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Abstract

The problem of blend formation in genera-
tive linguistics is interesting in the context
of neologism, their quick adoption in mod-
ern life and the creative generative pro-
cess guiding their formation. Blend qual-
ity depends on multitude of factors with
high degrees of uncertainty. In this work,
we investigate if the modern neural net-
work models can sufficiently capture and
recognize the creative blend composition
process. We propose recurrent neural net-
work sequence-to-sequence models, that
are evaluated on multiple blend datasets
available in the literature. We propose
an ensemble neural and hybrid model that
outperforms most of the baselines and
heuristic models upon evaluation on test
data.

1 Introduction

Blending is the formation and intentional coinage
of new words from existing two or more
words (Gries, 2004). These are called neolo-
gisms. Neologisms effectively trace changing cul-
tures and addition of new technologies. Blend-
ing is one way to create a neologism. A lexi-
cal blend is formed by combining parts of two
or more words. Predicting a high quality lexi-
cal blend is often unpredictable due to the un-
certainty in the formal structure of blends (Beli-
aeva, 2014). Merging source words digital and
camera, the common expectation is the blend
digamera, although, in practice, digicam is
more common (Beliaeva, 2014). There are mul-
tiple unknown factors such as phonology, seman-
tics, familiarity, recognizability and lexical cre-
ativity that contribute to blend formation. Some
downstream applications that can leverage such

Word1 Word2 Blend Structure Category Coverage
aviation electronics avionics avi-onics Prefix + Suffix 16.74%

communicate fake communifake communi-fake Prefix + Word 10.78%

speak typo speako speak-o Word + Letter 0.14%

west indiea windies w-indies Letter + Word 0.89%

point broadcast pointcast point-cast Word + Suffix 22.56%

scientific fiction scientifiction scienti-fic-tion Word + Word overlap 22.56%

affluence influenza affluenza af-fluen-za Prefix + Suffix overlap 13.98%

brad angelina brangelina br-a-ngelina Prefix + Word overlap 11.39%

subvert advertising subvertising sub-vert-ising Word + Suffix overlap 16.31%

Table 1: Sample blends in our dataset along with the type
and coverage. There are other types of rare blends that is
beyond the scope of this work.

blending systems include generating names of
products, brands, businesses and advertisements to
name a few especially if coupled with contextual
information about the business or sector.

1.1 Related Work

Blends are compositional words consisting of
whole word and a splinter (part of morpheme) or
two splinters (Lehrer, 2007). The creative neoglo-
gism of blend formation has been studied by lin-
guists in an attempt to recognize patterns in the
process that model human lexical creativity or to
identify source words and blend meaning, context
and influence. With the popularity of deep neu-
ral networks (DNN)s (LeCun et al., 2015), we are
interested in the question if neural network mod-
els of learning can be leveraged in a generative
capacity, that can sufficiently explore or formal-
ize the process of blend formation. Blends can
be formed in several closely related morphologi-
cally productive ways as shown in Table 1. Our
work targets blends that are ordered combinations
of prefixes of first word and suffixes of the sec-
ond word. Examples include, avionics (prefix
+ suffix), vaporware (word + suffix), robocop
(prefix + word), carmageddon (overlap). Sev-
eral theories have been forwarded as to the struc-
ture and mechanism of blending (Gries, 2012),
without much consensus (Shaw et al., 2014). Most
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Figure 1: Architectural diagram of the bidirectional hybrid encoder decoder model.

implementation work in blenders and generators is
quite sparse in the literature and mainly concern
explicit blending of vector embeddings.

