Estimating Reactions and Recommending Products with Generative
Models of Reviews

Jianmo Ni and Zachary C. Lipton and Sharad Vikram and Julian McAuley
Department of Computer Science and Engineering
University of California San Diego

7in018, zlipton,

Abstract

Traditional approaches to recommenda-
tion focus on learning from large volumes
of historical feedback to estimate simple
numerical quantities (Will a user click on a
product? Make a purchase? etc.). Natural
language approaches that model informa-
tion like product reviews have proved to be
incredibly useful in improving the perfor-
mance of such methods, as reviews pro-
vide valuable auxiliary information that
can be used to better estimate latent user
preferences and item properties.

In this paper, rather than using reviews
as an inputs to a recommender system,
we focus on generating reviews as the
model’s output. This requires us to effi-
ciently model text (at the character level)
to capture the preferences of the user, the
properties of the item being consumed,
and the interaction between them (i.e., the
user’s preference). We show that this can
model can be used to (a) generate plau-
sible reviews and estimate nuanced reac-
tions; (b) provide personalized rankings of
existing reviews; and (c) recommend ex-
isting products more effectively.

1 Introduction

Review text has been extensively studied in mod-
ern recommender systems as a means of improv-
ing the performance on traditional recommenda-
tion tasks. Compared with conventional tech-
niques that model simple numerical feedback (rat-
ings, clicks, purchases, etc.), review text pro-
vides valuable information about user and item
attributes, and more importantly the interaction
between them. Recent systems have adapted
ideas from topic modeling and sentiment analysis

svikram,

783

jmcauley@ucsd.edu

to leverage the side-information contained in re-
views; in essence, these approaches use language
models as a form of ‘regularization,” such that
the model should explain user preferences and re-
view text simultaneously (McAuley and Leskovec,
2013; Bao et al., 2014; Ling et al., 2014).

In parallel, recent advances in generative text
modeling have demonstrated the effectiveness of
recurrent neural networks in capturing content,
structure, and style in natural language. As a re-
sult, several recent works have focused on learn-
ing generative models of product reviews, either
to generate reviews per se, or as a means of learn-
ing user and item attributes (Lipton et al., 2015;
Radford et al., 2017; Dong et al., 2017; Hu et al.,
2017). In this paper, we address the problem of
how to leverage both review text and implicit feed-
back simultaneously in order to provide richer user
experiences and more meaningful recommenda-
tions. In particular, we focus on estimating latent
user preferences through implicit feedback while
simultaneously predicting the contents of the re-
views themselves. Thus, given an item that a user
hasn’t yet interacted with, our goals are to (a) gen-
erate a plausible review, in order to estimate the
user’s nuanced reaction to the product; (b) esti-
mate whether the user would be likely to interact
with the product, based on their learned latent at-
tributes; and (c) rank existing reviews using the
language model, in order to surface ‘meaningful’
reviews to the user.

To solve the above problems, we propose a
model—CF-GGN—that combines Collaborative
Filtering (CF) with Generative Concatenative Net-
works (GCN) (Lipton et al., 2015) to simultane-
ously perform item recommendation and review
generation. Given a large dataset of implicit feed-
back (e.g. purchases vs. non-purchases), we start
by modeling user and item latent factors through
collaborative filtering; we also adapt ideas from

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 783-791,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

text embeddings (e.g. word2vec), and use multi-
layer perceptrons (MLP) to model complex inter-
actions between embeddings and latent preference
factors. Finally we build a generative concate-
native model by stacking two LSTM layers; we
adopt a simple replication strategy to concatenate
latent factors with text input and jointly train the
model in a supervised way. By sharing the same
model parameters, the two tasks (recommenda-
tion and generation) mutually reinforce each other
when all parameters are trained end-to-end.

To our knowledge, our work is the first to
show that we can generate plausible reviews while
simultaneously achieving substantial quantitative
improvements on recommendation tasks. To sum-
marize, our main contributions are as follows:

e We jointly perform recommendation and re-
view generation by combining collaborative
filtering with LSTM-based generative mod-
els. Our model captures latent information
such as user preferences and item attributes,
and learns to generate coherent, structured,
and personalized reviews.

We investigate the effect of sparsity in both
reviews and implicit feedback data; a virtue
of our joint training approach is that we can
learn effective text models even for users with
limited reviews at training time, i.e., we can
learn to estimate likely reactions (in the form
of reviews), on the basis of implicit feedback
(e.g. purchases and clicks), even for users
who write few reviews.

