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Abstract

We explore techniques to maximize the ef-
fectiveness of discourse information in the
task of authorship attribution. We present
a novel method to embed discourse fea-
tures in a Convolutional Neural Network
text classifier, which achieves a state-of-
the-art result by a significant margin. We
empirically investigate several featuriza-
tion methods to understand the conditions
under which discourse features contribute
non-trivial performance gains, and analyze
discourse embeddings.'

1 Introduction

Authorship attribution (AA) is the task of identi-
fying the author of a text, given a set of author-
labeled training texts. This task typically makes
use of stylometric cues at the surface lexical and
syntactic level (Stamatatos et al., 2015), although
Feng and Hirst (2014) and Feng (2015) go be-
yond the sentence level, showing that discourse
information can help. However, they achieve lim-
ited performance gains and lack an in-depth anal-
ysis of discourse featurization techniques. More
recently, convolutional neural networks (CNNs)
have demonstrated considerable success on AA
relying only on character-level n-grams (Ruder
et al., 2016; Shrestha et al., 2017). The strength
of these models is evidenced by findings that tra-
ditional stylometric features such as word n-grams
and POS-tags do not improve, and can sometimes
even hurt performance (Ruder et al., 2016; Sari
et al., 2017). However, none of these CNN models
make use of discourse.
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Our work builds upon these prior studies by
exploring an effective method to (i) featurize the
discourse information, and (ii) integrate discourse
features into the best text classifier (i.e., CNN-
based models), in the expectation of achieving
state-of-the-art results in AA.

Feng and Hirst (2014) (henceforth F&H14)
made the first comprehensive attempt at using
discourse information for AA. They employ an
entity-grid model, an approach introduced by
Barzilay and Lapata (2008) for the task of ordering
sentences. This model tracks how the grammati-
cal relations of salient entities (e.g., subj, obj,
etc.) change between pairs of sentences in a doc-
ument, thus capturing a form of discourse coher-
ence. The grid is summarized into a vector of tran-
sition probabilities. However, because the model
only records the transition between two consec-
utive sentences at a time, the coherence is lo-
cal. Feng (2015) (henceforth F15) further extends
the entity-grid model by replacing grammatical
relations with discourse relations from Rhetori-
cal Structure Theory (Mann and Thompson, 1988,
RST). Their study uses a linear-kernel SVM to
perform pairwise author classifications, where a
non-discourse model captures lexical and syntac-
tic features. They find that adding the entity-
grid with grammatical relations enhances the non-
discourse model by almost 1% in accuracy, and
using RST relations provides an improvement of
3%. The study, however, works with only one
small dataset and their models produce overall un-
remarkable performance (~85%). Ji and Smith
(2017) propose an advanced Recursive Neural
Network (RecNN) architecture to work with RST
in the more general area of text categorization and
present impressive results. However, we suspect
that the massive number of parameters of RecNNs
would likely cause overfitting when working with
smaller datasets, as is often the case in AA tasks.
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(1) [My father]g was a clergyman of the north of England, [who]p was deservedly respected by all
who knew [him]p; and, in his younger days, lived pretty comfortably on the joint income of a small
incumbency and a snug little property of his own.
(2) [My mother]g, who married [him]o against the wishes of her friends, was a squire’s daughter, and

a woman of spirit.

(3) In vain it was represented to [her] x, that if [she]g became [the poor parson’s] x wife, [she]s must
relinquish her carriage and her lady’s-maid, and all the luxuries and elegancies of affluence; which to
[her] x were little less than the necessaries of life.

Table 1: Excerpt of 19*"-century novel where sentences are labeled with the salient entities and their grammatical relations
(subject s, object o, other relation x). A salient entity is a noun phrase coreferred to at least two times in a document.
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Table 2: The probability vector for the excerpt in Table 1 capturing transition probabilities of length 2.

