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Abstract

Concept-map-based multi-document sum-
marization is a variant of traditional sum-
marization that produces structured sum-
maries in the form of concept maps. In
this work, we propose a new model1 for
the task that addresses several issues in
previous methods. It learns to identify
and merge coreferent concepts to reduce
redundancy, determines their importance
with a strong supervised model and finds
an optimal summary concept map via in-
teger linear programming. It is also com-
putationally more efficient than previous
methods, allowing us to summarize larger
document sets. We evaluate the model on
two datasets, finding that it outperforms
several approaches from previous work.

1 Introduction

Concept-map-based multi-document summariza-
tion (MDS) is a variant of traditional MDS that
produces structured summaries in the form of a
concept map instead of a coherent text (Falke and
Gurevych, 2017a). A concept map, introduced by
Novak and Gowin (1984), is a labeled graph show-
ing concepts as nodes and relations between them
as edges. As an example, consider a document col-
lection discussing treatments for ADHD. A (very)
small concept map would be

Caffeine ADHD
reduces

in which Caffeine and ADHD are concepts, while
reduces is a relation, forming the proposition
“Caffeine – reduces – ADHD”.

A summary in this form has interesting appli-
cations, as it provides a concise overview of a

1Source code available at https://github.com/
UKPLab/ijcnlp2017-cmaps

document collection, structures it across document
boundaries and can be used as a table-of-contents
to navigate in the collection. Several studies report
successful applications of concept maps in this di-
rection (Carvalho et al., 2001; Briggs et al., 2004;
Richardson and Fox, 2005; Villalon, 2012; Valerio
et al., 2012; Falke and Gurevych, 2017b).

The task we consider in this work is defined as
follows: Given a set of documents on a certain
topic, extract a concept map that represents the
most important content on that topic, satisfies a
specified size limit and is connected.

Although work dealing with the automatic ex-
traction of concept maps from text exists (§2),
current methods have several limitations. First,
most approaches do not attempt to detect coref-
erences between extracted concepts. For instance,
if both ADHD symptoms and symptoms of ADHD
are found, they treat them as separate concepts. In
a concept map, such duplicate concepts are imme-
diately visible to a user, waste valuable space and
make it harder to look for relations of that concept,
as they are spread among the duplicates.

Second, previous work mostly focused on the
extraction of concepts and relations, largely ig-
noring the subsequent selection step necessary to
produce a summary of manageable size. Existing
studies suggested only a few unsupervised met-
rics to determine important elements, leaving it
unclear whether the task can benefit from more
sophisticated supervised approaches. In addition,
no method has been suggested to find an optimal
summary concept map under the constraints of the
size limit and connectedness.

Third, most approaches for concept map extrac-
tion and also traditional summarization are typi-
cally evaluated on small document sets where the
computational complexity of methods is less rel-
evant. We work on a corpus with sets of around
40 documents that should be summarized, which,

801



while being a realistic real-world application sce-
nario, is 10 to 15 times larger than traditional
DUC2 and TAC3 summarization corpora. This
poses an additional challenge that requires the
methods to scale to these sizes.

In this work, we propose a new model for
concept-map-based MDS that overcomes the
aforementioned issues. Building upon previous
work in textual summarization, coreference res-
olution and semantic similarity, it learns to iden-
tify and merge coreferent concepts, scores them
for importance and finds an optimal summary con-
cept map via integer linear programming (ILP).
We also present several optimizations that make
it possible to apply our model to large document
sets. Experiments on two datasets demonstrate the
efficacy of the model, which outperforms several
methods suggested in previous work.

2 Related Work

Previous approaches to construct concept maps
from text, working with either single documents
(Zubrinic et al., 2015; Villalon, 2012; Valerio and
Leake, 2006; Kowata et al., 2010) or document
clusters (Qasim et al., 2013; Zouaq and Nkambou,
2009; Rajaraman and Tan, 2002), all follow a sim-
ilar pipeline: concept extraction, relation extrac-
tion, scoring and concept map construction.

During concept extraction, most approaches ap-
ply hand-written patterns to extract labels for con-
cepts from syntactic representations, focusing on
noun phrases-like structures. Similar approaches
are used to extract relation labels for pairs of
concepts. Alternatively, semantic representations
have been suggested as a more easily accessi-
ble representation compared to syntax (Falke and
Gurevych, 2017c; Olney et al., 2011).

