Learning Transferable Representation for Bilingual Relation Extraction
via Convolutional Neural Networks

Bonan Min; Zhuolin Jiang*
Raytheon BBN Technologies
10 Moulton St
Cambridge, MA 02138
{bonan.min,zhuolin.jiang } @raytheon.com

Abstract

Typically, relation extraction models are
trained to extract instances of a relation
ontology using only training data from a
single language. However, the concepts
represented by the relation ontology (e.g.
ResidesIn, EmployeeOf) are language in-
dependent. The numbers of annotated ex-
amples available for a given ontology vary
between languages. For example, there are
far fewer annotated examples in Spanish
and Japanese than English and Chinese.
Furthermore, using only language-specific
training data results in the need to man-
ually annotate equivalently large amounts
of training for each new language a sys-
tem encounters. We propose a deep neu-
ral network to learn transferable, discrim-
inative bilingual representation. Experi-
ments on the ACE 2005 multilingual train-
ing corpus demonstrate that the joint train-
ing process results in significant improve-
ment in relation classification performance
over the monolingual counterparts. The
learnt representation is discriminative and
transferable between languages. When us-
ing 10% (25K English words, or 30K Chi-
nese characters) of the training data, our
approach results in doubling F1 compared
to a monolingual baseline. We achieve
comparable performance to the monolin-
gual system trained with 250K English
words (or 300K Chinese characters) With
50% of training data.

“indicates co-first authors. These two authors made equal
contribution.
"This work was done while the author was at Raytheon
BBN Technologies.

Marjorie Freedman] Ralph Weischedel®

USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292
{mrf,weisched} @isi.edu

1 Introduction

Semantic relation extraction is critical to many
applications including knowledge base popula-
tion and question answering. The problem is
well-studied when relation-specific annotations
are available in a single target language. How-
ever, the same relations can be represented us-
ing a variety of languages. While the evidence
of the relation in context is language specific
(e.g. John spent several years living in Beijing
vs 2IEIFEALI A% T JL4F), the definition of re-
lation itself is often language independent (e.g.
ResidesIn) and the meaning should be preserved
across languages.

We hypothesize that common, shared represen-
tation can be learnt when annotations are avail-
able in multiple languages and propose a bilin-
gual relation extraction algorithm for this purpose.
Our basic building blocks are Convolutional Neu-
ral Networks (CNN) with cross-lingual word em-
beddings (Ammar et al., 2016). This allows the
system to capture lexical similarities across lan-
guages as well as phrase-level semantics. Build-
ing on CNNs with cross-lingual embeddings, the
algorithm is a joint training algorithm which trains
a model from annotated datasets in a pair of lan-
guages. We require that the annotated classes be
consistent across languages, but do not require an-
notations over parallel (or comparable) text. The
base system combines two objectives: an objec-
tive that predicts the correct relation labels in each
dataset in one of the languages, and another ob-
jective to separately learn a shared representation
across languages as well as language-specific rep-
resentations. To further force the learnt represen-
tation to be discriminative among classes regard-
less of language, a discriminative objective for
learning the ideal representation (Section 3.3) is
added onto the shared, bilingual representation.
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The final combined algorithm essentially learns
two types of useful representations: a language-
independent relation-specific representation with
the shared neurons, and a language-dependent
relation-specific representation with the language-

specific neurons.

Our contributions are the following:

e Developing a bilingual transfer learning algo-
rithm for relation extraction that can use inde-
pendent multilingual corpora annotated with
the same set of relations. Analysis shows that
the representation is discriminative.

e Demonstrating that jointly training from two
languages outperforms its monolingual coun-
terparts significantly.

e Showing that knowledge can be transferred
from resource-rich language to resource-poor
languages: On the ACE multilingual training
corpus, we achieve comparable performance
with 50% of the target-language training data
using our approach and are able to double
performance with only 10% (250K words) of
target language data. This provides a very
cost effective way to develop relation extrac-
tors in new languages.