In our paper, we opt for a state-of-the-art
character-bigram CNN classifier (Shrestha et al.,
2017). We choose to use the entity-grid model be-
cause we find it helps avoid overfitting? (adding
typical stylometric features such as word n-grams
and POS tags results in overfitting) and further
captures coreference chains, which we show are
critical to improving performance on this task (see
Section 5). We investigate various ways in which
the discourse information can be featurized and in-
tegrated into the CNN. Specifically,

o Featurization. We attempt to capture a more
global discourse coherence by modeling the
entire sequence of relations in a document for
every salient entity, instead of only the rela-
tions between pairs of sentences.

Feature integration. Using a neural network
architecture allows us to explore embedding
the relations from the entity-grid model,’
rather than only exploiting a vector of rela-
tion probabilities.

We explore these questions using two ap-
proaches to represent salient entities: grammatical
relations, and RST discourse relations. We apply
these models to datasets of varying sizes and gen-
res, and find that adding any discourse information
improves AA consistently on longer documents,

Primarily compared to previous work where discourse
trees are modeled with Recursive Neural Nets (Ji and Smith,
2017).

3Tien Nguyen and Joty (2017) are the first to propose
applying embeddings in modeling local coherence (for the
coherence judgment task). Our methods roughly subsume
theirs, which correspond to our GR CNN2-DE (global) model
(Section 3). This scheme did not come out on top in our AA
tasks.
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but has mixed results on shorter documents. Fur-
ther, embedding the discourse features in a parallel
CNN at the input end yields better performance
than concatenating them to the output layer as a
feature vector (Section 3). The global featuriza-
tion is more effective than the local one. We also
show that SVMs, which can only use discourse
probability vectors, neither produce a competitive
performance (even with fine-tuning), nor general-
ize in using the discourse information effectively.

2 Background

Entity-grid model. Typical lexical features for
AA are relatively superficial and restricted to
within the same sentence. F&H14 hypothesize
that discourse features beyond the sentence level
also help authorship attribution. In particular, they
propose an author has a particular style for rep-
resenting entities across a discourse. Their work
is based on the entity-grid model of Barzilay and
Lapata (2008) (henceforth B&L).

The entity-grid model tracks the grammatical
relation (sub j, ob J, etc.) that salient entities take
on throughout a document as a way to capture lo-
cal coherence . A salient entity is defined as a noun
phrase that co-occurs at least twice in a document.
Extensive literature has shown that subject and ob-
ject relations are a strong signal for salience and
it follows from Centering Theory that you want
to avoid rough shifts in the center (Grosz et al.,
1995; Strube and Hahn, 1999). B&L thus focus
on whether a salient entity is a subject (s), object
(0), other (x), or is not present (-) in a given sen-
tence, as illustrated in Table 1. Every sentence in
a document is encoded with the grammatical re-
lation of all the salient entities, resulting in a grid



similar to Table 3.
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Table 3: The entity grid for the excerpt in Table 1, where
columns are salient entities and rows are sentences. Each cell
contains the grammatical relation of the given entity for the
given sentence (subject s, object 0, another grammatical rela-
tion X, or not present -). If an entity occurs multiple times in
a sentence, only the highest-ranking relation is recorded.

The local coherence of a document is then de-
fined on the basis of local entity transitions. A lo-
cal entity transition is the sequence of grammatical
relations that an entity can assume across n con-
secutive sentences, resulting in {s,0,x,-}" possible
transitions. Following B&L, F&H14 consider se-
quences of length n=2, that is, transitions between
two consecutive sentences, resulting in 42=16 pos-
sible transitions. The probability for each transi-
tion is then calculated as the frequency of the tran-
sition divided by the total number of transitions.
This step results in a single probability vector for
every document, as illustrated in Table 2.

