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Abstract

We propose the first lightly-supervised ap-
proach to scoring an argument’s persua-
siveness. Key to our approach is the novel
hypothesis that lightly-supervised persua-
siveness scoring is possible by explicitly
modeling the major errors that negatively
impact persuasiveness. In an evaluation on
a new annotated corpus of online debate
arguments, our approach rivals its fully-
supervised counterparts in performance by
four scoring metrics when using only 10%
of the available training instances.

1 Introduction

Argumentation mining is a relatively new and ac-
tive area of research in the natural language pro-
cessing (NLP) community, focusing on extract-
ing argument components (e.g., claims, premises)
and determining the relationships (e.g., support,
attack) between them. Recently, researchers have
begun work on modeling an intriguing linguistic
phenomenon, the persuasiveness of arguments.

In this paper, we examine argument persuasive-
ness in the context of an under-investigated task in
argument mining, argument persuasiveness scor-
ing. Given a text consisting of an argument writ-
ten for a particular topic, the goal of argument
persuasiveness scoring is to assign a score to the
text that indicates how persuasive the argument is.
An argument persuasiveness scoring system can
be used in a variety of situations. In an online de-
bate, for instance, an author’s primary goal is to
convince others of the argument expressed in her
comment(s). Similarly, in persuasive essay writ-
ing, an author should establish convincing argu-
ments. In both situations, a persuasiveness scor-
ing system could provide useful feedback to these
authors on how persuasive their arguments are.

Being a discourse-level task, argument persua-
siveness scoring is potentially more challenging
than many NLP tasks. Oftentimes, argument per-
suasiveness can only be determined by under-
standing the discourse, not by the presence or ab-
sence of lexical cues. As an example, consider the
debate argument shown in Table 1, which is com-
posed of the author’s assertion and her justifica-
tion of the assertion written in response to a debate
motion. It is fairly easy for a human to determine
that this argument should be assigned a low per-
suasiveness score because the argument could be
more clear. However, the same is not true for a ma-
chine, primarily because it is not possible to deter-
mine the persuasiveness of this argument merely
by considering the words or phrases appearing in
it.

Given the difficulty of the task, it is conceiv-
able that unsupervised argument persuasiveness
scoring is very challenging. Nevertheless, a so-
lution to unsupervised argument persuasiveness
scoring is of practical significance. This is be-
cause of the high cost associated with manually
creating persuasiveness-annotated data needed to
train classifiers in a supervised manner. This con-
trasts with tasks such as polarity classification and
stance classification. In these tasks, large amounts
of annotated data can be harvested from the Web,
as it is typical for a user to explicitly indicate her
polarity/stance while writing her comments in a
discussion/debate forum.

We propose a lightly-supervised approach to ar-
gument persuasiveness scoring. To our knowl-
edge, this is the first lightly-supervised approach
to the task: virtually all previous work involving
argument persuasiveness has adopted supervised
approaches, training models with a large number
of surface features that encode lexico-syntactic in-
formation. Note that learning from a large number
of lexico-syntactic features is difficult, if not im-
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Motion This House would ban teachers from interacting with students via social networking websites.
Assertion Acting as a warning signal for children at risk.
Justification It is very difficult for a child to realize that he is being groomed; they are unlikely to know the risk. After

all, a teacher is regarded as a trusted adult. But, if the child is aware that private electronic contact between
teachers and students is prohibited by law, the child will immediately know the teacher is doing something
he is not supposed to if he initiates private electronic contact. This will therefore act as an effective warning
sign to the child and might prompt the child to tell a parent or another adult about what is going on.

Table 1: The motion, assertion, and justification text of a debate argument.

possible, when annotated data is scarce. Hence,
we explore a different idea, addressing lightly-
supervised argument persuasiveness scoring via an
error-modeling approach. Specifically, guided by
theoretical work on persuasiveness, we begin by
defining a set of errors that could negatively im-
pact an argument’s persuasiveness. The key step,
then, is to model an argument’s errors: given an
argument, we predict the presence and severity of
the errors it possesses in an unsupervised manner
by bootstrapping from a set of heuristically labeled
seeds. Finally, we learn a persuasiveness predic-
tor for each error-labeled argument from a small
amount of persuasiveness-annotated data.

Our contributions are two-fold. First, we pro-
pose the first lightly-supervised approach to per-
suasiveness scoring that rivals its supervised coun-
terparts in performance on a new dataset consist-
ing of 1,208 online debate arguments. Second,
we make our annotated dataset publicly available.1

Given the difficulty of obtaining annotated data for
this task, we believe that our dataset will be a valu-
able resource to the NLP community.