Naive implementations of generators exist on
the internet 123, that are simply lists of all possi-
ble blend combinations. Some other work is based
on greedy heuristics for better results 45. Andrew
et. Al (2014) built a statistical word blender as a
part of a password generator. Ozbal (2012) uses a
combination of edit distances and phonetic met-
rics and Pilichowski (2013) also uses a similar
technique. Our work empirically captures some
of these mechanisms from blend datasets used in
the literature using neural networks. Numerous
studies on deterministic rules for blend forma-
tion (Kelly, 1998; Gries, 2004, 2006, 2012; Bauer,
2012) do not find consensus on the blending pro-
cess mainly due to the ’human factor’ involved in

1http://www.dcode.fr/
word-contraction-generator

2http://werdmerge.com/
3http://www.portmanteaur.com/
4https://www.namerobot.com/namerobot/

name-generators/name-factory/merger.html
5http://www.namemesh.com/

company-name-generator

designing rules.
The closest work of using novel multitape Fi-

nite State Transducers (FST) for blend creation is
in work by Deri et. al. (2015). Our model is a neu-
ral model, different from the multitape FST model.
The multitape FST model is similar to our base-
line heuristic model with which we compare our
neural model proposed in this paper. The primary
benefit of our model is that it attempts to arrive at
a consensus among various neural experts in the
generative process of new blend creation.

1.2 Contributions
We summarize the main contributions of our work
as follows:

1. We propose an ensemble neural network
model to learn the compositional lexical
blends from two given source words.

2. We generalize the problem of lexical blend-
ing by leveraging the character based
sequence-to-sequence hybrid bidirectional
models in order to predict the blends.

3. We release a blending dataset and demo of
our neural blend generator along with open
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source software

2 Neural Lexical Blending Model

2.1 Sequence-to-sequence Models

Sequence-to-Sequence (Seq2Seq) neural network
models (Sutskever et al., 2014), are a general-
ization of the recurrent neural network (RNN)
sequence learning (Cho et al., 2014) paradigm,
where a source sequence x1, . . . , xn is mapped
to a fixed sized vector using a RNN often serv-
ing as the encoder, and another RNN is used to
map the vector to the target sequence y1, . . . , yn,
functioning as the decoder. However, RNNs strug-
gle to train on long term dependencies sufficiently;
and therefore, Long Short Term Memory Models
(LSTM) and Gated Recurrent Units (GRUs)(Cho
et al., 2014) are more common for such sequence
to sequence learning.

2.2 Bidirectional Seq2Seq Model

We propose a bidirectional forward and re-
verse GRU encoder-decoder model for our lex-
ical blends. To this end, both the encoder and
the decoder are bidirectional, i.e. they see the
ordered input source words both in the forward
direction and the backward direction. The mo-
tivation here is that in order to sufficiently cap-
ture the splinter point, there should be depen-
dency on the neighbouring characters in both
directions. Figure 1 shows the bidirectional
Seq2Seq model that we propose. Since we
have two source words for every blend, that
is a sequence of characters, the input to our
model has the source words concatenated with a
space and padding to align to the longest con-
catenated example. For example in Figure 1,
the source words work and alcoholic are
concatenated as cilohocla krow and work
alcoholic for the encoder and decoder respec-
tively, which subsequently gets reversed to work
alcoholic and cilohocla krow for the re-
verse encoder and decoder units. The represen-
tation of a sequence of characters in the input
pair of source words is the concatenation of the
fixed dimensional character to vector representa-
tions. The model’s prediction corresponding to
the two source words in the input, is the order
preserving binary output {ŷt = {0, 1}|xt ∈ yt}
for model prediction ŷ, ground truth target y and
concatenated source input pair x = (x1, ..., xT ).
For example, if x is work alcoholic with-

out padding, the prediction on the blended word
is 11110000111111 for the target workoholic.
The order is enforced implicitly in the concate-
nated inputs. The indices that are predicted 1 are
for the characters in the concatenated input that are
included in the blend.