B&L apply this model to a sentence order-
ing task, where the more coherent option, as ev-
idenced by its transition probabilities, was cho-
sen. In authorship attribution, texts are however
assumed to already be coherent. F&H14 instead
hypothesize that an author unconsciously employs
the same methods for describing entities as the dis-
course unfolds, resulting in discernible transition
probability patterns across multiple of their texts.
Indeed, F&H14 find that adding the B&L vectors
increases the accuracy of AA by almost 1% over a
baseline lexico-syntactic model.

RST discourse relations. F15 extends the no-
tion of tracking salient entities to RST. Instead of
using grammatical relations in the grid, RST dis-
course relations are specified. An RST discourse
relation defines the relationship between two or
more elementary discourse units (EDUs), which
are spans of text that typically correspond to syn-
tactic clauses. In a relation, an EDU can function
as a nucleus (e.g., result.N) or as a satellite
(e.g., summary.S). All the relations in a docu-
ment then form a tree as in Figure 1.*

“For reasons of space, only the first sentence of the ex-
cerpt is illustrated.
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[My father was a clergyman of the north of
England,]'? [who was deservedly respected by
all]'? [who knew him:]'C [and, in his younger
days, lived pretty comfortably on a joint of a
small incumbency and a snug little property of his
()wn.]lu

Figure 1: RST tree for the first sentence of the excerpt in
Table 1.

F15 finds that RST relations are more effective
for AA than grammatical relations. In our paper,
we populate the entity-grid in the same way as
F15’s “Shallow RST-style” encoding, but use fine-
grained instead of coarse-grained RST relations,
and do not distinguish between intra-sentential
and multi-sentential RST relations, or salient and
non-salient entities. We explore various featuriza-
tion techniques using the coding scheme.

CNN model. Shrestha et al. (2017) propose a
convolutional neural network formulation for AA
tasks (detailed in Section 3). They report state-
of-the-art performance on a corpus of Twitter data
(Schwartz et al., 2013), and compare their mod-
els with alternative architectures proposed in the
literature: (i) SCH: an SVM that also uses char-
acter n-grams, among other stylometric features
(Schwartz et al., 2013); (ii)) LSTM-2: an LSTM
trained on bigrams (Tai et al., 2015); (iii) CHAR:
a Logistic Regression model that takes character
n-grams (Stamatatos, 2009); (iv) CNN-W: a CNN
trained on word embeddings (Kalchbrenner et al.,
2014). The authors show that the model CNN2?
produces the best performance overall. Ruder
et al. (2016) apply character n-gram CNNs to a
wide range of datasets, providing strong empiri-
cal evidence that the architecture generalizes well.
Further, they find that including word n-grams
in addition to character n-grams reduces perfor-
mance, which is in agreement with Sari et al.
(2017)’s findings.

SShrestha et al. (2017) test two variants of CNN models:
CNN1/CNN2 for unigram/bigram character CNNs respec-
tively.
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Figure 2: The bigram character CNN models

3 Models

Building on Shrestha et al. (2017)’s work, we em-
ploy their character-bigram CNN (CNN2)®, and
propose two extensions which utilize discourse in-
formation: (i) CNN2 enhanced with relation prob-
ability vectors (CNN2-PV), and (ii) CNN2 en-
hanced with discourse embeddings (CNN2-DE).
The CNN2-PV allows us to conduct a compari-
son with F&H14 and F15, which also use relation
probability vectors.

CNN2. CNN2 is the baseline model with no dis-
course features. Illustrated in Figure 2 (center), it
consists of (i) an embedding layer, (ii) a convo-
lution layer, (iii) a max-pooling layer, and (iv) a
softmax layer. We briefly sketch the processing
procedure and refer the reader to (Shrestha et al.,
2017, Section 2) for mathematical details.

The network takes a sequence of character bi-
grams @x (x1,...,x;) as input, and outputs
a multinomial ¢ over class labels as the predic-
tion. The model first looks up the embedding ma-
trix to produce a sequence of embeddings for x
(i.e., the matrix C'), then pushes the embedding
sequence through convolutional filters of three
bigram-window sizes w = 3,4, 5, each yielding
m feature maps. We then apply the max-over-time
pooling (Collobert et al., 2011) to the feature maps
from each filter, and concatenate the resulting vec-
tors to obtain a single vector y, which then goes
through the softmax layer to produce predictions.