2 Related Work

There have been several recent attempts to address
tasks related to argument persuasiveness. Haber-
nal and Gurevych (2016a,b) rank a pair of argu-
ments w.r.t. persuasiveness, but ranking alone can-
not tell us how persuasive an argument is. Pers-
ing and Ng (2015) score a student essay based on
whether it makes a (un)convincing argument for
its thesis. Using the conversations in the Change-
MyView subreddit, Tan et al. (2016) study fac-
tors affecting whether a challenger can success-
fully persuade a commenter to change the view she
expressed in her original post.

While Wei et al. (2016) also predict the persua-
siveness of debate posts, their work differs from
ours in several aspects. First, many of their de-

1See http://www.hlt.utdallas.edu/
˜persingq/Debate/ for a complete list of our an-
notations.

bate posts are written in response to a preceding
comment in the conversation. Hence, it is not un-
common to see emotional rather than logical argu-
ments or even insults and personal attacks. In ad-
dition, it may not always be possible to understand
what the argument is and why the author made
a particular argument without understanding the
(preceding) context. In contrast, the debate com-
ments in our corpus are written in response to a
given debate topic. In other words, each comment
is written independently of the other comments
and therefore can be understood without them.

In a broader sense, our error-modeling approach
is related to work on holistically scoring an essay
via detecting and totaling up specific errors in it.
For details, we refer the reader to Shermis et al.
(2010) and Leacock et al. (2014).

3 Corpus and Annotation

We use as our corpus a randomly selected sub-
set of 165 debates obtained from the International
Debate Education Association (IDEA) website2.
These debates cover a wide range of topics in-
cluding politics, economics, religion, and science.
Each debate consists of a Motion, which expresses
a stance on the debate’s topic, and an average
of 7.3 arguments, each of which either agrees or
disagrees with the motion’s stance. Each of the
1,208 arguments consists of an Assertion, which
expresses in one sentence why the author agrees
or disagrees with the motion, and a Justification,
which explains in an average of 6.9 sentences why
the author believes her assertion.

We ask two native speakers of English to anno-
tate each of the 1,208 arguments with a persuasive-
ness score after familiarizing them with the (topic-
and domain-independent) scoring rubric (see Ta-
ble 2). Specifically, we ask our annotators to score
each argument’s persuasiveness on a scale of 1−6.
The example argument in Table 1 gets a persua-
siveness score of 2 because it could be expressed
more clearly.

2http://idebate.org/
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Score Description of Argument Persuasiveness
6 A very persuasive, clear argument. It would persuade most previously uncommitted readers and is devoid of

problems that might detract from its persuasiveness or make it difficult to understand.
5 A persuasive, or only pretty clear argument. It would persuade most previously uncommitted readers, but may

contain some minor problems that detract from its persuasiveness or understandability.
4 A decent, or only fairly clear argument. It could persuade some previously uncommitted readers, but problems

detract from its persuasiveness or understandability.
3 A poor, or only mostly understandable argument. It might persuade readers who are already inclined to agree

with it, but contains severe problems that detract from its persuasiveness or understandability.
2 A very unpersuasive or very unclear argument. It is unclear what the author is trying to argue or the argument

is just so riddled with problems as to be completely unpersuasive.
1 The author does not make an argument or it is unclear what the argument is. It could not persuade any

readers because there is nothing to be persuaded of.

Table 2: Descriptions of argument persuasiveness scores.

1 2 3 4 5 6
AP 3 12 20 21 20 24

Table 3: Distribution of error/argument persua-
siveness scores as percentages.

Table 3 shows the distribution of scores for
argument persuasiveness. To measure inter-
annotator agreement, we select a subset of 69 ar-
guments and ask both annotators to score them
w.r.t. argument persuasiveness. The average dif-
ference between the annotator-assigned scores is
0.899. For the sake of our experiments, when
annotators disagree on a score, we average their
annotations together, rounding up to the nearest
whole number to obtain the gold score.

4 Error Types

Key to our approach to persuasiveness scoring is
the unsupervised modeling of the errors that could
negatively impact persuasiveness. In this section,
we define five such error classes, which are moti-
vated by theoretical work on persuasiveness.3

Grammar Error (GE) Connor and Lauer
(1985) note that grammar and/or mechanical er-
rors can interrupt the flow of discourse in persua-
sive essays, so we give arguments a GE score of 1
if they contain GEs severe enough to make the ar-
gument hard to understand, and 0 otherwise. The
argument in Table 1 gets a GE score of 0 because
it contains no severe GEs.

Lack of Objectivity (LO) Oktavia et al. (2014)
consider the use of personal opinions as evidence
in argumentative writing a fallacy, so we give ar-
guments a LO score of 1 if they display an in-

3We also annotated the 1,208 arguments in our corpus
with these five errors even though they were not used in the
experiments in this paper. See Persing and Ng (2017) for de-
tails on the error annotations.

appropriate lack of objectivity, and 0 otherwise.4

The argument in Table 1 receives a LO score of
1 because the author weaves a scenario in which
she repeatedly speculates on what a child thinks
or will do.

