when
its training data are not focused on demonstrating
correct coreference resolution. And since the per-
formance of the SNLI trained model is the least
on the DPR dataset, this may suggest that the phe-
nomenon of anaphora resolution occurs less often
than paraphrasing or proto-role resolution in the
SNLI dataset.

This is corroborated by a small manual analysis.
In our random sample of 100 sentences from the
SNLI dataset, we did not find a single example
where pronoun coreference resolution was required
to predict the label correctly. In fact, in this analy-
sis, we found that the only text that might plausibly
have been rewritten as a pronoun resolution prob-
lem (8a) was not; the hypothesis for (8a) is (8b).

(8) a. A man speaking to a woman in a grocery
store as he selects a carton of juice.

b. A man is complimenting a woman on her
jacket.

Finally, we can see that the SNLI trained model
achieves 62.0% on the FN+ test set. While bet-
ter than a most frequent label baseline (56%), this
is still considerably worse than the FN+ model
(80.5%), optimized for paraphrastic inference un-
der single word replacement. We believe this is
because the sentences in FN+ contain language
that is rarely seen. Thus, they contain more subtle
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Train Set FN+ SPR DPR SNLI

FN+ 80.5 60.0 49.5 62.0
SPR 65.8 80.6 50.7 52.3
DPR 19.2 65.2 49.5 65.7
SNLI 62.0 57.6 48.8 85.3

Table 8: Accuracy under 0-1 loss of predicting the entailment
relation. Each cell describes the accuracy of a model trained
on the corresponding row’s training set and tested on the
corresponding column’s test set

differences compared to the differences between
the text and the hypothesis in the SNLI dataset.
This may also be why the model trained on SNLI
does not perform well on any of the other datasets.

As a second illustration, we analyzed the SNLI
trained RTE model’s performance on the SPR test
set by dissecting the overall performance of the
model by the proto-role properties that the entail-
ment pairs were generated from. Note that all the
categories appear equally in the test data. The re-
sults, shown in Figure 1, show that entailments be-
longing to the change of State category caused the
highest number of errors. Based on manual inspec-
tion of examples, such as sentence 4 in Table 1, we
believe that this happens because such entailments
are not easily captured using lexical patterns. On
the other hand information about stationarity and
change of possession may be captured by neural
models because the entailments are tightly coupled
to the argument tokens.

6 Conclusion

We argue for constructing a suite of large-scale
textual inference datasets that probe specific as-
pects of semantics, in order to analyze a statistical
RTE model’s ability of “understanding” distinct se-
mantic phenomena. To construct such datasets we
presented a general strategy of converting semantic
classification examples to annotated textual infer-
ence pairs that can be used to create large datasets
for free on which even neural models for RTE can
be trained. Further we used these datasets to gain
insights into the behavior of a popular neural RTE
model and the SNLI dataset itself. The variation in
the performance of that model on the three datasets
showed that neural models for natural language
understanding recognise lexical variations or para-
phrasing much better than anaphora resolution. Re-
cently (Chen et al., 2016) also presented a simi-
lar conclusion after manually analyzing the errors
made by neural systems on a reading comprehen-

Figure 1: Percentage of errors of RTE model by proto-role
properties on the SPR test set. The percentage numbers at
the bottom are the contribution of the category above to the
total errors. Error percentages that are close to each other are
omitted for clarity.

sion task. Our approach can be thought of as an
automatic way of automating the manual error anal-
ysis so that it can be used iteratively in a larger sys-
tem and it can remove the requirement of a human
in the loop. Our results also strongly suggested
that the SNLI dataset does not contain examples
of anaphora resolution which we validated manu-
ally. Our datasets and annotations are available at
http://decomp.net.

In future work, we plan to execute our strategy
on labeled data for Word Sense Disambiguation
and Prepositional Phrase attachment resolution,
among other semantic resources, because we be-
lieve that such diverse datasets will require sophis-
ticated RTE models that combine world knowledge
with the pattern recognition abilities of neural net-
works. For example, given the sentence The dog
wagged its tail and a known sense of the dog the fol-
lowing hypotheses sentences can be generated: The
dog is a domestic dog and The dog is a wiener. The
former hypothesis is entailed but the latter is not.
Disambiguating between word senses and decid-
ing the correct governor of a prepositional phrase
requires world knowledge and RTE examples gen-
erated from such sources, even though they are gen-
erated automatically unlike the FraCaS dataset, will
help researchers build robust statistical models for
RTE since each semantic classification dataset high-
lights a particular type of semantic phenomenon
that a robust system for RTE must model.
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Tim Rocktäschel, Edward Grefenstette, Karl Moritz
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