CNN2-PV. This model (Figure 2, left+center) fea-

®0Our preliminary experiments found that using character
n-gram orders higher than 2 performed worse, likely due to
the increased number of features and overfitting.
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turizes discourse information into a probability
vector (PV). The discourse features come in two
flavors: (i) grammatical relations (GR), and (ii)
RST discourse relations (RST)’. For both types
of discourse features, an entity grid is first con-
structed to identify salient entities®. Recall each
row in the grid is a sentence, and each column
is a salient entity. The values of each cell in the
grid are then populated differently, depending on
which flavor of discourse feature is used.

For GR features, the entity grid is popu-
lated with the grammatical relation of each en-
tity in each sentence. The entity grid is then
collapsed into a single probability vector as
shown in Table 2. The GR feature vector thus
consists of a sequence of grammatical relation
transitions derived from the entity grid, e.g.,
(sx,xs,ss,...). The vector is a distribu-
tion over all the grammatical role transitions, i.e.,
(p(sx),p(xs),p(ss),...).

For RST features, the entity grid is populated
with the RST relation and nulcearity of the entity,
and additionally the relations and nuclearity
of the main EDUs in the current and previous
sentence (as in Feng (2015)). We do not en-
code the entire RST tree since prior work has
shown better performance with underspecified
trees (Ji and Smith, 2017; Hogenboom et al.,
2015). The RST features are represented as RST
discourse relations with their nuclearity, e.g.,
(definition.N,attribution.S,...).
The probability vector is a distribution

"Using RST Parser from Ji and Eisenstein (2014).
8Using neural coreference resolver, dependency parser in
Stanford Core NLP (Clark and Manning, 2016).



Dataset #authors mean range
words/auth words/auth
NOVEL-9 9 376,242  124K-1M
NOVEL-50 50 709,880  184K-2.1M
IMDB62 62 349,004 9.8K-75K

Table 4: Statistics for datasets.

over all the RST discourse relations, i.e.,
(p(definition.N),p(attribution.S),...

Denoting the discourse feature vector with ",
we construct the pooling vector y for the char-
bigrams, and concatenate y” to y before feeding
the resulting vector to the softmax layer.

CNN2-DE. In this model (Figure 2, center+right),
we embed discourse features in high-dimensional
space (similar to char-bigram embeddings). Let
z = (z1,...,2y) be a sequence of discourse fea-
tures’, we treat it in a similar fashion to the char-
bigram sequence x, i.e. feeding it through a “par-
allel” convolutional net (Figure 2 right). We set
the embedding size to the average number of re-
lations, then either pad or truncate. The operation
results in a pooling vector y’. We concatenate y’
to the pooling vector y (which is constructed from
@) then feed [y;y'] to the softmax layer for the
final prediction.

4 Experiments and Results

We begin by introducing the datasets (Section
4.1), followed by detailing the featurization meth-
ods (Section 4.2), the experiments (Section 4.3),
and finally reporting results (Section 4.4).

4.1 Datasets

The statistics for the three datasets used in the ex-
periments are summarized in Table 4.

novel-9. This dataset was compiled by F&H14:
a collection of 19 novels by 9 nineteenth century
British and American authors in the Project Guten-
berg. To compare to F&H14, we apply the same
resampling method (F&H14, Section 4.2) to cor-
rect the imbalance in authors by oversampling the
texts of less-represented authors.

novel-50. This dataset extends novel-9, compiling
the works of 50 randomly selected authors of the

°The sequence comes in two variants, depending on the
featurization technique, see Section 4.2.

