
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 566–575,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Named Entity Recognition with Stack Residual LSTM and Trainable Bias
Decoding

Quan Tran, Andrew MacKinlay and Antonio Jimeno Yepes
IBM Research Australia

hung.tran@monash.edu, admackin@au1.ibm.com, ayepes@au1.ibm.com

Abstract

Recurrent Neural Network models are the
state-of-the-art for Named Entity Recog-
nition (NER). We present two innovations
to improve the performance of these mod-
els. The first innovation is the intro-
duction of residual connections between
the Stacked Recurrent Neural Network
model to address the degradation prob-
lem of deep neural networks. The sec-
ond innovation is a bias decoding mech-
anism that allows the trained system to
adapt to non-differentiable and externally
computed objectives, such as the entity-
based F-measure. Our work improves
the state-of-the-art results for both Span-
ish and English languages on the standard
train/development/test split of the CoNLL
2003 Shared Task NER dataset.

1 Introduction

In Natural Language Processing, the term “Named
Entity” refers to special information units such as
people, organizations, location names, numerical
expression (Nadeau and Sekine, 2007). Identify-
ing the references to these special entities in text
is a crucial step toward Language Understanding.
Thus, there have been many works on these areas.

Some of the early systems employed hand-
crafted rules (Rau, 1991; Sekine and Nobata,
2004), however, the vast majority of current sys-
tems rely on machine learning models (Nadeau
and Sekine, 2007) such as Conditional Random
Field (CRF) (McCallum and Li, 2003), Hidden
Markov Model (HMM) (Bikel et al., 1997) and
Support Vector Machine (SVM) (Asahara and
Matsumoto, 2003). Although the traditional ma-
chine learning models do not rely on manual rules,
they require a manual feature engineering process,

which is rather expensive and dependent on the
domain and language.

In recent years, Recurrent Neural Network
(RNN) models such as Long-Short-Term-Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Chung et al., 2014)
have been very successful in sequence modeling
tasks, for example, Language Modeling (Mikolov
et al., 2010; Sundermeyer et al., 2012), Machine
Translation (Bahdanau et al., 2014) and Dialog
Act Classification (Kalchbrenner and Blunsom,
2013; Tran et al., 2017). RNN models can learn
from basic components of text (i.e. words and
characters). This generalization capability facil-
itates the construction of Language Independent
NER models (Ma and Hovy, 2016; Lample et al.,
2016) that rely on unsupervised feature learning
and a small annotated corpus.

One simple way of adding representational
power to a neural network is layer stacking. A tra-
ditional feed forward neural network usually has
three fully connected layers: an input layer, a hid-
den layer, and an output layer. For a Convolutional
Neural Network (CNN) or Recurrent Neural Net-
work, the number of stacked layers might be much
larger (Amodei et al., 2016). One problem with
this stacking scenario is the degraded representa-
tion problem (He et al., 2016). The proposed solu-
tion for this problem is the residual-identity con-
nection (He et al., 2016). With the information
from the lower-level inputs, the upper neural net-
work layers can learn to compensate for the rep-
resentation errors of lower layers. We adopt this
idea for Stacking RNN, however, with a different
implementation.

Most of the RNN-based models for NER
and machine translation are trained with some
form of maximum log-likelihood loss. How-
ever, it is often desirable to optimize task-specific
metrics (Xu et al., 2016), for example, F-measure

566



in NER, but optimizing the F-measure directly is
not trivial (Busa-Fekete et al., 2015), especially in
the case of complex Deep Neural Network models.
It is even more difficult considering the way the
F-measure is calculated in Named Entity Recog-
nition in the CoNLL-2003 shared task1 , where
it depends on the actual/predicted entities and not
on each token-prediction for which the system is
trained for. Inspired by the idea of trainable decod-
ing recently proposed in machine translation (Gu
et al., 2017), we introduce a trainable percentage
bias decoding system that manipulates the outputs
of a base system trained with normal loss to adapt
to a new objective. Our trainable bias decoding
system also bears similarity to the thresholding
technique (Lipton et al., 2014), traditionally used
to maximize F-measures given a classifier. The
proposed decoding system is trained directly on
the externally computed F-measures (which relies
on the the CoNLL evaluation script) using finite
different gradient.