The forward and reverse hidden states hf
t and

hr
t of the encoder at time t is given by:

hf
t = GRUf

enc

(
hf

t−1, xtr

)
(1)

hr
t = GRU r

enc

(
hr

t+1, xtr

)
(2)

where GRUf
enc and GRU r

enc stand for forward
and reverse GRU encoder units described by (Cho
et al., 2014) and tr = T − t + 1. Similarly, the
forward yf and reverse yr intermediate outputs of
the decoder are given by:

yf
t = GRUf

dec

(
yf

t−1, xt

)
(3)

yr
t = GRU r

dec

(
yr

t+1, xt

)
(4)

where yf
0 = hf

T and yr
T+1 = hr

1. The final decoder
output is the result of applying smooth non-linear
sigmoid transformation to the GRU outputs

zj
t = σ

(
Wfy

f
t + Ury

r
t

)
(5)

z is character wise probability of inclusion in the
blend. We apply sigmoid loss on z for training.

2.3 Ensemble Hybrid Bidirectional Seq2Seq
Model

We propose an ensemble model of our vanilla bidi-
rectional encoder decoder model discussed in Sec-
tion 2.2 in order to capture different representa-
tions of the source word, hidden state and a vari-
ety of blends. Blends can be inherently varying in
structure of the blend formation resulting in multi-
ple possible blend candidates. Each member or an
expert in our ensemble model has the same under-
lying architecture as described in Section 2.2 and
in Figure 1. However, the experts in the ensem-
ble do not share the model parameters, the motiva-
tion being able to capture a wider range of param-
eter values thus tackling the variations and mul-
tiplicity in the blending process adequately. Fur-
ther, there is a subjective and qualitative nature of
the blend formation process that leads to naturally
consider ensemble predictions with the notion that
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Dataset No. of Examples No. of Overlaps
Wiktionary 2854 1379
Train 2140 (75%)
Validation 428 (15%)
Test 286 (10%)
Test + Validation with overlaps 319 319
Test + Validation no overlaps 395 0
Cook 230 90
Thurner 482 320
Believa 335 168

Table 2: Datasets for experiments. Blends need not be over-
lapping even if the source words share common substrings.
E.g. puny + unicode = punycode.

Figure 2: Attention Mask while predicting in attention
baseline model.

the collective consensus should be more smooth
than capturing individual preferences or special-
ization in the experts where each expert predicts
differently. Each expert is independently initial-
ized and parameterized by a GRU based encoder
decoder neural network and trained end-to-end si-
multaneously.

The model makes the final prediction by us-
ing a method of combining the expert predictions
known as confidence measure. Each expert pre-
dicts the blended target zi

t = [0, 1] using Equa-
tion 5, for the ith expert such that i ∈ K, where
there are K experts. Confidence of each expert i
with respect to a pre-defined threshold γ is given
by:

Cf i =
∑n

t=1

∣∣zi
t − γ

∣∣
n

(6)

For the purposes of evaluating the quality of the
ensemble model prediction, we perform a confi-
dence weighted voting on the blended words (at
a word level instead of character level) predicted
by the individual expert and report the top voted
blend predictions by the ensemble by selecting
the prediction of the expert(s) that has the highest
weighted confidence. The accuracy with respect
to the ground truth is then evaluated on the test set
and reported in the Section on experiments.

We would like to introduce the two baseline
models here, as they naturally lead to the hy-

Model Character Accuracy Word Accuracy

Test
With
Over-
laps

No
Over-
laps

Test
With
Over-
laps

No
Over-
laps

Baselines
Conditional - - - 0.192 0.185 0.203
Heuristic Conditional - - - 0.420 0.806 0.063
char-to-char
Vanilla 0.865 0.882 0.850 0.110 0.123 0.077
Split Encoder 0.856 0.871 0.832 0.085 0.120 0.053
Attention 0.912 0.925 0.886 0.280 0.367 0.133
Index based
Pointer feedforward - - - 0.185 0.197 0.195
Pointer decoder - - - 0.245 0.220 0.250
char-to-binary
Binary decoder 0.951 0.951 0.949 0.320 0.367 0.330
Bidirectional binary decoder 0.951 0.949 0.948 0.360 0.350 0.353
Hybrid binary decoder 0.954 0.964 0.940 0.430 0.520 0.313