2 Related Work

Relation extraction is typically cast as a multi-
class classification problem in which a super-
vised machine learning model is trained with la-
beled datasets for classifying relations. Tradi-
tional methods (Kambhatla, 2004; Zhou et al.,
2005; Zhao and Grishman, 2005; Jiang and Zhai,
2007) either reply on a set of linguistic or seman-
tic features, or use convolution tree kernels (Mos-
chitti, 2006) with syntactic (Zhang et al., 2006),
sub-sequence (Bunescu and Mooney, 2005b), or
dependency trees (Bunescu and Mooney, 2005a)
as means to represent input sentences. Recently,
deep neural networks start to show promising re-
sults in relation extraction. In particular, Convo-
lutional Neural Networks (Zeng et al., 2014a; dos
Santos et al., 2015; Nguyen and Grishman, 2015),
Reccurrent/Recursive Neural Networks such as
bidirectional LSTMs (Zhang et al., 2015), LSTM
along shortest dependency paths (Xu et al., 2015),
bidirectional tree-structured LSTM-RNNs (Miwa
and Bansal, 2016) are shown to be effective. At-
tention mechanism (Wang et al., 2016) is also ef-
fective in further improving performance. Our
baseline monolingual model is similar to (Nguyen
and Grishman, 2015) and we does not require

parsing or composing multiple models.

There is very little work on multilingual relation
extraction. (Qian et al., 2014) proposed an active
learning approach for bilingual relation extraction
with pseudo parallel corpora. (Kim et al., 2010)
and (Kim et al., 2014) proposed cross-lingual an-
notation projection approach for relation detection
with parallel corpora. In contrast, our work don’t
require parallel corpora nor Machine Translation.
More recently, (Faruqui and Kumar, 2015) ap-
plied cross-lingual projection for open-domain re-
lation extraction in languages other than English.
(Blessing and Schiitze, 2012) and Compositional
Universal Schema (Verga et al., 2016) performs
cross-lingual relation extraction with distant su-
pervision (Mintz et al., 2009; Riedel et al., 2010;
Surdeanu et al., 2012; Hoffmann et al., 2011; Rit-
ter et al., 2013). These works are significantly dif-
ferent from ours in that they either operates in the
open-domain(Faruqui and Kumar, 2015) without
a pre-defined relation schema, or in a distant su-
pervision setting with a KB as source of supervi-
sion. POLY (Nakashole et al., 2012) mines re-
lational paraphrases from multilingual sentences
which can be useful for relation extraction.

Besides relation extraction, (Huang et al,

2013) performs cross-language knowledge trans-
fer with deep neural networks for speech recog-
nition. (Guo et al., 2016) proposed a distributed
representation-based framework for cross-lingual
transfer learning for dependency parsers.

3 Bilingual Relation Extraction

Given a pair of monolingual corpora in two differ-
ent languages and each corpus having been anno-
tated with sentence-level relations ! of pre-defined
types, the goal of bilingual relation extraction is
to learn discriminative representations to identify
the relation between a pair of mentions, regardless
of which language the mention pair comes from
(transferable across languages). We achieve the
goal of learning discriminative representation by
joint supervision of classification (softmax) loss
and ideal representation loss. We achieve the ad-
ditional cross-lingual transferring goal by learning

shared representation across languages.
As shown in Figure 1, our CNN-based bilin-

gual relation extraction model consists of 4 main
parts: (1) an embedding layer to encode words (in
bilingual space), word positions, entity types and

' A sentence with a pair of mentions will be annotated with
a relation, if the relation holds between the pair of mentions.
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Figure 1: Bilingual relation extraction model trained with both softmax classification loss (SL) and ideal
representation loss (IRL). I RL, and I RLj; are language-specific ideal representation losses for language
a and b respectively. IRLj is the shared representation loss across 2 languages. F'C1 4 and F'CY, are
2 sets of language-specific neurons for language a and b, respectively. F'C s is a set of shared neurons.
SL, and SLj are the softmax classification losses for language a and b respectively.

mention levels by real-valued vectors; (2) a convo-
lution and max pooling layer to generate a fixed-
size feature vector for an input sentence; (3) 3 lo-
cally connected (LC) layers for learning language-
specific and shared representations. These layers
are learned to predict discriminative representa-
tion using proposed ideal representation loss (IRL)
during training; (4) 2 LC layers for learning 2 re-
lation classifiers with the softmax loss (SL). The 5
LC layers and the 5 prediction losses (3 IRLs and
2 SLs) are illustrated in Figure 1.