Inadequate Support (IS) Petty and Cacioppo
(1984) find that arguments with more support are
more persuasive, so we give arguments an IS score
of 0 if they offer adequate support to justify their
assertion, 1 if they do not offer enough support, or
2 if they offer almost no support. The example ar-
gument gets an IS score of 2 because the author’s
scenario is completely unsupported.

Unclear Assertion (UA) In Connor’s (1990) cri-
teria for judging assertions in persuasive writing,
the lowest score is assigned to essays which did
not clearly assert the problem they address. So we
give an argument an UA score of 1 if it is not clear
how the assertion is related to the motion without
reading the justification, or 2 if the assertion is in-
comprehensible without reading the justification.
It receives a score of 0 otherwise. The example ar-
gument gets a UA score of 1 because it is not clear
how the assertion is related to the motion.

Unclear Justification (UJ) Because a smooth
flow of ideas throughout an argument is important
to its persuasiveness, Connor (1990) also evalu-
ates persuasive essays’ coherence. Since it is not
clear what an incoherent argument is arguing for,
we give an argument an UJ score of 2 if the jus-
tification appears unrelated to the assertion, 1 if it
does not concisely justify the assertion, or 0 if the
justification is clear. The example argument gets

4Note, however, that other forums may try to craft emo-
tional debates on purpose for their effectiveness. For in-
stance, Lukin et al. (2017) show that emotional arguments can
indeed be very persuasive and that they resonate with differ-
ent audiences due to audience/reader preset biases and their
own personality traits.
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an UJ score of 0 as it is easy to understand the au-
thor’s point in the justification.

5 Approach

In this section, we present our approach to per-
suasiveness scoring. Broadly, it first predicts the
presence and severity of the aforementioned errors
(Section 5.1), then uses these predictions to assign
persuasiveness scores (Section 5.2).

5.1 Prediction of Error Types

Our process for predicting error types consists of
two steps. First, for each error type, we heuristi-
cally apply error severity values to a set of training
arguments that can be confidently error-labeled
(Section 5.1.1). Using these error-labeled argu-
ments as seeds, we then apply the expectation
maximization (EM) algorithm (Dempster et al.,
1977) to predict the error severity values of the re-
maining training arguments (Section 5.1.2).

5.1.1 Heuristics
In this subsection, we describe our heuristics.
Grammar Error (GE) To detect GEs, we use
the LanguageTool proofreading program5 to de-
tect all GEs (e.g., redundant phrases and typos)
in all training set justifications. We then calculate
the frequency with which GEs occur per sentence
in each justification, clustering these values using
k-means clustering6. Finally, we label the train-
ing set arguments in the highest cluster with a GEs
value of 1, and training set arguments in the low-
est cluster with a GEs value of 0. This makes intu-
itive sense because GEs can hinder persuasiveness
if they occur very frequently, and cannot hinder
persuasiveness if they never occur.
Lack of Objectivity (LO) We count how fre-
quently the word “morally” appears in justifica-
tions per token. We employ k-means clustering
on these frequencies to help us identify which jus-
tifications use it most. The justifications falling in
the highest cluster’s arguments are heuristically la-
beled with a LO severity of 1. We do the same with
the word “certain”. Finally, if an author uses less
than five definite articles in her justification, we
heuristically label her argument with a severity of
1. These rules make sense because arguments that
are too concerned with the author’s morality or in
which the author seems too certain, or in which

5https://languagetool.org/
6Unless otherwise noted, k = 4 in k-means clustering.

the author is rarely specific are likely to display a
LO.7

To find arguments not displaying a LO (severity
= 0), we count and k-means cluster the frequency
of first person plural pronouns in the justifications.
Arguments whose justifications are in the lowest
cluster are labeled with a LO severity of 0. This
makes sense because justifications that lack objec-
tivity often rely on stories about the writer’s per-
sonal experiences. We use plural pronouns to cap-
ture this rather than singular ones because thesis
statements (which are not inherently subjective)
often begin with “I believe” or “I think”.8

Inadequate Support (IS) To assign IS severi-
ties, we first need to know how many sources an
argument cites.9 An argument that cites no refer-
ences is assigned an IS severity of 2. If the argu-
ment cites only one reference, it gets a score of
1. Finally, we cluster arguments by the number of
sources they cite. Arguments in the highest cluster
are assigned an IS severity of 0. These rules make
sense because arguments that cite a lot of sources
are probably adequately supported.

Unclear Assertion (UA) UAs typically consist
of very short sentence fragments (e.g. “Europe”).
For this reason, we heuristically assign an argu-
ment an unclear assertion severity of 2 if they are
less than four words long.