Given these extractions, few attempts beyond
string matching have been made to identify unique
concepts. Valerio and Leake (2006) suggest to
consider only certain part-of-speech during string
matching, while the earlier approach of Rajara-
man and Tan (2002) uses a clustering algorithm
based on a vector space model. Our work pro-
poses a more comprehensive approach, leveraging
state-of-the-art semantic similarity measures and
set partitioning to also detect coreferent concept
labels that are paraphrases.

The selection of a summary-worthy subset of

2http://duc.nist.gov/
3https://tac.nist.gov/

all extracted concepts and relations was largely ig-
nored in previous work, as many studies did not
have a focus on summarization. However, when
dealing with larger document clusters, this step be-
comes inevitable. Zubrinic et al. (2015) suggest a
tf-idf metric on the level of concept labels, Vil-
lalon (2012) uses Latent Semantic Analysis and
Valerio and Leake (2006) suggest simple concept
frequencies. Our model goes a step further and
combines these with other features in a supervised
model, which works well for textual summariza-
tion (Cao et al., 2016; Yang et al., 2017).

For building a summary concept map that is
connected, does not exceed the target size and con-
tains as many important concepts as possible, we
are only aware of a heuristic approach suggested
by Zubrinic et al. (2015). It iteratively removes
low-scoring concepts from all extractions until a
connected graph of the target size remains. How-
ever, it is not guaranteed that the optimal subset
is found. Integer Linear Programming (ILP) has
been successfully used to solve the knapsack prob-
lem that arises in sentence-level extractive summa-
rization (McDonald, 2007). In our task, the knap-
sack problem is not present, as both the scoring
and size restriction are defined on the level of con-
cepts, but the connectedness requirement poses a
similar constraint that restricts the subset selec-
tion. ILP formulations for such a problem have
been proposed for graph-based abstractive sum-
marization (Li et al., 2016; Liu et al., 2015). In
our work, we transfer these ideas to concept maps
and evaluate their efficacy. This is important, as
the methods were originally proposed for differ-
ent kinds of graphs (event networks and AMR
graphs) and introduced to generate abstractive tex-
tual summaries, while we use our concept map
graphs directly as the final summaries.

3 Model

Given a document set D, topic t and size limit L,
our model applies the three stage approach that is
illustrated in Figure 1 to create a summary con-
cept map: (1) Concept and Relation Extraction,
(2) Concept Graph Construction, (3) Graph Sum-
marization. We describe these steps in the follow-
ing sections in detail.

3.1 Concept and Relation Extraction

The goal of the first step is to identify spans in the
documents that can be used as labels for concepts
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Input text: Caffeine, which is a mild CNS stimulant, reduces ADHD symptoms. Summary size: 2 concepts
Herbal supplements have been used to treat the symptoms of ADHD.

1 Concept & Relation Extraction

( Caffeine ; is ; a mild CNS stimulant )

( Caffeine ; reduces ; ADHD symptoms )

( Herbal supplements ; have been used to treat ;

the symptoms of ADHD )

2 Concept Graph Construction

Caffeine

ADHD
symptoms

Herbal
supplements

a mild CNS
stimulant

reduces

is

... used
to treat

3 Graph Summarization

Caffeine0.9

ADHD
symptoms0.6

Herbal
supplements0.8

a mild CNS
stimulant0.4

Figure 1: Conceptual illustration of the model: (1) Extracted propositions are (2) connected to a graph
based on coreference and (3) the best subgraph, here of target size 2, is selected after scoring concepts.

and relations in the concept map.

Extraction For the extraction, we rely on Open
Information Extraction (Banko et al., 2007), an ap-
proach that extracts binary propositions from text.
Given a sentence such as

Caffeine, which is a mild CNS stimulant, reduces
ADHD symptoms.

an Open IE system extracts the tuples:

(Caffeine ; is ; a mild CNS stimulant)
(Caffeine ; reduces ; ADHD symptoms)

This representation is particularly useful because
it is very similar to propositions in a concept map,
requiring only a few postprocessing steps. We
use the extracted tuples (m1, r,m2), after apply-
ing the postprocessing steps discussed below, and
use their arguments m1,m2 as concept mentions
and predicates r as relations.