3.1 Embedding Layer

Word embeddings (WE) The inputs are sen-
tences marked with pairs of mentions of interest.
Given an input sentence x of length ¢, we firstly
transform each word into a real-valued vector of
dimension d; by looking up a word embedding
matrix W1 € ROXIVI where V is a fixed-sized
vocabulary. To project similar words in a pair
of languages into close proximity, we use cross-
lingual embedding trained with multiCCA (Am-
mar et al., 2016) to initialize W. W1 will also be
finetuned during training.

MultiCCA only requires two monolingual cor-
pora and a bilingual parallel dictionary. It first
trains monolingual embeddings for each language
independently from each monolingual corpus,
capturing semantic similarity within each lan-
guage. Then given the dictionary, it applies canon-
ical correlation analysis (CCA) to estimate linear
projections from the monolingual embeddings to
bilingual embeddings. This makes translationally
equivalent words in different languages to be em-
bedded nearby each other.
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Position embeddings (PE) The words close to
the argument mentions are more informative to de-
termine the relationship. Similar to (Santos et al.,
2015), for each word, we map its relative distances
to two argument mentions to two real-valued vec-
tors of dimension d by a embedding matrix W?2 ¢
Rd2x|D ‘, where D is the set of relative distances
in a dataset. We obtain two vectors for each word
with respect to the first and the second argument
of the relation mention.

Entity type embeddings (EE) and mention
level embeddings (ME) For each word, we map
its entity type and mention level into real-valued
vectors using embedding matrix W3 e R9*IZl
and W* € R“*IM| respectively. F is the set of
entity types while M is the set of mention levels.

The final embedding dimension for each to-

ken is ny = (di + 2dy + d3 + d4). This layer
will produce an embedding representation x(1) &
R™ ** when fed with an input sentence x(©) = x.
W, W2, W3, W* are parameters to be learnt via
the end-to-end model.

3.2 Convolution and Max Pooling Layer

Relations can be expressed by words or their com-
binations. The model should utilize all local fea-
tures extracted around each word in the sentence
and predict the relation globally. Convolution
operation is a natural approach to achieve this
goal (Zeng et al., 2014b; Santos et al., 2015).
Given a convolution filter ¢ of window size k,
the convolution operation on an input sentence x
will produce a score vector z = (21, ..., 2(1—k+1))>
where z; = g1(W;x; +b;). w; € RE™ are the lin-
ear transform parameters for filter 7, x; denotes the



7-th context window in X, b; is a bias scalar and g;
is a non-linear function such as the rectified linear
unit (ReLU). Then the max operation is applied to
identify the most informative n-gram feature from
this score vector: m; = max(z). We replicate this
process for a set of filters with different window
sizes to capture important n-gram features from an
input sentence. The matrix W) = [w1, ..., W],
where ns is the total number of filters, and vector
b = [by, ..., by,] are parameters to be learnt in
this convolution layer. Finally we obtain a fixed-
sized feature vector x?) = m = [my, ..., m,,| €
R™. The representation x2) is generated by tak-
ing max pooling over entire sentence with filters of
multiple window sizes. To prevent these neurons
that generate m from co-adapting and force them
to learn individual useful features, a dropout layer
is added after the pooling layer for regularization.

We added a fully connected layer to combine
information captured by these filters: x(®) =
g (WOx@ b)) c R, W) and b®) are pa-
rameters learnt in this layer, and gs is a non-linear
function.

3.3 Learning Transferable, Discriminative
Bilingual Representation

Given two sets of training examples X and X°
in two languages a and b, we aim at learning
transferable, discriminative bilingual representa-
tions. We achieve this by weight sharing at a high-
level layer. We further improve the discriminative
power of learnt representations using ideal repre-
sentation loss. The bilingual representation learn-
ing model is shown in Figure 1.

Shared and Language-specific Neurons We
aim at not only learning representation shared by
both languages, but also learning representation
specific to each language. We partition the neu-
rons in the F'C1 layer into three disjoint sets: two
language-specific sets (F'C, and F'C; ) and a
shared bilingual set F'C'y , to represent shared fea-
tures across languages. We expect that F'C , and
FC'  can model language-specific features, while
the common set F'C'; 4 can model the share fea-
tures.