To identify arguments with an UA severity of 1,
we first identify all content lemmas (nouns, pro-
nouns, verbs, adjectives, adverbs) in the assertion.
If none of these lemmas are mentioned in the jus-
tification, the argument gets a severity of 1. Since
this heuristic necessarily conflicts with the previ-
ous one, when applying UA heuristics, rules with
greater severity take precedence.

Finally, we k-means cluster the counts of asser-
tion content lemmas appearing in the justification
and assertion lengths.10 If an argument is not in
the lowest cluster in either of these, it gets labeled

7We note that these lexical features are potentially spe-
cific to this particular domain. There have been a number
of works examining objectivity and subjectivity that go be-
yond lexical features and use syntactic structures (Riloff and
Wiebe, 2003; Wilson et al., 2005) and emotional and factual
arguments (Oraby et al., 2015).

8Since more than one heuristic might apply to a given ar-
gument, we leave an argument unlabeled if the heuristics tell
us to apply inconsistent labels to it. This is also how we han-
dle contradictory heuristics for the remaining errors.

9We develop heuristics for extracting references from the
justification. See the Appendix for these heuristics.

10We use k = 6 for assertion length clustering because
assertions vary greatly in length.
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1 # of grammar errors per sentence in justification
(GE)

2 # of times the word “morally” appears in justification
(LO)

3 # of times the word “certain” appears in justification
(LO)

4 # of definite articles in justification (LO)
5 # of first person plural pronouns in justification (LO)
6 # of references cited in justification (IS)
7 # of words in assertion (UA)
8 # of content lemmas in assertion that also appear in

justification (UA)
9 # of sentences in justification (UJ)

10 # of times words that lemmatically match the as-
sertion’s subject appear in the first argument of a
contingency-cause discourse relation in justification
(UJ)

Table 4: Features used by the generative model.
The error type for which each feature is originally
developed is shown in parentheses.

with an UA severity of 0.
Unclear Justification (UJ) As with UAs, UJs
are often very short. For this reason, we k-means
cluster the sentence counts in our training set justi-
fications, and label arguments whose justifications
fall into the lowest cluster with an UJ severity of 2.
As in the previous error, this rule takes precedence
over other rules.

To identify arguments with UJ severities of 1
or 0, we first dependency and discourse parse
our assertions and justifications using Stanford
CoreNLP (Manning et al., 2014) and Lin et
al.’s (2014) PDTB-style discourse parser, respec-
tively. Using the dependency parse, we identify
the assertion’s main subject, which we assume is
the first word that is a child in an nsubj or nsub-
jpass relationship. Next, we count the number
of times words that lemmatically match the sub-
ject appear in the first argument of a contingency-
cause discourse relation in the justification. Fi-
nally, we k-means cluster these counts, assigning
arguments with justifications in the highest cluster
an UJ severity of 0, and those in the lowest cluster
a severity of 1. These rules make sense because
a justification that discusses its assertion’s topic’s
effects frequently is likely to be very topically co-
herent, thus having a clear justification.

5.1.2 Bootstrapping using EM
Recall that for each error type t, our heuristics only
label a subset of the training arguments with er-
ror severity values for t.11 To label the remain-

11The heuristics for GE, LO, IS, UA, and UJ can label
39%, 66.%, 86%, 50%, and 87% of the training arguments,

ing training arguments, we apply EM to bootstrap
from the heuristically labeled seeds for t.

Specifically, we initialize the model parameters
using only the seeds for t. After that, we iterate the
E-step and the M-step until convergence. In the E-
step, we probabilistically (re)label each unlabeled
training argument with its error severity value for
t using the current model parameter values. Then,
in the M-step, we re-estimate the model param-
eters using both the seeds and the training argu-
ments probabilistically (re)labeled in the E-step.

To understand what the model parameters are,
we need to specify the generative model. In our
experiments, we employ Naive Bayes as the un-
derlying generative model, effectively assuming
that each feature value is conditionally indepen-
dent of other feature values given the class value
(which in this case is the severity value for t).

To fully specify the model parameters, we need
to specify the features used to represent each argu-
ment. Specifically, we employ the 10 features used
in the heuristics described in the previous subsec-
tion. For the sake of clarity, we list them again
in Table 4. Note that all of them have numerical
values. Hence, to reduce data sparseness, we k-
means cluster the values, and use the 10 k-valued
features in the EM-based bootstrapping process.

Regardless of which error type we train the
model for, the same set of 10 k-valued features
will be used. In other words, the generative mod-
els for the five error classes differ only w.r.t. the set
of seeds used to initialize the model parameters.
After learning, we employ the model learned for
each error type to error-label the test arguments.