)

588

<

< & 3 &
'@‘&\a & '@"\\a &
M{s1q41-149 M [sjal-1a
@ [0V [s¥™ @ [0V [s¥™
3) [ x¥3 [ s ¥% B)[x¥e s ¥
(a) local (b) global

Figure 3: Two variants for creating sequences of grammatical
relation transitions in an entity grid.

same period. For each author, we randomly select
5 novels for a total 250 novels.

IMDB62. IMDBG62 consists of 62K movie re-
views from 62 users (1,000 each) from the Internet
Movie dataset, compiled by Seroussi et al. (2011).
Unlike the novel datasets, the reviews are consid-
erably shorter, with a mean of 349 words per text.

4.2 Featurization

As described in Section 2, in both the GR and RST
variants, from each input entry we start by obtain-
ing an entity grid.

CNN2-PV. We collect the probabilities of entity
role transitions (in GR) or discourse relations (in
RST) for the entries. Each entry corresponds to a
probability distribution vector.

CNN2-DE. We employ two schemes for creating
discourse feature sequences from an entity grid.
While we always read the grid by column (by a
salient entity), we vary whether we track the entity
across a number of sentences (n rows at a time)
or across the entire document (one entire column
at a time), denoted as local and global readings
respectively.

For the GR discourse features, in the case of lo-
cal reading, we process the entity roles one sen-
tence pair at a time (Figure 3, left). For exam-
ple, in processing the pair (s1, s2), we find the first
non-empty role r; for entity E'1 in s;. If E'1 also
has a non-empty role ro; in the so, we collect the
entity role transition ri172;. We then proceed to
the following entity E2, until we process all the
entities in the grid and move to the next sentence
pair. For the global reading, we instead read the
entity roles by traversing one column of the entire
document at a time (Figure 3, right). The entity
roles in all the sentences are read for one entity:
we collect transitions for all the non-empty roles
(e.g., so, but not s-).

For the RST discourse features, we process non-
empty discourse relations also through either local
or global reading. In the local reading, we read all
the discourse relations in a sentence (a row) then



move on to the next sentence.'? In the global read-
ing, we read in discourse relations for one entity at
a time. This results in sequences of discourse re-
lations for the input entries.

4.3 Experiments

Baseline-dataset experiments. All the baseline-
dataset experiments are evaluated on novel-9. As
a comparison to previous work (F15), we evalu-
ate our models using a pairwise classification task
with GR discourse features. In her model, each
novel is partitioned into 1000-word chunks, and
the model is evaluated with accuracy.!! Surpass-
ing F15’s SVM model by a large margin, we then
further evaluate the more difficult multi-class task,
i.e., all-class prediction simultaneously, with both
GR and RST discourse features and the more ro-
bust F1 evaluation. In this multi-class task, we im-
plement two SVMs to extend F15’s SVM models:
(1) SVM2: a linear-kernel SVM which takes char-
bigrams as input, as our CNNs, and (i) SVM2-
PV: an updated SVM?2 which takes also probabil-
ity vector features.

Further, we are interested in finding a perfor-
mance threshold on the minimally-required input
text length for discourse information to “kick in”.
To this end, we chunk each novel into different
sizes: 200-2000 words, at 200-word intervals, and
evaluate our CNNs in the multi-class condition.

Generalization-dataset experiments. To con-
firm that our models generalize, we pick the best
models from the baseline-dataset experiments and
evaluate on the novel-50 and IMDB62 datasets.
For novel-50, the chunking size applied is 2000-
word as per the baseline-dataset experiment re-
sults, and for IMDBG62, texts are not chunked (i.e.,
we feed the models with the original reviews di-
rectly). For model comparison, we also run the
SVMs (i.e., SVM2 and SVM2-PV) used in the
baseline-dataset experiment. All the experiments
conducted here are multi-class classification with
macro-averaged F1 evaluation.