We conduct extensive experiments on three
real-word datasets in order to qualitatively
and quantitatively demonstrate the effective-
ness of our joint training approach.

2 Related Work

Review text provides valuable information about
users’ experiences and preferences toward the
items they consume. Modeling the detailed infor-
mation in reviews is especially important in sparse
datasets, where a small amount of reviews car-
ries substantially more information than is avail-
able in ratings alone. Several previous works
have taken reviews into consideration to improve
the performance of various recommendation tasks
(McAuley and Leskovec, 2013; Ling et al., 2014;
Bao et al., 2014; Wang et al., 2015).

784

Recently, neural-network-based models have
been considered when modeling review text, in
place of traditional topic modeling techniques.
Zheng et al. (2017) leveraged Convolutional Neu-
ral Networks (CNN) to extract embeddings from
reviews, which were used as features in a factor-
ization machine (Rendle, 2010) to generate rat-
ing predictions. Catherine and Cohen (2017) pro-
posed a model (‘transNet’) consisting of a source
network and a target network; the former learns
user and item embeddings from reviews while the
latter performs sentiment analysis over the ground
truth review. By minimizing the difference be-
tween the two networks’ latent representation lay-
ers, the model learns more expressive latent fac-
tors. Wu et al. (2017) presented a neural net-
work based model that jointly considers both rat-
ings and reviews. Their approach models the tem-
poral rating prediction task via a Recurrent Neu-
ral Network (RNN), and uses an additional LSTM
network to model the review text as a regulariza-
tion term in the loss function. Their experimen-
tal results show improvements on rating predic-
tion tasks over state-of-the-art techniques, how-
ever they do not report results in terms of the
model’s ability to generate plausible reviews.

Given their expressive power when modeling
sequential data, RNN-based methods have been
widely studied for a variety of generation tasks
(Graves, 2013; Zhang and LeCun, 2015; Sutskever
etal., 2011). Recently, several works have focused
on the task of learning language models to gener-
ate reviews. Generating coherent and personalized
reviews still poses considerable challenges, due
to their length, structure, and the sparsity of real
datasets. Radford et al. (2017) trained a character-
RNN language model based on the Amazon review
dataset (McAuley et al., 2015); they consider a
single multiplicative LSTM layer with 4096 hid-
den units and train the model for nearly a month.
The authors find a sentiment unit among the hid-
den units which is highly correlated to review sen-
timent. They can then generate reviews by forc-
ing this sentiment unit to be positive or negative.
Lipton et al. (2015) proposed a generative con-
catenative network to supervise the training of a
character-level language model; they concatenate
auxiliary information in the form of one-hot repre-
sentations of user/item IDs, categories and ratings.
The model generates plausible reviews when con-
ditioned on this auxiliary information, and demon-

strates the potential for RNNs to capture subjec-
tive user information and generate personalized
text, though they do not consider recommendation
problems. Dong et al. (2017) studied attribute-to-
sequence generative models with stacked LSTMs;
they encode attributes such as user/item IDs and
ratings and use the encoded information to initial-
ize the hidden states of the LSTM layer. They
also make use of an attention mechanism in the
decoder to improve the accuracy of predictions.
Their model is based on word-level LSTMs and
struggles when generating long sequences. More-
over, their network does not have the ability to pre-
dict user preferences toward items, which limits
performance when given unseen (user,item) pairs.
The most relevant work to ours is perhaps Li
et al. (2017). They addressed the problem of
jointly learning rating prediction and ‘tip gen-
eration.” They employ a standard latent factor
model with MLP layers to predict ratings, follow-
ing which they use the latent factors to initialize
the LSTM model for tip generation. Experimental
results show quantitative improvements at rating
prediction and their word-level generative model
produces tips that are consistent with users’ rat-
ings. Compared with their task, we focus on re-
view generation (rather than generating short tips),
which requires the model to maintain generation
quality over long sequences. Moreover, we con-
sider review text as content during the training
of our collaborative filtering model, which further
enhances the prediction of user preferences.

3 Proposed Method

First we define our problem before introducing our
CF-GCN model. Table 1 summarizes the notation
used throughout this paper.