5.2 Persuasiveness Prediction
Like many other unsupervised and weakly-
supervised models, we make a modeling assump-
tion in our approach in order to facilitate learning
in an environment where annotated data is scarce.
Specifically, we assume that the persuasiveness
score of an argument inversely correlates with the
sum of its severity scores over all errors.12 This
assumption intuitively makes sense: as the num-
ber and severity of the errors increase, the corre-
sponding argument becomes less persuasive.

Given this assumption, we train a lightly super-
vised persuasiveness predictor as follows. First,
we cluster the training arguments by the sum of

respectively.
12For instance, if an argument has an IS severity of 2 and a

LO severity of 1, the sum of its severity scores will be 3.
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severity scores over all errors.13 Then, we ran-
domly select n arguments from each cluster c
(where 1 ≤ n ≤ 12 in most of our experiments),
and manually label them with their persuasiveness
scores. Finally, we assign to each c a persuasive-
ness score that is the average of the persuasiveness
scores of the n manually labeled arguments in c.

During testing, we compute the sum of severity
scores over all errors for each test argument, as-
sign it to the corresponding cluster, and predict its
persuasiveness score as the score of the cluster it
is assigned to. Since our system assigns the Av-
erage persuasiveness of training arguments having
the same Error Severity count, we call it ASE.

6 Evaluation

In this section, we evaluate our approach to per-
suasiveness prediction. Since there is an element
of randomness in our algorithm and the baselines
(in which arguments get labeled), we report results
using 5 repetitions of 5-fold cross validation.

6.1 Scoring Metrics

We employ four evaluation metrics for persuasive-
ness scoring, namely E, ME, MSE, and PC.

The simplest metric, E, measures the frequency
at which a system predicts the wrong score. ME
and MSE measure the mean error and mean
squared error of our persuasiveness predictions,
respectively. The formulas below illustrate how
we calculate E, ME, and MSE, respectively:

1
N

∑
Aj 6=E′

j

1,
1
N

N∑
j=1

|Aj − Ej |, 1
N

N∑
j=1

(Aj − Ej)2

where Aj , Ej , and E′
j are the annotator assigned,

system predicted, and rounded system predicted
persuasiveness scores14 respectively for argument
j, and N is the number of arguments.

The last metric, PC, computes Pearson’s cor-
relation coefficient between a system’s predicted

13While the highest possible error severity count is 8, there
is no argument in our corpus for which we predict that count.
Hence, we only end up with 8 clusters, one for each error
severity count (0−7).

14Since a regressor assigns each argument a real value
rather than an actual valid score, it would be difficult to obtain
a reasonable E score without rounding the system estimated
score to one of the possible values. For that reason, we round
the estimated score to the nearest valid persuasiveness score
(1−6 at one-point increments) when calculating E. For other
scoring metrics, we round the predictions to 1.0 or 6.0 if they
fall outside the 1.0−6.0 range.

scores and the annotator-assigned scores. A posi-
tive (negative) PC implies that the two sets of pre-
dictions are positively (negatively) correlated.

Note that E, ME, and MSE are error metrics,
so lower scores on them imply better performance.
In contrast, PC is a correlation metric, so higher
correlation implies better performance.

6.2 Baseline Systems

We employ six baseline systems. All baselines
are support vector regressors (Drucker et al., 1997)
trained using LibSVM (Chang and Lin, 2001) with
default parameters, differing only in terms of the
features used by the learner.
Bag of words (BOW) In the first baseline, we
use as features the bag of words extracted from
the argument’s assertion and justification.
Word n-grams (WNG) The second baseline
uses word n-grams (n=1,2,3) extracted from the
argument’s assertion and justification as features.
Bag of part-of-speech tags (BOPOS) Our third
baseline employs as features the bag of POS tags
in the argument’s assertion and justification.
Style Our fourth baseline captures aspects of an
argument’s style. Specifically, it employs four
types of features that are motivated by Tan et
al.’s (2016) Style baseline, namely:

Length-based features: As longer arguments
can be more detailed, we encode as a feature the
length in tokens and sentences of an argument’s
assertion and justification.

Word category-based features: For each of the
following categories of words/tokens, we employ
as features the absolute count and frequency per
token in an argument’s justification: (1) definite
and indefinite articles and first and second per-
son pronouns, both of which we learned in Sec-
tion 5.1 can be useful for detecting lack of objec-
tivity; (2) question marks and quotations, which
indicate how an argument is structured; (3) posi-
tive and negative sentiment words as determined
by Mohammad and Yang (2011) since excessive
emotion can also signal a lack of objectivity; (4)
URLs, since these may be another way of citing
evidence; (5) hedge words15, which can be used to
express argument uncertainty; and (6) phrases that
indicate the author is giving an example (“e.g.”,
“for instance”, “for example”).

15The hedge words are taken from http:
//english-language-skills.com/item/
177writing-skills-hedge-words.html.
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Word complexity features: These features cap-
ture the justification’s complexity of word choice,
namely the justification’s word entropy, type-
token ratio, and grade level (Kincaid et al., 1975).