Filtering To ensure that the arguments of the ex-
tractions are meaningful concept mentions, we fil-
ter the candidate set with two simple constraints:
First, an argument has to contain at least one noun
token, and second, it cannot be longer than ten to-
kens. This removes overly long arguments that are
clauses rather than suitable labels for concepts.

Post-Processing In addition, we apply three
rule-based post-processing steps that refine the ex-
tractions in order to increase the recall of the can-
didate sets. First, using off-the-shelf coreference
resolution, we try to resolve pronominal anaphora
in arguments of the propositions.

Second, if an argument is a conjoining construc-
tion, as indicated by conj-edges in a dependency
parse, we break it down into its conjuncts and in-

troduce separate extractions for each of them:

(Caffeine ; works with ; young children and teens)

would be split into two extractions

(Caffeine ; works with ; young children)
(Caffeine ; works with ; teens)

And third, if the second argument starts with a
verb, as in the following example,

(Herbal supplements ; have been used to ; treat
the symptoms of ADHD)

we move that verb and subsequent prepositions to
the predicate. In the example, the predicate is ex-
tended to have been used to treat, reducing the sec-
ond argument to the symptoms of ADHD.

3.2 Concept Graph Construction

Given the concept mentions extracted in the previ-
ous step, several of these mentions may refer to
the same concept. While this is obvious if the
mentions are identical (e.g. Caffeine in the first
two extractions of Figure 1), they could also differ
slightly (e.g. ADHD symptoms and the symptoms
of ADHD) or be synonyms or paraphrases with-
out any lexical overlap. In this step, we connect
all extracted propositions (m1, r,m2) to a con-
cept graph by grouping coreferent mentions to a
set of unique, non-redundant concepts (see Fig-
ure 1). As this special form of concept-specific
and cross-document coreference goes beyond the
capabilities of off-the-shelf coreference resolution
systems, we propose a solution based on pairwise
classification and set partitioning.
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3.2.1 Pairwise Mention Classification
Given the set M of concept mentions, we want to
determine whether a pair (m1,m2) ∈M2 refers to
the same concept or not. We model this as a binary
classification problem using a log-linear model

P (y = 1|m1,m2, θ) = σ(θTφ(m1,m2))

where a positive classification, y = 1, means that
the mentions are coreferent, φ(m1,m2) are fea-
tures for a pair of mentions, σ is the sigmoid func-
tion and θ are the learned parameters.

As features we use different similarity measures
that indicate if both terms have the same mean-
ing. Lexical features are normalized Levenshtein
distance and the overlap (Jaccard coefficient) be-
tween stemmed content words. To capture simi-
larity on a semantic level, we use cosine similar-
ity between concept embeddings4 and two mea-
sures using word-level similarity based on La-
tent Semantic Analysis (Deerwester et al., 1990)
and WordNet (Resnik, 1995) together with a word
alignment method, both implemented in Semilar
(Rus et al., 2013). The selection of these features
is driven by practical reasons: Since the number of
pairs is inO(|M |2), the feature set has to be small
and restricted to fast-to-compute metrics to make
the approach computationally feasible.

3.2.2 Mention Partitioning
The task of grouping mentions to concepts can be
seen as finding a partition of M based on the pair-
wise classifications. However, this is non-trivial,
as single predictions might conflict: Both (a, b)
and (b, c) could be classified as coreferent, but not
(a, c). Formally, the relation of all coreferent pairs
S ⊆ M2 has to be an equivalence relation, i.e.
reflexive, symmetric and transitive, to represent a
consistent partitioning.

For a similar problem, Barzilay and Lapata
(2006) propose to use ILP to find a valid partition-
ing that maximally agrees with the pairwise classi-
fications. Let xp ∈ {0, 1} indicate the coreference
of mentions p = (m1,m2) and be c(p) = P (y =
1|m1,m2). Then they optimize the assignments
xp to maximize∑

p∈M2

c(p) xp + (1− c(p)) (1− xp) (1)

4Using the sum of vectors for all tokens; 300-dimensional
word2vec Google News embeddings (Mikolov et al., 2013).