Given an implicit feedback dataset R (i.e., a set
of ‘positive’ instances such as clicks or purchases),
and the corresponding set of reviews 7, we focus
on two tasks: item recommendation and review
generation. We want to recommend a list of items
to a user while also generating plausible reviews
that the user might write.

3.1 Collaborative Filtering with Reviews

For the task of item recommendation with implicit
feedback, our goal is to estimate pairwise prefer-
ences of a user u toward an item ¢ via a scoring
function g, ;. Many state-of-the-art techniques de-
fine their predictor in terms of matrix factorization

785

Table 1: Notation

Notation Description

R, T feedback set, review set

(74 user set, item set

It I set of observed and unobserved entries

Yui predicted ‘score’ for user w and item ¢

Yus Vi latent factors of user v and item ¢ () X 1)

0., 0; text factors for user v and item 7 (K X 1)

fus fi word2vec embeddings of v and 7 (D X 1)

E. K x D embedding matrix of user u

E; K x D embedding matrix of item ¢

(C] set of neural network parameters

P set of collaborative filtering parameters
(MF), i.e.,

Jui = Y Vi (1)
where ,, and ; represent K -dimensional user and
item latent factors, whose inner product models
the preference of u toward 1.

There have been many extensions of standard
MF methods by incorporating ‘side information’
such as categorical attributes, image features (He
and McAuley, 2016), and text (Hu, 2017; Zheng
et al., 2017). To fully take advantage of review
text, we start by incorporating text embeddings
from reviews into our predictor. Following this we
use a single layer MLP to model the interactions
between latent factors and text embeddings. The
extended predicator is defined as

Yu i
Jui = o(W | 04 Eifi
0! Eufu

+b), 2

where 0, and 6; are K-dimensional (latent) text
factors that interact with the text embeddings of
u and . f, and f; are D-dimensional text fea-
tures extracted from reviews written by user u or
about item 7. Only reviews in the training set are
used (since reviews are not available at test time).
Specifically, we first train a word2vec model on all
reviews in the training set; then we aggregate re-
views written by u or about ¢, and take an average
over the representations. E, and E; are transform
matrices that project D-dimensional text features
into K -dimensional ‘preference space.’

Given the preference predictor, we can learn the
model by minimizing the point-wise classification
loss (He et al., 2017):

L= yuiog fuit(1—yus) log(1=fus), 3)
(u,d)€Z~UIT

where I and I~ represent the set of observed
and unobserved entries in R. With (eq. 3), the

item recommendation task becomes a classifica-
tion problem of deciding whether ¢ belongs to the
positive or negative feedback set (I or 7).

3.2 Generative Concatenative Network

Recurrent neural networks with units such as long
short term memory (LSTM) and gated recurrent
units (GRU) have been widely used as generative
models for tasks such as natural language gen-
eration, image captioning, dialogue generation,
etc. (Jozefowicz et al., 2016; Vinyals et al., 2015;
Ghosh et al., 2017; Sutskever et al., 2014; Karpa-
thy and Fei-Fei, 2017). In our model, we use a
two-layer LSTM network to generate review text
at the character level. We adopt the LSTM archi-
tecture from Zaremba et al. (2014). Updates of the

LSTM layer are defined as:
g tanh
i| [sigmoid h! |
f| | sigmoid Wi <hf_1
o sigmoid 4)

=gl oif 15 o]
h! = tanh(s}) ® o},

where s is the internal state of the cell; g repre-
sents the input node which has an activation func-
tion; i, o and f are sigmoid gating units (‘input,
‘output,” and ‘forget,” respectively); and h is the
hidden state of the cell. tanh and sigmoid are ap-
plied element-wise, as is the product ®. W is the
weight matrix for layer .

Next we consider the text generation task using
‘vanilla’ LSTMs. For a character-LSTM model,
each input z; is a character of the original text.
Given a text sequence z! ... z7, the LSTM-based
network takes an input ! for each step ¢ and up-
dates its hidden states h’ based on both the cur-
rent input ¢ and the previous step’s hidden state
h'~!. The network predicts the input z**! at the
next step, given all inputs <! before ¢ 4+ 1. The
output layer is connected to a softmax layer:

p(a:t]a:<t, 0) = softmax(WshtL)v o)

where W, is the weight matrix of the softmax
layer, h’ is the hidden state at step ¢ of the last
hidden layer L, and © is the complete set of neural
network parameters. Given the output probability
distribution over all characters, we can predict the
output by taking the character that maximizes the
probability.