Word score-based features: Warriner et al.
(2013) and Brysbaert et al. (2014) associate each
word in a lexicon with four real-valued num-
bers describing how abstract, intensely emotional,
pleasant, and vulnerability-evoking the word is.
We extract as features the average value of the
words in an argument for each of these qualities.

Duplicated Tan et al. (Tan) As our fifth base-
line, we employ our re-implementation of Tan et
al.’s (2016) system. Their feature set comprises
all the features described in the Style, BOW, and
BOPOS baselines, as well as a set of word score-
based features exactly like those described above,
except that they involve first quartering the justifi-
cation, then calculating the word scores on each
quarter of the text. These are useful because,
for example, successful arguments begin by using
calmer words.

Persing and Ng (P&N) The sixth baseline is the
system we previously designed and implemented
for scoring argument persuasiveness in student es-
says (Persing and Ng, 2015). This system em-
ploys five types of features: (1) POS unigrams,
bigrams and trigrams, which capture the syntac-
tic generalizations of an argument’s justification;
(2) frame-semantic features, which capture the se-
mantic generalizations of the justification; (3) fea-
tures computed based on the frequency of occur-
rence of transitional phrases in the justification,
which encode its degree of coherence; (4) topic
relevance features, which capture the relevance of
the justification to its motion based on the num-
ber of overlapping entities; and (5) argument la-
bel features, which are n-grams of sentence-based
argument labels (e.g., CLAIM, SUPPORT) derived
from the justification.

6.3 Results and Discussion

Five-fold cross-validation results of the six base-
lines when trained on 100% of the training data
(966 arguments) are shown in the first six rows of
Table 5. While BOW and WNG serve as strong
baselines for many NLP tasks, the same is not
true for persuasiveness scoring: they are among
the worst baselines. This is perhaps not surpris-
ing given the discussion in the introduction: since
persuasiveness scoring is a discourse-level task, in

System E ME MSE PC

BOW 0.786 1.218 2.087 0.073
WNG 0.786 1.218 2.088 0.063
BOPOS 0.786 1.217 2.084 0.089
Style 0.748 1.102 1.776 0.408
Tan 0.744 1.109 1.799 0.398
P&N 0.785 1.198 2.045 0.252
ASE 0.744 1.097 1.753 0.422

Table 5: Five-fold cross-validation results for per-
suasiveness scoring. Each baseline is trained on
100% of the training data (966 arguments), while
ASE is trained on 96 arguments (10% of the avail-
able training data).

many cases an argument’s persuasiveness cannot
be determined solely from its words and phrases.
The best baselines are Style and Tan, a system that
builds upon Style. These systems offer consider-
ably better performance than BOW, WNG, BO-
POS, and P&N w.r.t. all four scoring metrics.

Results of our system, ASE, are shown in the
last row of Table 5. These results are obtained
when n is set to 12. Recall that n is a parameter of
ASE that specifies the number of persuasiveness-
labeled training arguments used to compute each
cluster’s persuasiveness score. Since we have
eight clusters, these results are obtained when
ASE is trained on 96 persuasiveness-labeled argu-
ments (10% of the training data). Although ASE
is lightly-supervised, it outperforms all the base-
line systems by all four metrics. The improve-
ments it yields are highly significant w.r.t. three of
the four scoring metrics.16 These results provide
suggestive evidence for the efficacy of our error-
modeling approach to persuasiveness scoring.

6.4 Additional Experiments

To gain additional insights into ASE, we perform
additional experiments.

Lightly-supervised baselines. To be fair in our
comparison with the baselines, we retrain them
on 10% of the arguments randomly sampled from
the training data and compare their performances
against ASE. Results are shown in Table 6. In
comparison to the results in Table 5, almost all
baselines suffer from performance deterioration,
particularly w.r.t. ME, MSE, and PC. ASE
continues to significantly outperform all baselines

16Unless otherwise stated, boldfaced results are highly sig-
nificant compared to the best baseline (p < .01, paired t-test).
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System E ME MSE PC

BOW 0.788 1.245 2.216 0.011
WNG 0.789 1.245 2.217 0.013
BOPOS 0.789 1.245 2.213 0.044
Style 0.755 1.239 2.343 0.261
Tan 0.755 1.238 2.340 0.267
P&N 0.791 1.291 2.432 0.147
ASE 0.744 1.097 1.753 0.422

Table 6: Results for persuasiveness scoring when
all systems are trained on 10% of the training in-
stances.