Table 3: Single instance model results on the Wiktionary
Test set. Accuracies are reported at the character and word
level. To show fine grained performances the models are
additionally tested on two mutually exclusive datasets, one
with overlapping blends and the other without. We have run
paired t-tests with the baseline heuristic model with p-value
of 0.012.

brid aspect of our model which we discuss later.
The conditional baseline model builds a condi-
tional probability distribution of the splice points
from source word lengths, i.e. P (i1|l1) and
P (i2|l2), where i1, i2 are the splice indices and
l1, l2 are the lengths of source word 1 and 2 re-
spectively. The model predicts using argmax from
the distributions and combines the prefix and suf-
fix. The heuristic model greedily looks for com-
mon substrings in the two source words and joins
them with the overlap e.g. group + coupon =
groupon and group + coupon = gron. Then
from the set of combinations, it picks the one that
has the longest overlap. If no common substring is
found, it reverts to plain conditional model.

The bidirectional binary encoder-decoder that
we discussed before does poorly on overlapping
blends because it struggles to determine the blends
with overlaps. We propose a further enhancement
to the ensemble model whereby we introduce extra
information about the overlap and common sub-
strings between the source words. This is a hy-
brid between the heuristic and neural model. Con-
sider the overlap type blend group + coupon =
groupon. A mapping is induced from the source
words that indicates to the neural network that
oup is the overlapping segment. This mapping is
provided to the hybrid model as additional infor-
mation in the form of a binary sequence indicating
overlaps between the 2 source words so group +
coupon gets mapped to 001110011100 and is fed
into the encoder just after the embedding layer as
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shown in Figure 1. The motivation is that the extra
information should take the burden off the model
in finding common overlaps.

Effect of dominance To study the effect of
dominance of either of the source words we add
binary tags to the characters of each source word
proportional to the portion of source word in the
blend. If the proportion is greater than or equal
to 50 percent, then the dominance is set to 1 else
0. Note that both words can have dominance set
to 1. Additionally, we set dominance of both the
words to 1 if the proportions differ by less than 0.1
percent.

3 Experiments

3.1 Dataset Details
We use modern collection of english blend words
curated by Wiktionary6 with a total of 3250
blends. Each example consists of two source
words and a target blend word. We restrict the
dataset to only prefixes of first source word and
suffixes of second source word leading to a total
of 2854 blends. As held out datasets we use the
dataset created by Cook et al. (Cook and Steven-
son, 2010) from wordspy.com, and collected in
2008. It has 179 samples distinct from our train-
ing set and 230 unique blends in total with a good
balance among different types of blends.

7 The Thurner dataset that we use has 482
unique blends which are a subset of the full
Thurner dictionary (1993) of around 2300 words
collected from 85 sources. The structure of the
blends is skewed towards overlapping blends con-
stituting roughly about 66 percentage of all the
blends. The Believa dataset (2014) has 235 unique
blends collected from multiple sources from year
2000 until recent. The dataset has upto 4 source
words but we pick only ones with 2. The blends
are well balanced with distributions very similar to
Cook (2010).

3.2 Network and Training Details
In this section, we discuss the network structure
and training details. All the code is written using
Tensorflow (Abadi et al., 2016).

Network Layout: As discussed before we
use GRU RNN network as our encoder decoder

6https://en.wiktionary.org/wiki/
Category:English_blends Note: Last accessed
14thMarch, 2017

7We are grateful to the authors for sharing with us their
dataset.

Model Top-1 Word Accuracy
Test OL No OL Cook Thurner Believa

Bidirectional
Binary (K=60)

0.470 0.495 0.435 0.487 0.320 0.373

Hybrid Bidi-
rectional
Binary (K=30)

0.540 0.677 0.400 0.578 0.465 0.430

Heuristic Con-
ditional

0.420 0.806 0.063 0.375 0.571 0.409

Mixture of Ex-
perts (K=6)

0.365 0.347 0.363 0.370 0.228 0.277

Table 4: Results of the ensemble models (top-1 accuracy)
on various datasets along with the heuristic model. The accu-
racies reported are based on weighted voting of the experts.
K indicates number of experts. OL indicates overlap.