Discriminative Representation Learning As
described in (Zeiler and Fergus, 2014; Krizhevsky
et al., 2012), the neurons from high-level layers
of a CNN tend to extract more abstract and class-
specific features. If each neuron in a high-level
layer of our CNN activates only when a specific
relation is presented, this will lead to a discrimi-

native representation for relations. Such represen-
tation, when learnt across language, would be ex-
tremely useful for transferring useful information

across languages for relation extraction.

To achieve this, we partition the neurons in each
high-level layer into subsets, and encourage each
subset to only represent sentences of one of the
relation types. This results in an explicit corre-
spondence between blocks of neurons and relation
types. Specifically, we partition the neurons in
each sub-layer (i.e., LC,, LCy and LCY) into dis-
joint subsets and associate each subset with one
specific relation label. For sentences of different
relation types, we represent them using disjoint
subsets of neurons. To do so, we integrate the
ideal representation loss introduced in (Jiang et al.,
2011) into our objective function during training.
Let (x;; y;) denote training example x;. The ideal
representation loss can be defined as:

Ly = |lai — i (1

where ¢; = W(ld)xglrl) + blla) is the pre-
dicted representation for example x; from lo-
cally connected layer l; = {LC,, LCy, LC}.

XZ(-ld_l) is the representation of example x; from
FCi4, FCip or FCps. W) and bld) are
linear transform parameters and bias parameters
learnt from these locally connected layers. We
define q; as the ideal representation correspond-
ing to training sample x; from locally connect
layer ;. The non-zero values of q; occur at the
indices where the training example x; and neu-
rons from layer [; shared the same relation la-
bel. For example, suppose we have six train-
ing samples {x1,...,X¢} and their relation labels
y = [y1,..-,y6] = [1,1,2,2,3,3]. Further as-
sume layer [, has six neurons {p,...,ps} with
{p1,p2} associated with label 1, {ps3,p4} label 2,
and {pg, p7} label 3. Then the ideal representa-
tions for these six samples are given by:

1100 00
1100 00
001 10O
[q17"‘7q6]_ 0 0 1 1 0 0 9 (2)
000011
(0000 11,

where each column is an ideal discriminative rep-
resentation corresponding to a training sample.
Minimizing the ideal representation loss term en-
sure that the input sentence from the same type
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have similar representations while those from dif-
ferent types have dissimilar representations.

Relation Classification We trained a pair of
softmax classifiers for relation classification for
language a and b. The softmax classification loss
L, «+ = {a, b} can be defined as:

evi

L} = —log(=—) (3)

s . €%
;€

where o; is the j-th element of the predicted re-
lation scoring vector from LC4 or LC5 layer in
Figure 1. Let s denote these two locally con-
nected layers, i.e., [ = {LCy, LCy}. We have
o = W)x"D 4 HE) where W) and b(+)
are learnt parameters from layer [;. xglrl) is the
representation of example x; by concatenating the
activations from F'Cy , and F'Cy 4, or F'Cy and
FCy .

We combine the ideal representation loss and
softmax classification loss to obtain the final loss
function for a training sample (x;; y;):

L(xi,y) = { L¢+ XN(L%+ L?) ifx;inlang. a
v LY+ N(LY + Lg) ifx; inlang. b

4)

where L% and L% are the softmax loss for sam-
ples in language a and b, respectively. They are
computed via equation 3. The terms L%, L) are
the ideal representation losses for language a and
b respectively, while L? is shared by both lan-
guages. The term L}, x = {a,b, s} can be com-
puted by equation 1. We minimized equation 4

using stochastic gradient descent.

4 Experiments

Parameter setting In the embedding layer, we
used the pretrained 100-dimension bilingual word
embeddings in (Ammar et al., 2016) to initialize
W1, We set the dimension of the other three em-
bedding matrices W2, W3 and W* to 50 and ini-
tialize them randomly. In the convolution layer,
we set the filter widths to [2, 3,4, 5], and use 150
filters per width. The number of neurons in the
FC1 layer (F'C1,q U FCy s U FCpp)is 300. We
use tanh for g1, go. All parameters are tuned with
the ACE development set (described in next sub-
section). In bilingual experiments, we assigned 56
neurons 2 for each of FCi 4 and FCyy to learn

2We choose 56 to leave sufficient number of neurons for
sharing across languages. We try 56, 63, 70 and no significant
difference was observed.
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language-specific features and the remaining neu-
rons for language-shared features. A is fixed to
be 0.5. Training is done via stochastic gradient
descent with Adam (Kingma and Ba, 2014) opti-
mizer with a learning rate of 0.001.