Model configurations. Following F15, we per-
form 5-fold cross-validation. The embedding sizes
are tuned on novel-9 (multi-class condition): 50
for char-bigrams; 20 for discourse features. The
learning rate is 0.001 using the Adam Optimizer

"We do not check the next sentences as in GR, because
the discourse relations in one cell of the entity grid typically
already capture relations beyond the sentence level.

" Averaged over all the author-author pair experiments.
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MODEL AVG.ACCURACY
Baseline 49.8
SVM (LexSyn) 85.5
SVM (LexSyn-PV) 86.4
CNN2 99.5
CNN2-PV 99.8

Table 5: Accuracy for pairwise author classification on the
novel-9 dataset, using either a dumb baseline, an SVM with
and without discourse to replicate F15, or a bigram-character
CNN (CNN2) with and without discourse.

DisCc.TYPE MODEL F1
N SVM2 84.9
one CNN2 95.9
SVM2-PV 85.7

R CNN2-PV 96.1
CNN2-DE (local) ~ 97.0
CNN2-DE (global) 96.9
SVM2-PV 85.9
CNN2-PV 96.3
RST CNN2-DE (local) 97.4

CNN2-DE (global) 98.5

Table 6: Macro-averaged F1 score for multi-class author clas-
sification on the novel-9 dataset, using either no discourse
(None), grammatical relations (GR), or RST relations (RST).
These experiments additionally include the Discourse Em-
bedding (DE) models for GR and RST.

(Kingma and Ba, 2014). For all models, we apply
dropout regularization of 0.75 (Srivastava et al.,
2014), and run 50 epochs (batch size 32). The
SVMs in the baseline-dataset experiments use de-
fault settings, following F15. For the SVMs in
the generalization-dataset experiments, we tuned
the hyperparameters on novel-9 with a grid search,
and found the optimal setting as: stopping condi-
tion tol is le-5, at a max-iteration of 1,500.

4.4 Results

Baseline-dataset experiments. The results of the
baseline-dataset experiments are reported in Table
5, 6 and Figure 4. In Table 5, Baseline denotes the
dumb baseline model which always predicts the
more-represented author of the pair. Both SVMs
are from F15, and we report her results. SVM
(LexSyn) takes character and word bi/trigrams and
POS tags. SVM (LexSyn-PV) additionally in-
cludes probability vectors, similar to our CNN2-
PV. In this part of the experiment, while the CNNs
clear a large margin over SVMs (all differences
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Figure 4: Macro-averaged F1 score for multi-class author
classification on the novel-9 dataset in varied chunk sizes.

are statistically significant at p<0.005), adding dis-
course in CNN2-PV brings only a small perfor-
mance gain.

Table 6 reports the results from the multi-class
classification task, the more difficult task. Here,
probability vector features (i.e., PV) again fail to
contribute much. The discourse embedding fea-
tures, on the other hand, manage to increase the
F1 score by a noticeable amount, with the maxi-
mal improvement seen in the CNN2-DE (global)
model with RST features (by 2.6 points). In con-
trast, the discourse-enhanced SVM2-PVs increase
F1 by about 1 point, with overall much lower
scores in comparison to the CNNs. In general,
RST features work better than GR features.

The results of the varying-sizes experiments are
plotted in Figure 4. Again, we observe the over-
all pattern that discourse features improve the F1
score, and RST features procure superior perfor-
mance. Crucially, however, we note there is no
performance boost below the chunk size of 1000
for GR features, and below 600 for RST features.
Where discourse features do help, the GR-based
models achieve, on average, 1 extra point on F1,
and the RST-based models around 2.