Algorithm 1 Greedy Local Partitioning Search
Input: pairwise predictions c(p) for p ∈M2

Output: coreferent pairs S ⊆M2

1: function SEARCH(x, y)
2: S ← { p | c(p) ≥ 0.5 }
3: b← SCORE(S)
4: Sm← SHUFFLE(TRANSREDUCTION(S))
5: for p ∈ Sm do
6: S′← S \ {p}
7: if b < SCORE(S′) then
8: b← SCORE(S′), S ← S′

9: return TRANSCLOSURE(S)
10: function SCORE(S)
11: S+← TRANSCLOSURE(S)
12: return Compute Equation 1 for S+

under the transitivity constraints

xpi ≥ xpj + xpk
− 1 (2)

for all pi, pj , pk ∈ M2 where i 6= j 6= k. Un-
fortunately, this ILP needs O(|M |2) variables and
O(|M |3) constraints, which makes it difficult to
solve for our problem (where |M | is up to 20k and
we thus have up to 400 million variables and 8 tril-
lion constraints). As an alternative approach, we
use an approximate optimization algorithm.

Algorithm 1 shows our greedy local search al-
gorithm. It creates the transitive closure over all
positive classifications as the initial solution and
computes the objective function (lines 2-3). This
solution is a very aggressive grouping that joins as
many mentions as possible, ignoring all negative
classifications. The algorithm then tries to itera-
tively improve this solution by removing one posi-
tive classification at a time (line 6) if that improves
the objective (lines 7-8). Removals are only tested
for pairs in the transitive reduction of the initial
solution (lines 4-5), as removing others would not
change the partitioning. This approach still runs
for several hours on large problem instances due
to the expensive calculation of SCORE (lines 11-
12), making more complete local searches, using
best-first or beam search, impractical.

As a result, we obtain a relation S that partitions
M into a set of sets C = {C1, . . . Cn} where each
Ci is a set of mentions representing a concept.

3.2.3 Graph Construction
Using the partitioning, we can now connect the
extracted propositions to a graph G = (C,R) in
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which the nodes are concepts C and an edge with
label r exists for every proposition (m1, r,m2) be-
tween the nodes of the concepts of m1 and m2.
For each concept Ci, we select one mention ml ∈
Ci as its label. We experimentally found that using
the most frequent mention, breaking ties by choos-
ing the shortest, is a good heuristic to choose the
most generic and representative label.

3.3 Graph Summarization

With the concept graph G = (C,R) built from the
documents, we can cast the selection of a summary
concept map as a subgraph selection problem:

Given G, find a subgraph G′ = (C ′, R′) with
C ′ ⊆ C and R′ ⊆ R that maximizes∑

Ci∈C′
s(Ci) (3)

such that the subgraph is connected and satisfies
the size constraint |C ′| ≤ L. With s(Ci), we de-
note the importance of concept Ci.

3.3.1 Subgraph Selection
The selection of a subgraph that maximizes Equa-
tion 3 can be formulated as an ILP. Let xi be a bi-
nary decision variable that represents whether con-
ceptCi is part of the subgraph. Then, the objective
can be written as

max
∑|C|

i=1 xi s(Ci) (4)

subject to5

xi ∈ {0, 1} ∀ i ∈ C (5)∑|C|
i=1 xi ≤ L. (6)

To ensure that the selected subgraph is connected,
we introduce flow variables following previous
work (Li et al., 2016; Liu et al., 2015). Let fij be
a non-negative integer variable capturing the flow
from concept Ci to Cj . We only introduce flow
variables for concept pairs that have a relation in
R. The constraints

fij ≤ xi · |C| ∀ (i, j) ∈ R (7)

fij ≤ xj · |C| ∀ (i, j) ∈ R (8)∑
i fij −

∑
k fjk − xj = 0 ∀ j ∈ C (9)

fij ∈ N ∀ (i, j) ∈ R (10)

5To simplify the notation, we write i ∈ C instead of i ∈
{1, . . . , |C|} and correspondingly for R.

enforce that flow can only move between concepts
that are selected (7,8) and a selected concept con-
sumes one unit of flow (9). Further, let i = 0 be
a virtual root node and e0i a virtual edge from the
root to each concept. The additional constraints

|C| · e0i − f0i ≥ 0 ∀ i ∈ C (11)∑|C|
i=1 e0i = 1 (12)∑|C|

i=1 f0i −
∑|C|

i=1 xi = 0 (13)

e0i ∈ {0, 1} ∀ i ∈ C (14)

f0i ∈ N0 ∀ i ∈ C (15)

ensure that only one virtual edge can be active
(12), that the virtual node can only send flow over
this active edge (11) and that the total amount of
flow sent from the root cannot exceed the size of
the selected subgraph (13). As a consequence, if
n concepts are selected, n units of flow are sent
from the root over the edges of the graph and each
selected concept consumes one of them. This is
only possible if the subgraph is connected.