Benchmarking baseline monolingual models
As we are not aware of prior work on bilingual re-
lation extraction in similar settings, we first bench-
mark our baseline monolingual model on two pop-
ular monolingual datasets. We also use the ACE
development dataset (described below) for tuning
the parameters mentioned previously. The base-
line monolingual model is similar to (Nguyen and
Grishman, 2015) and only takes a English dataset
as input. It is simplified from the model in Figure
1 by replacing the F'C and LC'layers with a fully-
connected layer followed by a softmax loss. We
evaluate it on two English datasets: the SemEval-
2010 Task 8 dataset (Hendrickx et al., 2010) and
the ACE 2005 dataset. The SemEval dataset con-
tains 10,717 annotated examples (8,000 for train-
ing and 2,717 for testing). For ACE, to be com-
parable to state-of-the-art Neural Network mod-
els, we use the split in (Gormley et al., 2015;
Nguyen and Grishman, 2015): find the ACE ar-
ticles from news domains: broadcast conversa-
tion (bc), broadcast news (bn), newswire (nw), and
uses news (bn & nw) as the training set, half of bc
as the development set, the other half of bc as the
test set. Table 1 and Table 2 3 show that the per-
formance of our monolingual baseline and various
other systems. The monolingual model # achieves
higher performance than state-the-art CNN meth-
ods with similar structure and no additional se-
mantic features.

For the rest of the experiments, we focus on
bilingual experiments. We evaluated our model
on the ACE 2005 multilingual training corpus >
which contains 596 English and 633 Chinese doc-
uments ® . The ACE corpus consist of articles from
weblogs, broadcast news, newsgroups, broadcast
conversation, and is annotated exhaustively with

3The results reported in (Nguyen and Grishman, 2016)
used a rich feature set (e.g., dependency parses). For fair
comparison, we reported their results by running their code
without those features.

“For fair comparison, we use the pre-trained word2vec
word embeddings (Mikolov et al., 2013) with 300 dimensions
for the monolingual experiments. For all other experiments,
we use cross-lingual embeddings (Ammar et al., 2016).

>https://catalog.1dc.upenn.edu/LDC2006T06

The English and Chinese documents are not translation
of each other.



Classifier F1

SVM (Rink and Harabagiu, 2010) | 77.6 (82.2)
CNN (Zeng et al., 2014a) 78.9 (82.7)

CNN (Nguyen and Grishman, 2015) 82.8
RNN (Socher et al., 2012) 74.8 (77.6)
MVRNN (Socher et al., 2012) 79.1 (82.4)
FCM (Yu et al., 2014) 80.6 (83.0)

Our English baseline 83.23

Table 1: Performance on SemEval-2010 Task
8 dataset (Hendrickx et al., 2010). The num-
bers inside parentheses are the systems using fea-
tures such as WordNet (all systems), dependency
parses (Yu et al., 2014) and Google n-grams (Rink
and Harabagiu, 2010). Our approach does not use
these features but still achieves the best result.

Classifier P R F1
CNN (Nguyen and Grishman, 2016) | 63.3 | 58.2 | 60.6
Our English baseline 62.1 | 60.1 | 61.1

Table 2: Performance on English ACE 2005 with
the data split setting in (Gormley et al., 2015).

relations. For documents in English or Chinese,
we collected all annotated relation mentions, and
generated relation mentions for the Other class
by sampling pairs of entity mentions within a
sentence but is not annotated as having a rela-
tion. We refer to the resulted English dataset as
ACEO05.ENG, and refer to the Chinese ACE dataset
as ACEO5.CHN in the rest of this section. We di-
vided relation mentions into 5 folds, performed
cross-validation and averaged the results. As is
standard (e.g. (Grishman et al., 2005)), we use the
mention boundaries and types provided by the an-
notated data as input.

4.1 Comparing Bilingual Models to
Alternative Approaches

To verify the effectiveness of our bilingual model,
we compare four approaches:

e Baseline: We train two monolingual mod-
els on ACE05.ENG and ACEO05.CHN respec-
tively. These two models used bilingual word
embedding and only used the softmax classi-
fication loss during training.