So far, the above method samples text from a
‘background’ distribution, but lacks the ability to
generate personalized and item-specific text. We
aim to address this by providing the network with
auxiliary inputs x,,,. Here we hope that the same
user and item latent factors v, and ~; can also
be effective as input to the generative model; this
expectation is based on the notion that these fac-
tors describe the ‘aspects’ of user preferences and
item properties that contribute to the user’s over-
all opinion, and therefore the language in their re-
view. Furthermore the use of low-dimensional la-
tent factors means that the method can straight-
forwardly scale to large populations of users and
items, which is not possible for methods based on
one-hot encodings. Following Lipton et al. (2015)
we adopt a simple replication strategy to concate-
nate the latent factors with the character input, So

that the input to the model at each step becomes

ot =[xty v il

By concatenating the latent factors together
with the character input, the auxiliary signal is pre-
served through hundreds of steps, allowing long
and coherent sequences to be generated. If we
were instead to treat latent factors as inputs to the
hidden cell, the signal would quickly vanish or ex-
plode. In practice we found that a dimensionality
of around K = 8 to 50 leads to acceptable per-
formance when modeling users and items. This is
a relatively small number compared with the hid-
den unit size (typically 256-1024), requiring only
a modest computational overhead.

By sharing the same user and item latent fac-
tors, the tasks of item recommendation and review
generation are learned jointly. The complete net-
work structure is shown in Figure 1. We train the
model in an end-to-end manner by optimizing the
joint loss function:

L== yuilog fui + (1 — yui) log(1 = fus)
(ui)eZ—UITt

T
—w Z Z Ing(l't|:E<t> @a Yus ’7@')
(u,i)eT t=1
+ (013 + 12]3),

(6)
where w is a hyperparameter that trades off be-
tween the two tasks, ® = {7y, i, 0u, 0i, Eu, Ei}
is the set of collaborative filtering parameters, and
A is a regularization hyperparameter.

786

EOS] 1

MLP o i 1 i T 1

T I N 0 B

‘l [I i I 1L] l :‘[LSTM]H[LSTM]%[LSTM }—>[LSTM]ﬁ LSTM] :
il transform H transform l il STRI Yu | Vi H G I Y | Vi H o I Yu | Vi H o I Yu | ¥i H d I Yu | i ”

il user text factor l l item text factor l |user latent factor| litem latent factorl
i

[woe [wem]

Collaborative filtering network "

Generative concatenative network

Figure 1: CF-GCN network structure

Table 2: Statistics after pre-processing.

Dataset #users #items #reviews
BeerAdvocate 7,354 8,832 1,270,650
Electronics 20,247 11,589 306,899
Yelp 15,806 12,824 740,984

4 Experiments

We conduct experiments on multiple real-world
datasets to investigate the following questions:

e RQ1: What can the model learn from review
text? Does our joint training framework im-
prove item recommendation performance?

e RQ2: What is the fidelity of the genera-
tive model? Does it successfully capture
user/item attributes, sentiment, and writing
style?

e RQ3: Can the model be used for personal-
ized review ranking? How does performance
improve as more reviews are available during
training?

4.1 Datasets

We focus on three real-world datasets: BeerAdvo-
cate,! Amazon Electronics,? and Yelp.3 We dis-
card users and items with few actions by extract-
ing the k-core, with & = 20 for BeerAdvocate
and Yelp, and & = 10 for Amazon Electronics
(which is substantially sparser). The statistics of
the datasets after pre-processing are shown in Ta-
ble 2.

1https ://snap.stanford.edu/data/
thtp ://jmcauley.ucsd.edu/data/amazon/
“https://www.yelp.com/dataset_challenge

787

4.2 Experimental Setting

We consider two experimental settings for sam-
pling implicit feedback instances and reviews. In
one (‘subset’) we consider a subset of implicit
feedback instances in R such that each is associ-
ated with exactly one review in 7; in the second
(‘wholeset’) we consider all implicit feedback in-
stances in R, but only a subset of the reviews. In
other words, the two settings have the same sub-
set of reviews, but differ in the amount of implicit
feedback used. Our reasons for considering the
latter setting are twofold: First, training LSTM
models with review data is time-consuming, but it
is relatively inexpensive to add additional implicit
feedback instances during training, meaning that
we can achieve a boost in performance with only
a modest increase in running time. And second,
in real recommendation scenarios, most users do
not write reviews, while all provide implicit feed-
back through their actions; thus this setup allows
us to train on both types of feedback simultane-
ously, and even to model likely reviews for users
who have written very few (or none!).