The above ILP formulation has the advantage
that it only requires O(|C| + |R|) variables and
constraints as opposed to O(|C|2) with the flow
constraints used by Li et al. (2016). For sparse
graphs, where |R| � |C|2, this leads to much
smaller ILPs. We further leverage the fact that G
is typically disconnected and solve separate ILPs
for each connected component. Only with these
measures, the ILP approach can be solved for the
real-world problem sizes in our evaluation dataset.

3.3.2 Score Prediction
The subgraph selection introduced above relies on
estimates s(Ci) of a concept’s importance. These
scores are estimated with a linear model

s(Ci) = ϑTψ(Ci, t)

where ψ(Ci, t) are features for a concept Ci in
a document cluster on topic t. Parameters ϑ are
learned with SVMrank (Joachims, 2002). We use a
rich set of features that are commonly used in sum-
marization and keyphrase extraction and briefly
describe them in the following section:

Frequency Concept frequency and document
frequency based on the partitioned mentions.
In addition, frequencies re-weighted with back-
ground inverse document frequencies from
Google N-Grams (Klein and Nelson, 2009).
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Position First, average and last position of a
concept and the distance between first and last.

Topic Relatedness Relatedness of the concept
to the topic, measured as the semantic similarity
between the concept label and the document clus-
ter’s topic description t. As similarities, we use
the measures introduced in Section 3.2.1.

Length Length of shortest, average and longest
mention measured in tokens and in characters.

Label Several features describing the concept
label, including the number of stopwords, capital-
ization, part-of-speech and named entities.

Word Categories As suggested in recent work
by Yang et al. (2017), dictionary-based features
that capture general properties of words such
as concreteness, familiarity or imagery, using
the MRC Psycholinguistic Database (Coltheart,
1981), the LIWC dictionary and an additional list
of concreteness values (Brysbaert et al., 2014).

In addition, we derive several features from the
concept’s position in the concept graph G:

Centrality Measures Measures such as degree,
closeness and betweenness centrality as well as
PageRank scores that indicate the centrality of the
node Ci in the graph G.

Concept Map HARD and CRD scores sug-
gested by Reichherzer and Leake (2006) and their
underlying metrics. They are slight variations or
extensions of common graph metrics that were
specifically developed to describe concept maps.

Graph Degeneracy Following Tixier et al.
(2016) who show that graph degeneracy is helpful
to identify keyphrases, we use the graph core
number and core rank suggested by them.

All numeric features are discretized into bins, such
that the final feature set has only binary features.

3.3.3 Finalization
After predicting scores for every concept and se-
lecting the highest scoring subgraph with the ILP,
we use this subgraph as the summary concept map.
However, this graph might contain multiple edges
between certain concepts. Because this is rare and
the number of available relations is low, we use
a simple heuristic and select the relation that was

EDUC WIKI

Topics 30 38
Documents 40.5 14.6
Tokens 97880 27066
Concepts 25.0 11.3
Relations 25.2 13.8
Compression 0.16% 0.33%

Table 1: Benchmark datasets used in experiments.
Values are averages per topic. Compression = to-
kens in concept map / tokens in documents.

extracted with the highest confidence in the first
step. The resulting graph is the final summary.

4 Experimental Setup

4.1 Data

We evaluate our approach using two benchmark
datasets and compare the generated concept maps
against reference maps. As the first dataset, we
use a recently published corpus by Falke and
Gurevych (2017a) that provides summary concept
maps for document clusters on educational topics.
They were manually created using crowdsourcing
and expert annotators. As the second dataset, we
use a corpus in which the introductions of featured
Wikipedia articles are used as summaries for web
documents (Zopf et al., 2016). This property al-
lows us to make use of the links to other Wikipedia
pages in the summaries as annotations of concepts.
In combination with Open Information Extraction,
we can therefore automatically derive concepts
and relations from the Wikipedia summaries to ob-
tain a second corpus of summary concept maps.