Generalization-dataset experiments. Table 7
summarizes the results of the generalization-
dataset experiments. All reported statistical tests
are t-test with a significance level of 0.05. First,
we note that CNNs show a clear advantage over
SVMs for all model variants on both datasets (con-
firmed significant for SVM2 vs. CNN2 with no
discourse, SVM2-PV vs. CNN2-DE with GR
and RST). On novel-50, most discourse-enhanced
models significantly improve the performance of
the baseline non-discourse CNN2 to varying de-

590

Disc. TYPE MODEL NOVEL-50 IMDB62
None SVM2 92.9 90.4
CNN2 95.3 91.5
SVM2-PV 93.3 90.4
GR CNN2-PV 95.1 90.5
CNN2-DE (local) 96.9 90.8
CNN2-DE (global) 97.5 90.9
SVM2-PV 93.8 90.9
RST CNN2-PV 95.5 90.7
CNN2-DE (local) 97.7 91.4
CNN2-DE (global) 98.8 92.0

Table 7: Macro-averaged F1 score for multi-class author
classification on the large datasets, using either no discourse
(None), grammatical relations (GR), or RST relations (RST).

grees (significant for CNN2 with no discourse
vs. CNN2-DE with GR and RST). The clear pat-
tern again emerges that RST features work better,
with the best F1 score evidenced in the CNN2-DE
(global) model (3.5 improvement in F1) (signifi-
cant for CNN2-DE with GR vs. CNN2-DE with
RST). On IMDB62, as expected with short text
inputs (mean=349 words/review), the discourse
features in general do not add further contribu-
tion. Even the best model, CNN2-DE, brings
only marginal improvement (not statistically sig-
nificant), confirming our findings from varying the
chunk size on novel-9, where discourse features
did not help at this input size. However, the dif-
ference between the GR and RST variants for the
IMDB CNN models are statistically significant.
For the SVM models on both datasets, we note dis-
course features do not make noticeable improve-
ments. On novel-50, SVM2-PV performs slightly
better than the no-discourse SVM2 (by 0.4 with
GR, 0.9 with RST features). On IMDB62, the
same pattern persists with no gains for GR and 0.5
for RST features.

5 Analysis

General analysis. Overall, we have shown that
discourse information can improve authorship at-
tribution, but only when properly encoded. This
result is critical in demonstrating the particular
value of discourse information, because typical
stylometric features such as word n-grams and
POS tags do not add additional performance im-
provements (Ruder et al., 2016; Sari et al., 2017).

In addition, the type of discourse information
and the way in which it is featurized are crucial to
this performance improvement: RST features pro-
vide overall stronger improvement, and the global



TARGET EMBEDDING

TOP NEIGHBORS

explanation.N
purpose.S,
background.N

interpretation.N,
reason.N
circumstances.S,

antithesis.S,

result.N,
comment .N,

consequence.N

list.N,
summary .N

explanation.S, example.N,
contrast.N,
elaboration.N
result.S,

comparison.N,

Table 8: Nearest neighbors of example embeddings with t-SNE clustering (top 5)

reading scheme for discourse embedding works
better than the local one. The discourse embed-
ding proves to be a superior featurization tech-
nique, as evidenced by the generally higher perfor-
mance of CNN2-DE models over CNN2-PV mod-
els. With an SVM, where the option is not avail-
able, we are only able to use relation probability
vectors to obtain a very modest performance im-
provement.

Further, we found an input-length threshold
for utilizing discourse features is helpful (Section
4.4). Not surprisingly, discourse does not con-
tribute on shorter texts. Many of the feature grids
are empty for these shorter texts— either there are
no coreference chains or they are not correctly re-
solved. Currently we only have empirical results
on short novel chunks and movie reviews, but be-
lieve the finding would generalize to Twitter or
blog posts.

Discourse embeddings. It does not come as a sur-
prise that discourse-embedding-based models per-
form better than their relation-probability-based
peers. The former (i) leverages the weight learn-
ing of the entire computational graph of the CNN
rather than only the softmax layer, as the PV mod-
els do, and (ii) provides a more fine-grained fea-
turization of the discourse information. Rather
than merely taking a probability over grammatical
relation transitions (in GR) or discourse relation
types (in RST), in DE-based models we learn the
dependency between grammatical relation transi-
tions/discourse relations through the w-sized filter
sweeps.