¢ Bilingual-FT: To see if having access to ad-
ditional training data from another language
helps, we pre-train each monolingual model
with the other language(source)’s training
dataset and then finetune it using the target
language’s training dataset ’

"For example, we pre-train the Chinese model with
ACEO05.ENG, fine-tune with ACEO05.CHN, then test with
Chinese.
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¢ Bilingual-Joint We train a bilingual model
on the Chinese and English datasets jointly
with the softmax loss. The model is similar to
the bilingual model in Figure 1, but without
the ideal representation losses 8.
¢ Bilingual-Joint-IRL We train the bilingual
model on ACE05.ENG and ACEO05.CHN
jointly using the softmax and ideal represen-
tation loss (the complete model in Figure 1).
The results are summarized in Table 3. The
pre-training approach (bilingual-FT), which pre-
trains a model on the additional language’s dataset
and then finetune on the target language dataset,
achieves better results than training the monolin-
gual baseline. The bilingual-Joint approach can
simultaneously learn language-specific and shared
bilingual representations, therefore it is able to
generalize across languages while still making use
of language-specific information. Its performance
exceeds that of baseline and bilingual-FT. The
bilingual-Joint-IRL method achieves the best re-
sult: it encourages the learnt representation to be
discriminative among relation types. In particular,
the learnt cross-lingual representation is encour-
aged to differentiate relation types regardless of
language. It captures both language-specific and
cross-lingual relation semantics, and thus has the
best of both worlds.

4.2 Transfer representations to
lower-resource languages

For just a handful of languages, (e.g. English,
Chinese) corpora of relation annotation are read-
ily available. However, for most languages few
(if any) such resources exist. We show that our
approach yields large gains in F1 when a small
amount of target training is combined with large
amounts of existing source annotation.

We demonstrate our model’s ability to use large
amounts of source language data to supplement
limited in-domain target language data with either
Chinese and English as rarget. In each setting, we
down-sample the farget language dataset to 10%,
20%, 30%, 40% and 50% of its full training size
and we report F1 in the test dataset in the tar-
get language. Figure 2 compares performance of
bilingual-Joint-IRL with the performance of base-
line. With access to existing, additional resources
in the source through the bilingual model, perfor-
mance on target doubles its F1 scores when only

8This performs bilingual representation learning by only
sharing a subset of neurons in F'C'1



Approach ACEO05.ENG ACEQ05.CHN
Precision | Recall | F1 | Precision | Recall | Fl1
baseline 72.5 68.3 | 704 75.6 75 75.3
bilingual-FT 70.8 72.1 | 714 78.4 756 | 77.0
bilingual-Joint 72.6 733 | 72.9 71.7 76.4 | 77.1
bilingual-Joint-IRL 74.3 756 | 749 80.9 77.1 | 78.9

Table 3: Performances of the bilingual models on the ACE 2005 multilingual training corpus.
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Figure 2: Performance of Chinese and English re-
lation extraction by varying the size of in-domain
training data. For the model with access to another
language (source), we use the full dataset from the
source but only a fraction of in-domain data in
the farget language. We sample each dataset from
10% to 50% with 10% as the incremental step size.
x-axis is the percentage of training data in farget is
used, and y-axis shows F1 scores.

10% training data is available, and gains 30% to
66% relative improvement in F1 with 20% train-
ing data. The bilingual extractor trained with only
50% of the target training data achieves perfor-
mance nearing (< 5% difference) that of the base-
line approach using all of the farget resources.
This results provides a new and cost-effective way
to perform relation extraction when resources are
limited for a new language.