F # E ME MSE PC

1 0.749 1.112 1.795 0.415
2 0.751 1.112 1.803 0.405†
3 0.745 1.096 1.764 0.415
4 0.752 1.104 1.759 0.416
5 0.752† 1.114 1.802† 0.401†
6 0.748 1.109 1.798 0.407
7 0.744 1.11 1.811 0.413
8 0.753 1.105† 1.772 0.412
9 0.753 1.113 1.817† 0.400†
10 0.755 1.118 1.811 0.398

Table 7: Results for persuasiveness scoring when
one feature is removed from ASE’s generative
model. F # indicates which feature is being re-
ferred to (as indexed in Table 4).

w.r.t. these three scoring metrics.
Feature ablation. In order to determine each
feature’s contribution to ASE’s generative model,
we perform ablation experiments wherein we re-
train the model using all but one of the features.
Table 7 shows how ASE performs after each fea-
ture is removed.17

From these results, we gather that no feature
makes a negative contribution to the model, as no
feature’s removal significantly improves perfor-
mance on any metric. Occurrences of “morally”,
first person plural pronouns, the number of con-
tent lemmas appearing in both the assertion and
the justification, and justification length (features
2, 5, 8 and 9) make significant contributions to per-
formance according to at least one metric.
Error ablation. Recall that ASE predicts per-
suasiveness based on a summation of the predicted
severity scores over all errors. To determine the

17Unless otherwise stated, results that are significantly
worse than that of the original model (p < .01, paired t-test)
are marked with a dagger.

Error E ME MSE PC

GE 0.745 1.082 1.71 0.443
LO 0.746 1.098 1.758 0.416
IS 0.766 1.171† 1.954† 0.317†

UA 0.743 1.106† 1.789† 0.409†
UJ 0.763† 1.132† 1.862† 0.367†

Table 8: Results for persuasiveness scoring when
ASE predicts persuasiveness based on a summa-
tion of severity scores over all but one error. The
error shown in each row is the ablated error.

n E ME MSE PC

1 0.771 1.430 3.393 0.240
2 0.750 1.304 2.688 0.299
3 0.758 1.221 2.302 0.320
4 0.746 1.177 2.113 0.348
5 0.747 1.153 1.980 0.361
6 0.749 1.151 1.969 0.374
7 0.752 1.143 1.918 0.379
8 0.747 1.119 1.842 0.386
9 0.754 1.104 1.790 0.407
10 0.754 1.112 1.808 0.413

Table 9: Learning curve results.

importance of each error’s contribution, we per-
form five ablation experiments wherein we ex-
clude each one of the errors from this summation.

Table 8 shows that the IS, UA, and UJ errors
make the most important contributions to persua-
siveness scoring since removing them from con-
sideration significantly harms performance com-
pared to ASE. Removing GE and LO, by contrast,
harms performance the least since these are likely
the two least frequent errors and therefore have
less impact on performance.
Learning curve. Table 9 shows how our ASE
system performs when n increases from 1 to 10.
As we can see, the scores for all metrics with the
exception of E follow the expected trajectory of a
learning curve, with worse scores for n = 1 pro-
gressively becoming better as n approaches 10.
Fully-supervised results. Can ASE perform
better given more training data? Table 10 shows
the results of ASE when it is trained on 10%
(ASE(10)) and 100% (ASE(100)) of the training
data. As we can see, the answer is yes: ASE(100)
significantly outperforms ASE(10) w.r.t. all but the
E metric. While it is not surprising to see dimin-
ishing returns, what is perhaps surprising is the
relative small performance gap between ASE(10)
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System E ME MSE PC

ASE(10) 0.744 1.097 1.753 0.422
ASE(100) 0.745 1.078 1.678 0.441

Table 10: Results for persuasiveness scoring
when ASE is trained on 10% (row 1) and 100%
(row 2) of the training data.

Train data E ME MSE PC

10% 0.739 1.110 1.901 0.408
100% 0.731 1.053 1.724 0.454

Table 11: Results for persuasiveness scoring
when ASE predicts persuasiveness by means of
a support vector regressor that is trained on 10%
(row 1) and 100% (row 2) of the training data us-
ing only the error severity values as features.

and ASE(100): it suggests that ASE learns very
fast from a small amount of labeled data.
Training a persuasiveness predictor with errors
as features. Recall that ASE predicts persua-
siveness based on the sum of severity scores. Can
we instead predict persuasiveness by training a re-
gressor using only the errors as features? To an-
swer this question, we train a support vector re-
gressor using the 13 binary features that corre-
spond to the 13 severity values of the five errors.
The value of a feature is 1 if and only if the argu-
ment is assigned the corresponding severity value.