We refer to these datasets as EDUC and WIKI.
Table 1 shows their characteristics. Note that in
both datasets the summaries are much smaller than
the document sets, posing a challenging summa-
rization task. In addition, the document clus-
ters of EDUC are very large, constituting a chal-
lenging but real-world evaluation setting regarding
computational efficiency. We randomly split both
datasets into equally sized training and test sets.

4.2 Evaluation Metrics

As input, our model receives the documents to
summarize, the corresponding topic description
and the number of concepts in the reference con-
cept map as the size limit. To compare a system-
generated concept map with a reference concept
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map we represent both as sets of propositions P ,
i.e. a set in which each element is the concatena-
tion of a relation label with its two concept labels.
We then calculate the overlap between the set PS

for the system map and the set PR for the reference
map. As the number of relations and thus propo-
sitions of the generated map can differ, we report
precision, recall and F1-scores.

Our first metric based on METEOR
(Denkowski and Lavie, 2014) has the advan-
tage that it takes synonyms and paraphrases
into account and does not solely rely on lexical
matches. For each pair of propositions ps ∈ PS

and pr ∈ PR we calculate the match score
meteor(ps, pr) ∈ [0, 1]. Then, precision and
recall per map are computed as:

Pr =
1
|PS |

∑
p∈PS

max{meteor(p, pr) | pr ∈ PR}

Re =
1
|PR|

∑
p∈PR

max{meteor(p, ps) | ps ∈ PS}

The F1-score is the equally weighted harmonic
mean of precision and recall. Scores per map are
macro-averaged over all topics.

As a second metric, we compute ROUGE (Lin,
2004), the standard metric for textual sumariza-
tion. We concatenate all propositions of a map
into a single string, sS and sR, and separate propo-
sitions with a dot to ensure that no bigrams span
across propositions and the metric is therefore
order-independent. We run ROUGE 1.5.56 with
sS as the peer summary and sR as a single model
summary to compute ROUGE-2.

4.3 Implementation and Training
All source documents are preprocessed with Stan-
ford CoreNLP 3.7.0 (Manning et al., 2014) to
obtain tokenization, sentence splitting, part-of-
speech tags, named entities, dependency parses
and coreference chains. For Open Information Ex-
traction, we use OpenIE-47, a system developed
at the University of Washington that is currently
state-of-the-art according to a recent comparison
(Stanovsky and Dagan, 2016). ILPs are solved
with the IBM CPLEX optimizer.8

The concept coreference model is implemented
using the logistic regression model of Weka (Hall

6Parameter: -n 2 -x -m -c 95 -r 1000 -f A -p 0.5 -t 0 -d -a
7https://github.com/knowitall/openie
8https://ibm.com/software/commerce/

optimization/cplex-optimizer/

et al., 2009). For EDUC, we trained it on 17,500
pairs of mentions, and for WIKI, on 4,500 pairs of
mentions, which were in both cases derived from
the reference concept maps of the training part of
the respective dataset.

The SVMrank model for importance scoring is
trained with Dlib9. We use the set of all extracted
concepts from all topics in the training set and as-
sign binary labels if these concepts also occur in
the reference concept maps. The SVM then learns
weights for all features such that the positive in-
stances per topic are ranked higher than the neg-
ative instances. We tuned the regularization pa-
rameter C of the SVM by testing values from 0.1
to 100 with leave-one-out cross-validation on the
training topics. The final models are trained on
the full training set with the best parameter. We
did this separately for all ablations of our model
that produce different training data, obtaining best
parameters of C = 10 for coref=lem on EDUC

and all models on WIKI as well as C = 30 for
coref=doc and our model on EDUC (see Table 2).

5 Results and Analysis

5.1 Evaluation Results
We compare our model against several previously
suggested methods. As unsupervised methods, we
include concept selection based on frequency (Va-
lerio and Leake, 2006), denoted as Valerio 06,
selection with idf-corrected frequencies (Zubrinic
et al., 2015), Zubrinic 15, and using the popular
PageRank algorithm (Page et al., 1999). For a fair
comparison, we run all methods on the same ex-
tracted concepts and relations and with our ILP-
based subgraph selection. In addition, we include
the baseline method Falke 17 published along with
the EDUC corpus (Falke and Gurevych, 2017a),
which includes a supervised importance scoring
model based on a binary classifier. To the best
of our knowledge, this is all existing work for this
task to which we can compare the proposed model.