4.3 Analysis on learnt representation

Learning discriminative representations We use
LC, and LC; to represent a sentence from lan-
guage a, and use LC}, and LC to represent a sen-
tence from language b. We visualize the predicted
representations for testing examples in both En-
glish and Chinese in Figure 3. X-axis shows the
244 neurons ° from locally connect layers LC,-
LC, and LCy-LC. Y-axis shows all testing ex-
amples (each row represents an example). Each

°The number of neurons in layers LC,, and LC} are both
56, while layer LC's contains 188 neurons.
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(b) ACE05.CHN set

Figure 3: Visualization of predicted presentation
for test examples in both languages. X-axis indi-
cates the 244 neurons from layers LC,-LC's (or
LCy-LCy). Y-axis corresponds to the indices of
test examples. The color shows strength of pair-
wise association between examples and neurons
(the brighter the color, the stronger association).
Each color in the color bar located at the right most
of each subfigure represents one relation type for
a subset of testing examples.

graph shows strong associations between testing
examples from 7 types and 7 blocks of neurons
in the hidden layer in 1) language-specific repre-
sentations (the first 56 neurons as shows in x-axis
[0, 55] in Figure 3 (a) and (b)) as well as 2) bilin-
gual representation (the remaining 188 neurons as
shown in x-axis [56,243] in each figure). The vi-
sualization is strongly block-diagonal. This shows
that the learnt representation is discriminative in



Relation English Chinese

ORG-AFF .. while japanese officials ... NETIE S PR A ERR B0
PHYS ...which is ... outside the center of baghdad... | ..Hj HZE] M # A% FH...
PART-WHOLE ...this is that city hall in orlando... W5 E I YEA T ST
PER-SOC ...you go to your grandma ’s house BAFK BN T B
GEN-AFF joseph britt of kennesaw , ga , recently... HE R EEILZRE

ART i "ve decided i 'l take the train home later AT ML £ B

Table 4: Examples of relation mentions that are found to be similar to its cross-lingual counterparts
using our model. The two examples in each row is similar to each other.

predicting relation types.

Confusion matrix on bilingual relation ex-
traction To further understand the discrimina-
tive power of the bilingual model with regard
to predicting relation types, we plot the confu-
sion matrix using the bilingual model over all
examples in the ACE datasets. Figure 4 shows
that our model performs well on differentiating
the classes. It also shows that our algorithm
performs slightly worse in differentiating PHYS,
PART-WHOLE and GEN-AFF relations, in both
English and Chinese. This is caused by the trump-
ing rules in ACE relation definition. ACE anno-
tation guideline defines a relation Org-Location-
Origin (a subtype of GEN-AFF) for locations of
ORG’s, and defines another relation Geographi-
cal (a subtype of PART-WHOLE) for locations of
facilities/locations/GPEs, and further defines a re-
lation Located (as a subtype of PHY) to capture
the physical location of a person. These relations
share the same high-level semantics but are de-
fined as different ACE types.

Examples of similar relation instances across
languages We took the last-layer activations as a
“relation embeddings” representation for each re-
lation instance. To see how well the cross-lingual
representation learning did, we calculated pair-
wise similarities '° between all relation instances
in Chinese and English. Table 4 shows examples
in which each pair of instances in the same row in
the two languages are very similar ! to each other.

The model learns lexical similarity such as
japanese officials and FNYE SIH (Singapore
prime minister). It also knows city hall in orlando
is similar to Y57 & WAL T (Aceh capital
of Banda Aceh). It further learns complicated cor-
respondence such as you go to your grandma ’s

house and % &K K W) LLNET UK (The

%We use cosine distance as the similarity metric. The
smaller cosine distance is, the more similar the pair.

""Here we define very similar as ranked within top-50 most
similar instances in the entire dataset, with regard to the query
instance from the other language.
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ART .05
ORG-AFF .02
GEN-AFF .04
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PART-WHOLE

.01 .07
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(a) ACE05.ENG set

OTHER .01 .01
ART .05 .11
ORG-AFF .01 .01
GEN-AFF .09 .05

PER-SOC | .26

PART-WHOLE | .08 .01 .02 .05

PHYS | .08 .05 .04 .07

0%:/9) %6, Oé‘,,, &7 &

(b) ACEO5.CHN set

Figure 4: Confusion matrices of bilingual-Joint-
IRL on the ACE datasets.

parent previously thought the child was lying) The
diverse range of examples in Table 4 shows that
the model not only captures lexical similarity, but
also syntactic and long-range semantic similarities
across the pair of languages.

5 Conclusion

We present a bilingual relation extraction algo-
rithm to learn discriminative and transferable rep-
resentation across languages via a Convolutional
Neural Network. Experiments show that it out-
performs monolingual algorithms and the baseline
algorithms significantly both when large amounts



of data are available in both languages and when
only limited training data is available in the target
language.
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