Model Top-2 Words Accuracy
Test OL No OL Cook Thurner Believa

Bidirectional
Binary (K=60)

0.635 0.677 0.570 0.613 0.504 0.575

Hybrid Bidi-
rectional
Binary (K=30)

0.677 0.784 0.527 0.674 0.612 0.597

Heuristic Con-
ditional

0.434 0.909 0.068 0.401 0.641 0.481

Table 5: Results of the ensemble models (top-2 accuracy)
on various datasets along with the heuristic model.

Seq2Seq model. Our proposed model has single
layer GRU units with 128 neurons. The character
vocabulary has a size of 40. Our dataset contains
blends with numbers, hyphens and also capitals.
Larger, multiple layers or more number of experts
in the ensemble networks did not improve perfor-
mance drastically.

Training The ensemble model of experts is
trained end-to-end on mini-batches using Adam
Optimization (Kinga and Adam, 2015) over the
Wiktionary dataset. The mini batch size is 100
and maximum length of the concatenated source
word pair is 29. The learning rate is initialized to
0.006. The fixed sized vector embedding repre-
sentation of the inputs to our model is set at 128 as
well. We allow a dropout rate of 0.25 to prevent
over-fitting. The parameters of the model are ran-
domly initialized from a normal disribution with
zero mean and standard deviation of 0.1. Training
is run for 16 epochs. We tuned hyper-parameters
based on our models performance over a range on
the validation sets.

3.3 Baseline Heuristic, Neural and Hybrid
Models

We compare the performance of our proposed
model with other models. The baselines are the
conditional probability distribution based model
and the heuristic model described previously.
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We also compared our model with several types
of Seq2Seq models. These include the vanilla
char-to-char where the encoder takes source words
concatenated and the decoder outputs target blend
as characters, Attention char-to-char with added
attention mechanism (Bahdanau et al., 2014) to
the vanilla char-to-char and Split encoder where
two encoders each takes one source word and the
decoder takes concatenated encoder states as in-
put. Index based target prediction models that
we compared against are the Pointer feedforward
model that has an encoder like the vanilla Seq2Seq
but the decoder is replaced with feed forward net-
work that outputs a distribution over two indices
or pointers that indicate splice points. Pointer
decoder is another variant where the decoder is
unrolled for two time steps always, each provid-
ing a distribution over indices of the concatenated
source words. Binary target prediction models
including our proposed ensemble model outputs
a probability of including the character from the
source concatenation at each time step. Attention
mechanisms were attempted for the other models
but showed no meaningful improvement in perfor-
mance; the attention mask results were blurred in
most cases. We suspect this is due to the mismatch
in the encoder and decoder representations (char-
acters versus binary or indices).

3.4 Results and Analysis
The demo of our model is available online8.
Dataset and source code9 is also provided. In
all the results reported, character level accuracy
indicates the generalized accuracy over number
of characters that were predicted correctly in the
blend word. Word level accuracy indicates the
generalized accuracy over the number of correct
blend word predictions over all the source word
pair instances.

Table 3 shows the results of all our single in-
stance models as discussed in the previous section.
The heuristic conditional model achieves high ac-
curacy in correctly predicting overlapping blends.
Its outperforms all the other models in the over-
lapping blends subset dataset. Overlapping blends
account to about fifty percent of the total blends in
general. The heuristic conditional model however
does poorly in the non overlapping blends as it de-
faults to a greedy search in order to find the sin-

8https://neuroblender.herokuapp.com
9https://github.com/FreeEnergy/

neuramanteau

gle character overlaps, such that its performance
is worse than the plain conditional model in this
subset.