Table 2 shows METEOR and ROUGE-2 scores
for all methods on both datasets. Our model out-
performs all three unsupervised approaches signif-
icantly on both datasets, demonstrating the superi-
ority of the supervised scoring model. With re-
gard to Falke 17, which is supervised to a sim-
ilar extent, the results are twofold: While our
model improves in ROUGE-2, it has a lower ME-
TEOR score. We looked into these results in de-

9http://dlib.net/ml.html
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EDUC WIKI
METEOR ROUGE-2 METEOR ROUGE-2

Approach Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1
PageRank 11.78 16.21 †13.61 7.14 11.66 †8.66 13.27 14.13 †13.62 8.35 6.17 ‡7.01
Valerio 06 11.89 16.12 †13.65 7.33 12.09 ‡8.97 13.44 13.79 ‡13.55 8.57 7.16 ‡7.61
Zubrinic 15 12.48 16.44 †14.15 7.68 12.08 ‡9.25 14.63 14.92 ‡14.72 10.50 7.91 ‡8.87
Falke 17 15.12 19.49 17.00 6.03 17.98 8.91 14.30 23.11 17.46 6.77 23.18 10.20
Our model 15.14 17.34 16.12 9.37 11.93 10.38 19.57 18.98 19.18 17.00 10.69 12.91
- coref=lem 13.93 15.42 †14.57 8.21 8.59 †8.25 18.32 17.24 17.59 13.99 9.53 11.07
- coref=doc 14.14 15.21 †14.54 7.99 6.78 †7.26 16.81 16.63 16.59 13.09 9.16 10.29
- w/o ILP 15.29 17.46 16.26 9.38 11.88 10.38 18.22 17.80 17.94 14.73 9.74 11.51
s*, ILP 23.32 27.52 25.16 26.09 23.93 24.74 29.04 26.76 27.73 29.08 18.79 22.54
s*, w/o ILP 18.28 25.15 †21.13 17.52 21.97 †19.34 24.45 24.46 †24.83 24.06 17.39 †19.57

Table 2: Results on test sections of both datasets for our model and previous work. (Improvements of
our model are significant compared to approaches marked (for F1) with † (p ≤ 0.01) or ‡ (p ≤ 0.05)).12

tail and found that the high scores of Falke 17 are
due to heavy overgeneration during relation ex-
traction, introducing many rather meaningless re-
lations into the concept map.10 Hence, the method
only obtains higher scores by sacrificing the qual-
ity of the extracted propositions.

To verify this observation, we carried out an
additional human evaluation between the two
systems, capturing aspects beyond the content-
oriented automatic metrics. For each topic, the
concept maps generated by both approaches were
shown to five crowdworkers on Mechanical Turk
and they were asked for their preference with re-
gard to different quality dimensions.11 Table 3
shows that our concept maps tend to have more
meaningful and topic-focused propositions and are
especially more grammatical and less redundant.

5.2 Analysis

Concept Coreference To analyze the contribu-
tion of our concept coreference detection and par-
titioning (§3.2.1,§3.2.2), we replaced it with two
simpler baselines: merging concepts based on
string matches after lemmatization (coref=lem), as
done in previous work, and using per-document
coreference chains detected by CoreNLP and
merging them across documents by lemmatized
string matching (coref=doc). Both alternatives
cause a drop in both metrics on EDUC and WIKI,
showing that our approach is important for the
model’s performance. The baselines merge much
less mentions than necessary but also tend to lump

10Note that METEOR scores can be improved by incor-
rect relations if they are between a correct pair of concepts,
leading to a partial match of the proposition.

11To control for the influence of graph layouting quality,
we showed the concept maps as simple lists of propositions.

Dimension Falke 2017 Our
Meaning 44% 56%
Grammaticality 31% 69%
Focus 44% 56%
Non-Redundancy 21% 79%

Table 3: Human preference judgments between
concept maps generated on EDUC (n = 75).

too many too different mentions together. In con-
trast, our model can make many more merges
based on semantic similarity and at the same time
manages to avoid lumping effects by relying on
the global partitioning approach.