We randomly sample 10%/50%/20% of in-
stances from BeerAdvocate/Electronics/Yelp, re-
spectively. We use a different sample ratio so that
the subset maintains around 100,000 reviews for
each review model. Then we use a skip-gram
model to train word2vec on the training set for
each dataset so as to reduce noise and learn bet-
ter representations for those words that are dataset-
specific. We choose an embedding size of 64 and
keep the most frequent 20,000 words in each train-
ing corpus.

We implemented the proposed method using
Keras. For all datasets, we randomly withhold two

Table 3: Comparisons of Hit Rate, NDCG and AUC on three datasets. CF-GCN improves all metrics
over BPR and GMF for all settings (higher is better for all metrics).

Dataset Settin Hit Rate NDCG AUC
€ | BPR GMF CF-GCN| BPR GMF CF-GCN| BPR GMF CFE-GCN
BeerAdvocat subset | 0.583 0.584 0.613 | 0351 0334 0371 | 0.826 0847 0.861
ceradvocale yholeset | 0752 0763 0.773 | 0476 0487 0.501 | 0925 0925 0.928
Electronios subset | 0375 0428 0.459 | 0224 0254 0275 | 0.690 0.746 0.779
wholeset | 0494 0521 0.529 | 0295 0317 0324 | 0665 0824 0.826
Yel subset | 0.641 0.660 0.679 | 0378 0392 0412 | 0899 0895 0.902
P wholeset | 0.811 0.830 0.847 | 0514 0530 0.553 | 0946 0946 0.952

interactions per user as our validation/test set, and
use all other interactions for training, (i.e., leave-
one-out evaluation (Rendle et al., 2009)). All re-
sults are reported on the test set, for the hyper-
parameters resulting in the best performance on
the validation set. The dimensionality of the la-
tent factors is set to K = 8. Parameters of the
user and item latent factors and text embeddings
are initialized from a Gaussian distribution with
p = 0and o = 0.01. For the review model, we
stacked two LSTM layers with 256 hidden units
per layer. We first train a conventional character-
LSTM model then load the pre-trained parameters
as initialization to speed up training. During train-
ing, we concatenate all reviews in the training set
and add start and end tokens (e.g. STR, EOS) as
delimiters. Then we split the concatenated string
into sequences of length 200.

The model is trained in min-batches with batch-
size 256. We adopt the Adam Optimizer (Kingma
and Ba, 2014) to update weights. We con-
sider learning rates in {0.01,0.001,0.0001} and
A € {0,0.001,0.0001,0.00001,0.000001}, se-
lecting the optimal values on the validation set us-
ing grid search. We also tune the weight w be-
tween O to 1 to trade off item recommendation
vs. review generation in (eq. 6).

4.3 Item Recommendation (RQ1)

We first demonstrate that our model can learn user
preferences through both implicit feedback and re-
view text. We focus on the item recommendation
task and compare the proposed model with two
state-of-the-art methods: Bayesian Personalized
Ranking (BPR) (Rendle et al., 2009) and General-
ized Matrix Factorization (GMF) (He et al., 2017).
Both BPR and GMF use the predicator as eq. 1.
We consider three metrics: Hit Rate, NDCG, and
AUC. At test time, given a user and item pair from
the held-out data, we return a truncated ranked list

788

of items with size 10. Then the Hit Rate at the top
10 (HR@10) represents the ratio of ground truth
items existing in the ranked list, while the NDCG
measures the position of the hits (He et al., 2017,
2016). The AUC (Area Under the ROC curve) is
evaluated as:

AUC =
v |U|Z|s

where ¢ is an indicator (1 iff its argument is true),
and the set of pairs of v is defined as:

S(u) = {(i,5)li € Ty (u)
/\.] ¢ tram()Uz-q;llzd()UItest()}

As shown in Table 3, CF-GCN improves over
BPR and GMF on the three metrics. Note that
we only use a modest number of latent factors (8)
and word2vec embedding dimensions (64). More-
over, we can see that CF-GCN achieves greater
improvements in sparse settings, confirming the
ability of review text to overcome the sparsity of
implicit feedback datasets.