In the char-to-char models, the attention based
model performs best as it is able to observe the
input words in their entirety at every time step.
Figure 2 shows the attention mask for this model
while predicting the blend infotopia. We can
clearly see where it jumps to the second word. The
two other char-to-char models perform poorly as
they have to additionally track the current char-
acter to output. The index based models perform
slightly better as the problem is now about predict-
ing the correct splice points. Their performance is
relatively unaffected by the blend types - overlap-
ping or non-overlapping. The char-to-binary mod-
els outperforms the rest as the solution space is re-
stricted to predicting the binary vector indicating
the characters that are present in the blend. The
bidirectional model is further able to improve its
performance due to its ability to scan the character
sequence in both directions for exploiting neigh-
bourhood structure. It can make a better decision
on the splinters with this extra information. The
vanilla binary model is able to perform better on
the overlapping blends data than the bidirectional
model but loses out on the non-overlapping case.
The bidirectional model essentially is able to gen-
eralize to both overlapping and non-overlapping
subsets. Finally the hybrid model between heuris-
tic and neural performs the best by including extra
information on the overlaps when available. Al-
though it is unable to beat the heuristic model in
the overlapping blends subset, it does better over-
all.

In Tables 4 and 5, we report the performance of
our proposed bidirectional ensemble model. The
ensemble models are able to bring in significant
gains as compared to the single instance mod-
els. The hybrid model is able to get the best of
both world: heuristic and neural models to get
the best overall accuracy. However, its perfor-
mance is skewed towards the overlapping blends
resulting in lower performance on the no over-
lap data subset in comparison to the plain bidirec-
tional model. The heuristic model performs well
on the Thurner (1993) dataset due to the major-
ity of the words in the Thurner data comprising
overlapping blends. The Cook (2010) and Be-
lieva datasets (2014) are more balanced in which
the hybrid model outperforms the rest. The Mix-
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Figure 3: Performance Plot of the Bidirectional Encoder
Decoder SeqToSeq model.

Word1 Word2 Hybrid Prediction Heuristic Prediction Ground
Truth

work alcoholic workoholic, workholic woholic, wolic workoholic

snow apocalypse snowocalpyse, snowpocalypse snocalypse snowpocalypse

book bootlegger booklegger boootlegger, bookbootlegger booklegger

family honeymoon famimoon, familmoon famoon, familymoon familymoon

edge pixel edgixel, edxel edgel edgel

Table 6: Comparison of predictions from heuristic and en-
semble hybrid models on sample inputs.

ture of Experts (MoE) ensemble causes experts
to specialize individually to the examples early
on, most often converging to a subset of experts.
This led to reduced accuracies for MoE through-
out. It was difficult to train the model as it pre-
ferred to converge (specialize) to a few experts
even when enforcing a variance loss to encourage
diversity. In contrast, the bidirectional ensemble
model did not specialize as each expert is trained
separately. That independence helps the ensemble
to generalize in capturing the wider variations in
the blends. In Table 6, we compare the predictions
from the hybrid ensemble model and the heuristic
single instance models. On observing the failure
modes, due to the qualitative and subjective na-
ture of blends, we find that some of the predicted
blends are still quite plausible. We would hazard
to say that some of these predictions actually look
more natural than the dataset values.

Figure 3 shows the performance plot of the

Model Top-1 Word Accuracy
Test OL No OL Cook Thurner Believa

Bidirectional
Binary
with Dom-
inance(K=15)

0.491 0.505 0.491 0.517 0.378 0.415

Hybrid Bidi-
rectional
Binary with
Dominance
(K=15)

0.572 0.721 0.453 0.643 0.525 0.487

Table 7: Results of dominance based models. K indicates
number of experts. OL indicates overlaps.