Results of the regressor are shown in Table 11.
When the regressor is trained on 10% of the train-
ing data, its results are worse than the ASE(10)
results in Table 10 w.r.t. all but the E metric. How-
ever, when it is trained on 100% of the train-
ing data, its results are slightly better than the
ASE(100) results in Table 10 w.r.t. all but the
MSE metric. We speculate that being discrim-
inatively trained, the support vector regressor can
yield better results than the simplistic modeling as-
sumption made by ASE only when training data
is plentiful. Additional experiments are needed to
determine the reason, however.
Correlation. Recall that ASE assumes that the
persuasiveness score of an argument correlates
with the sum of its severity scores over all errors.
To better understand the extent to which this as-
sumption is true, we cluster all 1,208 arguments
by the sum of severity scores. For each of the eight
resulting clusters, we average the gold persuasive-
ness scores of the arguments in the cluster.

Results are shown in Table 12. As we can see,

SS Average SD SS Average SD
0 5.138 1.050 4 3.111 1.331
1 4.886 1.190 5 3.245 1.392
2 4.194 1.338 6 2.909 1.446
3 3.763 1.306 7 3.000 0.000

Table 12: Average persuasiveness score and its
standard deviation (SD) against the sum of sever-
ity score (SS).

the data satisfies our assumption: average persua-
siveness decreases as the sum of severity scores
increases. The only exception occurs when SS=7,
presumably due to the small sample size.

6.5 Error Analysis

Next, we conduct a qualitative error analysis.
While there is a definite correlation between er-

ror severity count and persuasiveness, error sever-
ity count is likely not the only factor that impacts
persuasiveness. An examination of some essays
whose persuasiveness scores are far from their
ASE predicted scores shows that factors that are
harder to analyze such as logical soundness and
the presence of claims that seem to contradict the
assertion also play a role in persuasiveness.

In other arguments, persuasiveness prediction
error can be attributed to our system’s mispre-
diction of the presence/absence/severity of an er-
ror. Error annotated data might help address this
problem by allowing us to tune our error severity
heuristics.

Finally, our error severity scales are pretty
coarse-grained. It is reasonable to expect, for ex-
ample, that a real argument could have an unclear
justification error whose severity is halfway be-
tween 2 and 1, but our EM algorithm for predict-
ing error severities does not allow this. The intro-
duction of a regression system into our algorithm
might address this problem.

7 Conclusion

We proposed a lightly-supervised approach to the
under-studied problem of predicting argument per-
suasiveness scores on debate arguments. Exper-
imental results on 1,208 arguments demonstrated
that our approach significantly outperformed six
fully-supervised baselines by three out of four
scoring metrics when using only 10% of the train-
ing data. To stimulate research on this task, we
make our annotated data publicly available.
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Appendix: Reference Extraction and
Internal Citation Cleanup

Given an argument, we employ the following steps
to extract references and clean up internal cita-
tions.

1. We identify digits and locations in the jus-
tification that appear to refer to references.
Particularly, we identify each digit in the text
that satisfies all the following conditions: (a)
it appears next to a punctuation (because the
digits usually occur right before or after a
sentence’s end punctuation); (b) it does not
appear next to another digit (because these
are short arguments, a digit next to another
digit is probably not a citation); (c) if we take
the string consisting of the digit, the punc-
tuation, the character next to the digit other
than the punctuation, and the character on the
other side of the punctuation, this string is not
parsable as a floating point number (if it is
part of a floating point number, it is probably
not a citation); (d) a ‘$’ does not appear be-
fore it; (e) a ‘%’ does not appear after it; (f)

a ‘/’ does not appear before it; and (g) a ‘/’
does not appear after it.

2. We make a list of all digits identified in step
1 that occur at least twice in the text. (A digit
needs to occur twice in order to be a citation
because the first time it occurs in the justi-
fication text and the last time it occurs right
before the reference.)

3. We sort the digits from step 2 in numerical or-
der. We remove 0 from the list if it is present.
If there are any gaps in the list (e.g., if ‘1’, ‘2’,
and ‘4’ appear in the list), we discard any dig-
its after the gap. (People do not use 0 to make
references. And if there are gaps, it usually
means that whatever number appears after the
gap was erroneously identified as a citation
because people do not skip digits when num-
bering their references.)

4. We sequentially scan the list from step 3. If,
at any point in the list, the last location (in
the justification) of the digit we are exam-
ining occurs before the last location (in the
justification) of the previous digit in the list,
we discard the digit and all the digits after
it in the list. (We expect references to begin
with the last occurrences of their correspond-
ing numbers. If one of the digits’ last occur-
rences seems out of order, that means there is
a problem with the list so we cannot rely on
it beyond this point.)

5. We split the text according to the locations
in the justification of the digits that remain in
the list from step 4. The first text segment is
the justification’s text, and all the remaining
segments are individual references.

6. Finally, we do some cleanup of the text.
We remove all the digits identified in step
1 occurring in the justification’s text. (This
should help with parsing because the dig-
its make sentences grammatically incorrect.)
We also remove all occurrences of ‘[’ or ‘]’ in
the text (because some people surround their
citation digits with them). Finally we replace
any urls (starting with “http:”) with “url”.

604