4.3.1 User Cold-Start

Real recommender systems often suffer from cold-
start issues due to data sparsity. It is a critical
task for the system to capture user preferences
toward items given limited data. To explore the
performance of CF-GCN, we further analyze the
improvement on cold (or ‘cool’) users. Figure 2
shows the improvement (in Hit Rate and NDCG)
for users with fewer than 5 reviews on BeerAdvo-
cate. The largest improvement ratio happens for
users with only a single review during training.

Z 5 yuz > yuy)

4.4 Review Generation Analysis (RQ2)

4.4.1 Perplexity
Perplexity is commonly used to measure the qual-
ity of generated text. It is defined as

1 1 T [S)
_L N 7 e logp(et|e<t,©yuyyi
ppx=¢ N L) T 2e=1 (ct| “ l)a

Beer Advocate Beer Advocate

o
&

p @-subset o 9
© 0.08 @ wholeset B 4
T o 0.1
€ 0.06 =
3 2
2 0.04 S 0.058
-3 E ~ - -
E o02 o S - s
«c o 0 ~ <’
T o 2 @=subset
- wholeset
0.02 -0.05
1 2 3 4 5 1 2 3 4 5
Number of Reviews on Training Set Number of Reviews on Training Set
(a) Hit Rate (b) NDCG

Figure 2: Improvement Ratio on Cold-Start Users

Table 4: Comparison of Perplexity on test set
(lower is better).

Dataset Character CF-GCN CF-GCN
LSTM (subset) (wholeset)
BeerAdvocate 2.370 2.318 2.329
Electronics 3.033 2.998 2.959
Yelp 2.916 2.817 2.809

where (u, 1) are pairs from the test set of reviews
Tiest, IN is the number of reviews on the test set,
and T is the number of characters in each review.
We compare the test-set perplexity of CF-GCN
to that of a standard character-LSTM. As shown in
Table 4, CF-GCN achieves lower perplexity than
an unsupervised character-LSTM, suggesting that
the model is successfully able to leverage informa-
tion encoded in the user and item representations.

4.4.2 Generated Examples

Figure 3 gives a representative example of a gen-
erated review, for a (user,item) pair that is not
present in the training set. In other words, only
the user and item IDs are provided to the model,
from which it must synthesize a plausible review.

Qualitatively, CF-GCN appears to capture the
user’s writing style, the item’s attributes, and the
user’s sentiment, and more importantly maintains
the overall flow and structure of the review in spite
of its length and complexity. For example, the syn-
thetic review captures idiosyncrasies of the real re-
view, including the user’s tendency to use abbre-
viations to denote different sensory aspects (‘A:’
for Appearance, ‘S:’ for Smell, etc.) CF-GCN
also provides descriptions of the item’s color, taste
and category (“Pours a very dark brown,” “a slight
sweetness,” “bitter,” “ale””) which approximately
match those of the real review. Moreover, the
synthetic review shares the same overall sentiment
with the real review (3 stars, ‘not bad’).

Figure 4 presents synthetic review examples
conditioned on users who have not written any re-
views in the training set. We include the ground-

789

truth rating, which is a score between 1.0 and 5.0.
The model appears to successfully generates plau-
sible reviews that express sentiment matching the
ground-truth rating.

Note here that we only use two LSTM layers
with 256 hidden units. Performance could be fur-
ther improved by increasing the number of hidden
units and stacking more layers, at the cost of ad-
ditional computational resources. For the current
setting, it takes around 80 minutes to run 1 epoch
for the BeerAdvocate dataset. Typically CF-GCN
needs 5 to 10 epochs to converge.

4.5 Personalized review ranking (RQ3)

Besides synthesizing reviews, a more realistic ap-
plication of our model is to recommend (or rank)
existing reviews, by surfacing the review that is
most consistent with a user’s preferences or writ-
ing style. As with our previous experiments, this
can be done even for users who have never written
areview before: that is, based on their past behav-
ior we can surface the types of reviews written by
users who behave similarly.

Since CF-GCN captures both the sentiment and
writing style of users, it can also be used in a dis-
criminative way to identify which existing review
of an item a particular user is most likely to have
written. Given a target item and a list of users,
the personalized review ranking problem can be
quantitatively evaluated in terms of our ability to
rank the ‘true’ review (i.e., the one the user actu-
ally wrote) higher than others. This target captures
whether the model can recommend the most rele-
vant existing review to a potential user.