Word1 Word2
Blend Predictions

Word1 Dominant Word2 Dominant Equal
Dominannce

breakfast lunch breaklunch brunch breaklunch

phone tablet phonelet phablet phonlet

aviation electronics aviationics avionics aviatonics

bombay hollywood bombaywood bollywood bombwood

republican democrat republicrat repumocrat repubocrat

Table 8: Sample predictions from hybrid ensemble with
variation in dominance.

validation accuracy of any expert predicting cor-
rectly in comparison to the weighted voting pre-
diction. The weaker metric of evaluating the
accuracy based on any expert, outperforms the
weighted voting prediction over the training du-
ration. Tables 8 and 7 shows some sample
predictions and accuracy by the dominance en-
hanced hybrid model on sample inputs. With
the famous brunch blend, our model predicts
that the blend would have been breaklunch if
breakfast had been given more importance by
the coiner. Similarly our model predicts phone
and tablet gives phonlet when dominance of
the source words are same. But when the word
tablet is set to be dominant the model predicts
phablet, the form of the blend which is in pop-
ular use now. We can hypothesize that the cre-
ator of this blend perhaps wanted more emphasis
on tablets when marketing phablet form factor
mobile devices.

Comparison with Deri et al. (2015) The
main working example in their published pa-
per: stay + vacation predicted stacation on
their demo website, instead of staycation
as claimed, whereas our model demo predicted
staycation. Further, on their dataset (with
common words with the Wiktionary dataset that
we used removed), our baseline heuristic beat
their model with accuracy of 47.7% in compar-
ison to their models 45.3%, while our primary
model achieved 48.3%. Their dataset consists of
400 examples in contrast to our dataset of 2854
examples. Their system is unable to general-
ize to non-overlapping blends like staycation,
workholic correctly which our system can.

4 Future Work and Conclusions

In this work, we show that neural networks are
well suited to modelling uncertainties in the blend-
ing process. The ensemble RNN neural and en-
semble RNN neural-hybrid encoder-decoder sys-
tems that we propose generalized very well to
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overlapping and non-overlapping blended English
words from two source words. They outperform
statistical, heuristic, neural single instance and
mixture of experts ensemble models over multiple
datasets. However, these ensemble models are un-
able to capture the stringent rules and restrictions
that disallow certain character combinations like
bxy, ii, gls. An attempt to tag inputs with pho-
netic or articulatory information failed to correct
these mistakes. One possibility is to use reinforce-
ment learning (Sutton and Barto, 1998) to apply
specific rules of word formation. Other types of er-
rors are recognizability errors which causes loss of
recognition of one or both source words and over-
representation errors which adds extra (and unnec-
essary) characters from the source words. Some of
these examples are provided in the Appendix. We
believe these errors occur due to the sparsity in the
training data.
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Gözde Özbal and Carlo Strapparava. 2012. A com-
putational approach to the automation of creative
naming. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 703–711. Asso-
ciation for Computational Linguistics.

Maciej Pilichowski and Włodzisław Duch. 2013.
Braingene: computational creativity algorithm that
invents novel interesting names. In Computational
Intelligence for Human-like Intelligence (CIHLI),
2013 IEEE Symposium on, pages 92–99. IEEE.

Katherine E Shaw, Andrew M White, Elliott More-
ton, and Fabian Monrose. 2014. Emergent faithful-
ness to morphological and semantic heads in lexical
blends. In Proceedings of the Annual Meetings on
Phonology, volume 1.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Richard S Sutton and Andrew G Barto. 1998. Re-
inforcement learning: An introduction, volume 1.
MIT press Cambridge.

Dick Thurner. 1993. Portmanteau dictionary: blend
words in the English language, including trade-
marks and brand es. McFarland & Company.

Andrew M White, Katherine Shaw, Fabian Monrose,
and Elliott Moreton. 2014. Isn’t that fantabulous:
Security, linguistic and usability challenges of pro-
nounceable tokens. In Proceedings of the 2014
workshop on New Security Paradigms Workshop,
pages 25–38. ACM.

583