Subgraph Selection To analyze the effective-
ness of the subgraph selection (§3.3.1), we re-
placed the ILP approach with a greedy heuristic
similar to Zubrinic et al. (2015): Given the graph
of scored concepts, start with the most important
one and select the best neighbor (by score, break-
ing ties by node degree) until the size limit is
reached. While the ILP will always find the op-
timal solution and hence the best subgraph, this
heuristic approach does not have such a guaran-
tee. In fact, it found the optimal subgraph for only
35% of the topics, selecting a subgraph with an on
average 0.63% (EDUC) and 1.30% (WIKI) lower
objective function score in the other cases.

Row w/o ILP in Table 2 shows the effect on the
summary concept map. While it is rather small for
EDUC, the differences on WIKI are bigger – in line
with the observation that the selected subgraphs
are less optimal. A problem for this analysis are
errors in the preceding scoring step: The optimal

12Approximate randomization test with N = 10000.
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Method Var. Const. Time (s)
(Li et al., 2016) 37M 75M 2670.61
by component 26M 52M 999.25
Our ILP 22k 31k 7.31
by component 18k 26k 5.61

Table 4: Comparison of average ILP size and run-
time per topic for subgraph selection on EDUC.

subgraph according to the estimated scores might
not be the best with regard to the gold standard,
explaining the slightly higher METEOR scores
on EDUC without the ILP. To control for this ef-
fect, we also tested the selection using gold scores
s∗(Ci) for all concepts Ci, demonstrating that the
optimal subgraphs selected by the ILP are clearly
superior (last two rows in Table 2).

Score Prediction The contribution of our su-
pervised scoring model based on ranking SVMs
(§3.3.2) can be seen in Table 2 when comparing
it to the unsupervised approaches PageRank, Vale-
rio 06 and Zubrinic 15. Note that all models use
the same concepts and relations as input and the
same ILP-based subgraph selection. Our model
clearly outperforms all of them. Looking into the
learned weights for our set of features, we ob-
served that the most helpful features are frequen-
cies, in particular document frequency and idf-
weighted concept frequency, and topic relatedness
as well as page rank. To identify unimportant con-
cepts (i.e. assigning low scores), the model makes
use of concreteness values and the label’s length.

Runtime As mentioned earlier, the size of the
document sets in EDUC resembles an interesting
real-world setting that required us to pay special
attention to complexity. Table 4 compares our sub-
graph selection ILP with the ILP formulation by Li
et al. (2016). For the extracted graphs, with on av-
erage 4022 nodes and 5613 edges between them,
our formulation leads to ILPs that are orders of
magnitude smaller and can be solved in a fraction
of the time.13 For both formulations, solving sep-
arate ILPs for each connected component in the
graph further improves the runtime.

Error Analysis Table 5 shows the number of
concepts and their recall at different steps in our
model, which is a good indicator of bottlenecks.

13Times for running CPLEX multi-threaded on 24 cores.
Direct comparison with the same data on the same machine.

EDUC WIKI

Step Count Recall Count Recall
Mentions 8630 73.87 2549 88.93
Concepts 4022 60.27 1315 82.38
Subgraph 25 16.53 11 30.71

Table 5: Average number of concepts and recall
per topic at different steps in our model.

The recall of mentions shows that performance is
already lost during extraction, suggesting that bet-
ter approaches would be beneficial. We observed
that the problem is mainly the identification of cor-
rect spans rather than missing some concepts com-
pletely. A custom extraction model instead of re-
lying on Open IE could resolve this.

With regard to concept coreference, we found
that even more coreferent mentions could be
grouped together. However, while the current
model only accidentally merged mentions of dif-
ferent gold concepts in two cases across all topics,
a stronger grouping could introduce more of these
errors. Please also note that the drop in recall in
Table 5 is due to exact string matching of the recall
metric used here, missing concepts for which the
selected cluster label is not exactly the gold con-
cept. As the METEOR and ROUGE evaluations
show, this is not a problem for the final result.

Finally, Table 5 reveals that one of the main bot-
tlenecks is to determine the important concepts.
On both datasets, but especially on the bigger doc-
ument sets of EDUC, a substantial amount of recall
is lost during this challenging step.

6 Conclusion

We proposed a new model for concept-map-based
MDS and showed that it outperforms several
methods from previous work. All of our contri-
butions, including concept coreference resolution,
the supervised scoring model and the global op-
timization approach contribute to its efficacy. In
addition, it is able to scale to large document sets,
which makes it much faster than previous methods
in realistic scenarios with such documents sets.
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