For a review written by user u on item 7, we
first calculate the perplexity when the generative
model is given the latent factors of w and 7. We
then estimate the AUC by randomly sampling re-
views (of the same item) by other users " and cal-
culating their perplexity when the model is again
given the latent factors of v and 7. We can then
evaluate the model in terms of its ability to as-
sociate a lower perplexity to the review u actu-
ally wrote. The model generates reasonable re-
sults given only a modest number of reviews, and
can identify authors with almost perfect accuracy
once sufficiently many reviews are provided dur-
ing training.

Figure 5 shows AUC results for the personal-
ized review ranking task. As the number of re-
views available during training increases, the AUC

Real review

Synthetic review

12 oz. bottle, excited to see a new Victory product around, A:
Pours a dark brown, much darker than I thought it would be, rich
creamy head, with light lace. S: Dark cedar/pine nose with some

dark bread/pumpernickel. T: This ale certainly has

bordering on Barleywine. Molasses, sweet maple with a clear
bitter melon/white grapefruit hop flavour. Not a lot of complexity
in the hops here for me. Booze is noticable. M: Full-bodied,
creamy, resinous, nicely done. D: A good beer, it isn’t exactly
what I was expecting. In the end above average, though I found

it monotonous at times, hence the 3. A sipper for sure.

A: Pours a very dark brown with a nice finger of tan
head that produces a small bubble and leaves decent
lacing on the glass. S: Smells like a nut brown ale.
It has a slight sweetness and a bit of a woody note
and a little cocoa. The nose is with some
chocolate and coffee. The taste is strong but not over-
whelmingly sweet. The sweetness is overpowering,
but not overwhelming and is a pretty strong bitter fin-
ish. M: Medium bodied with a slightly thin feel. D:
A good tasting beer. Not bad.

Figure 3: Real and synthetic reviews conditioned on the latent factor of user Halcyondays and item
Yakima Glory. Colors added for emphasis. The model successfully captures the high-level structure of
the review, as well as the fine-grained characteristics of their opinion.

Synthetic review: user BeerShirts, item Black Albert, sentiment 5.0

A - Pours a brownish-copper color with a thick tan head. S - Strong and smoky aroma, fruity and sweet. The alcohol
is not very prominent on the nose. Smells like a stout and enjoyable. It’s almost like a hefeweizen and the smell
is dominated by a slight burnt sugar character and a slight chocolate smell to it. The taste is sweet and malty. The
mouthfeel is very light and watery. Overall a very nice beer that I’d have again.

Synthetic review: user Morbo, item Avalon Spiced Ale, sentiment /.5

I don’t like this beer. I was not a big fan of this beer. The aroma was pretty accessible and the taste was a bit sweet and
fruity. There was a hint of sweetness that was overwhelmed by the rice and malt also a bit of the hops in the finish. The
mouthfeel was medium bodied with a medium carbonation. This was a good beer to drink but I would not be able to

get more of this.

Figure 4: Synthetic reviews for users who have written no reviews in the training set. The model suc-
cessfully predicts user preferences and generates plausible reviews.

Beer Advocate

Amazon Electronics

“® GCN-subset
=8 GCN-wholeset
Character RNN

=@ CF-GCN-subset
=8 CF-GCN-wholeset
Character-RNN

0 0
1-10 10-20 20-50 50-100100-200 200+ 1-10

Number of Reviews on Training Set

10-20

(a) BeerAdvocate

20-50
Number of Reviews on Training Set

(b) Electronics

Yel
- 1 P
7’
- 0.8, -
© 06
=]
Toa
@ CF-GCN-subset
0.2 -8 CF-GCN-wholeset
o Character-RNN
50-100 100+ 1-10 10-20 20-50 50-100 100+
Number of Reviews on Training Set
(c) Yelp

Figure 5: Comparisons of AUC for personalized review ranking for users with different number of

reviews on the training set.

also increases, indicating that the method is better
able to capture the characteristics of the user and
item given more observations.