To further study the information encoded in
the discourse embeddings, we performed t—SNE
clustering (van der Maaten and Hinton, 2008) on
them, using the best performing model CNN2-
DE (global). We examined the closest neigh-
bors of each embedding, and observed that
similar discourse relations tend to go together
(e.g., explanation and interpretation;
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consequence and result). Some examples
are given in Table 8. However, it is unclear how
this pattern helps improve classification perfor-
mance. We intend to investigate this question in
future work.

Global vs. Local featurization. As described in
Section 4.2, the global reading processes all the
discourse features for one entity at a time, while
the local approach reads one sentence (or one sen-
tence pair) at a time. In all the relevant exper-
iments, global featurization showed a clear per-
formance advantage (on average 1 point gain in
F1). Recall that the creation of the grids (both GR
and RST) depend on coreference chains of entities
(Section 2), and only the global reading scheme
takes advantage of the coreference pattern whereas
the local reading breaks the chains. To find out
whether coreference pattern is the key to the per-
formance difference, we further ran a probe exper-
iment where we read RST discourse relations in
the order in which EDUs are arranged in the RST
tree (i.e., left-to-right), and evaluated this model
on novel-50 and IMDB62 with the same hyper-
parameter setting. The F1 scores turned out to
be very close to the CNN2-DE (local) model, at
97.5 and 90.9. Based on this finding, we tenta-
tively confirm the importance of the coreference
pattern, and intend to further investigate how ex-
actly it matters for the classification performance.

GR vs. RST. RST features in general give higher
performance gains than GR features (Table 7).
The RST parser produces a tree of discourse rela-
tions for the input text, thus introducing a “global
view.” The GR features, on the other hand, are
more restricted to a “local view” on entities be-
tween consecutive sentences. While a deeper em-
pirical investigation is needed, one can intuitively
imagine that identifying authorship by focusing
on the local transitions between grammatical re-



lations (as in GR) is more difficult than observing
how the entire text is organized (as in RST).!?

Error analysis. We conducted a brief error analy-
sis in an effort to understand why discourse helps.
Comparing performance by author, we found the
least-represented author (Ambrose Bierce) obtains
the biggest improvement from discourse. We
speculate that although the document must be a
certain length for discourse to “’kick in”, these fea-
tures are effective even with few training exam-
ples. On the other hand, inspecting the gradients
of the character bigrams for these cases reveals a
higher incidence of Os, suggesting the bigram fea-
ture is not as robust in the smaller sample space.
We further note that two other authors who gained
large improvements from the discourse features
wrote a variety of genres (e.g., both supernatu-
ral/horror fiction and love stories), which we spec-
ulate manifests itself in different vocabularies that
don’t generalize well in character bigrams, but do
have similar rhetorical styles which the discourse
features can exploit.

6 Conclusion

We have conducted an in-depth investigation of
techniques that (i) featurize discourse information,
and (ii) effectively integrate discourse features into
the state-of-the-art character-bigram CNN classi-
fier for AA. Beyond confirming the overall supe-
riority of RST features over GR features in larger
and more difficult datasets, we present a discourse
embedding technique that is unavailable for previ-
ously proposed discourse-enhanced models. The
new technique enabled us to push the envelope of
the current performance ceiling by a large margin.

Admittedly, in using the RST features with
entity-grids, we lose the valuable RST tree struc-
ture. In future work, we intend to adopt more so-
phisticated methods such as RecNN, as per Ji and
Smith (2017), to retain more information from the
RST trees while reducing the parameter size. Fur-
ther, we aim to understand how discourse embed-
dings contribute to AA tasks, and find alternatives
to coreference chains for shorter texts.

2Note that, however, it is simpler to extract GR features,
as we rely solely on a high-performance dependency parser,
which is widely available, whereas for RST features, we need
gold RST-labeled training data, which incurs higher cost and
potentially relatively limited generalizability.
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