5 Conclusions

In this paper, we proposed to combine collabo-
rative filtering with generative concatenative net-
works to jointly perform the tasks of item recom-
mendation and review generation. We formulated
the item recommendation task using matrix factor-
ization, in order to capture low-dimensional user
preferences and item properties, which we com-
bined with a character-level LSTM model, so that

790

the latent factors are simultaneously responsible
for explaining both language and preferences. We
adopted a simple input replication strategy to al-
low the LSTM model to ‘remember’ the input on
which it is conditioned, so that it is able to gener-
ate long reviews that capture high-level structure
as well as fine-grained sentiment. In addition to
using the model generatively, we showed that it
can also improve recommendation performance,
both in terms of predicting products that a user is
likely to interact with, as well as personalized re-
view ranking.

References

Yang Bao, Hui Fang, and Jie Zhang. 2014. Topicmf:
Simultaneously exploiting ratings and reviews for
recommendation. In AAAI Conference on Artificial
Intelligence.

Rose Catherine and William W. Cohen. 2017.
Transnets: Learning to transform for recommenda-
tion. CoRR, abs/1704.02298.

Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata,
Ming Zhou, and Ke Xu. 2017. Learning to generate
product reviews from attributes. In Association for
Computational Linguistics.

Sayan Ghosh, Mathieu Chollet, Eugene Laksana,
Louis-Philippe Morency, and Stefan Scherer. 2017.
Affect-lm: A neural language model for cus-
tomizable affective text generation. CoRR,
abs/1704.06851.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. CoRR, abs/1308.0850.

Ruining He and Julian McAuley. 2016. Vbpr: Visual
bayesian personalized ranking from implicit feed-
back. In AAAI Conference on Artificial Intelligence.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie,
Xia Hu, and Tat-Seng Chua. 2017. Neural collabo-
rative filtering. In World Wide Web.

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-
Seng Chua. 2016. Fast matrix factorization for on-
line recommendation with implicit feedback. In SI-
GIR.

Guang-Neng Hu. 2017. Integrating reviews into per-
sonalized ranking for cold start recommendation. In
Pacific-Asia Conference on Knowledge Discovery
and Data Mining.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Controllable
text generation. CoRR, abs/1703.00955.

Rafal J6zefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. CoRR, abs/1602.02410.

Andrej Karpathy and Li Fei-Fei. 2017. Deep visual-
semantic alignments for generating image descrip-
tions. [EEE Trans. Pattern Anal. Mach. Intell.,
39(4):664-676.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and
Wai Lam. 2017. Neural rating regression with ab-
stractive tips generation for recommendation. In SI-
GIR.

791

Guang Ling, Michael R. Lyu, and Irwin King. 2014.
Ratings meet reviews, a combined approach to rec-
ommend. In ACM Conference on Recommender
Systems.

Zachary Chase Lipton, Sharad Vikram, and Julian
McAuley. 2015. Capturing meaning in product re-
views with character-level generative text models.
CoRR, abs/1511.03683.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: understanding rating dimen-
sions with review text. In ACM Conference on Rec-
ommender Systems.

Julian McAuley, Rahul Pandey, and Jure Leskovec.
2015. Inferring networks of substitutable and com-
plementary products. In Knowledge Discovery and
Data Mining.

Alec Radford, Rafal Jézefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. CoRR, abs/1704.01444.

Steffen Rendle. 2010. Factorization machines. In In-
ternational Conference on Data Mining.

Steffen Rendle, Christoph Freudenthaler, Zeno Gant-
ner, and Lars Schmidt-Thieme. 2009. Bpr: Bayesian
personalized ranking from implicit feedback. In Un-
certainty in Artificial Intelligence.

Ilya Sutskever, James Martens, and Geoffrey Hinton.

2011. Generating text with recurrent neural net-
works. In International Conference on Machine
Learning.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In International Conference on Neural In-
formation Processing Systems.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In IEEE Conference on Com-
puter Vision and Pattern Recognition.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015.
Collaborative deep learning for recommender sys-
tems. In Knowledge Discovery and Data Mining.

Chao-Yuan Wu, Amr Ahmed, and Alexander J. Smola
Alex Beutel. 2017. Joint training of ratings and
reviews with recurrent recommender networks. In
ICLR Workshops.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. CoRR, abs/1502.01710.

Lei Zheng, Vahid Noroozi, and Philip S. Yu. 2017.
Joint deep modeling of users and items using re-
views for recommendation. In Web Search and Data
Mining.