In the next sections, we describe the proposed
innovations with detailed motivations and discus-
sions. Results show that our proposed innovations
improve the NER state-of-the-art for the English
and Spanish languages in the CoNLL-2003 shared
task data set.

2 Models

We describe first our RNN-CRF base architecture
and then we describe our two modelling innova-
tions: the Stack Residual RNN and the bias de-
coding.

2.1 The base RNN-CRF architecture

Our system is built upon the RNN-CRF architec-
ture for Named Entity Recognition. Let us denote
the input sequence of words as w0, ..., wn. In gen-
eral, the RNN component encodes the words into
a sequence of hidden vectors h0, ..., hn. This se-
quence of hidden vectors is then treated as features
for a linear-chain CRF layer. The training objec-
tive will then be the log-likelihood of the correct
sequence.

Following Lample et al. (2016); Ma and Hovy
(2016); Yang et al. (2016), we employ the charac-
ter level information and word-embeddings as fea-
tures in NER. Similar to Lample et al. (2016), in
our system, character information is encoded us-

1https://www.aclweb.org/aclwiki/index.
php?title=CONLL-2003_(State_of_the_art)

ing a bi-directional RNN (biRNN) over characters.
Given a word wk ∈ w0, ..., wn with m characters,
let us denote the character-embedding sequence of
this word as c0, ..., cm, the biRNN function as ρ
and the concat function as ψ. The character em-
bedding representation hck of word wk is calcu-
lated using a biRNN as in Equation 1, in which
f0, ..., fm and b0, ...,bm denote the hidden units in
the forward and backward RNNs respectively.

f0, ..., fm = ρ(c0, ..., cm)
b0, ...,bm = ρ(cm, ..., c0)

hck = ψ([fm,bm])
(1)

The feature vector xk of word wk is then the
concatenation of hck and the traditional word-
embedding ek as shown in Equation 2. Figure 1
shows the feature extraction procedures. All the
parameters of the biRNN as well as the embedding
tables are jointly trained with other component of
the model. The word embedding table is initial-
ized with a pre-trained embedding table.

xk = ψ([hck, ek]) (2)

The most simple architecture would be a
one-directional RNN over the word features:
h0, ..., hn = RNN(x0, ..., xn). However, it has
been shown to be beneficial to have a bidirectional
RNN over the input layer, as a bidirectional RNN
captures both the left and the right context of a
word: h0, ..., hn = ρ(x0, ..., xn).

The final sequence of hidden vectors h0, ...,hn
is treated as the features for a linear-chained CRF
layer. Similar to Lample et al. (2016), the observa-
tion scores λ are calculated with a linear transfor-
mation from the hidden vectors, as show in Equa-
tion 3, where λi is the vector observation scores
for all the labels in ith time-step, Wp is an l × d
weight matrix, and bp is a bias vector of size l
(with d is the size of vector hi), and l is the size
of the label set Y (including the special sequence
begin and end labels).

λi = Wphi + bp (3)

Given a sequence of input words S =
w0, ..., wn, the score of a particular sequence of
labels Y = Y [0], ..., Y [n] is calculated using the
observation scores λ and the transition scores δ as
in Equation 4, where δ is a square matrix of dimen-
sion l× l, δ(Y [j], Y [j + 1]) denotes the transition

567



Figure 1: Extracting word features with word embeddings and character level biRNN

score between the label in position j and the label
in position j + 1 in sequence Y , and λi(Y [i]) is
the observation score of i-th label Y [i].

ζ(Y, S) =
∑
i:[0..n]

λi(Y [i])

+
∑

j:[0..n−1]

δ(Y [j], Y [j + 1])
(4)

The probability of a sequence Y is calculated
using a softmax over all the possible sequences Y
(Equation 5).

Pr(Y |S) =
eζ(Y,S)∑
Ȳ ∈Y e

ζ(Ȳ ,S)
(5)

During training, we maximize the log-
likelihood of the correct sequence Yc. The
loss function L is defined in Equation 6. Be-
cause we employ a linear-chain CRF, the term
log(

∑
Ȳ ∈Y e

ζ(Ȳ ,S)) in Equation 6 can be effi-
ciently calculated with dynamic programming.

L(Yc) = ζ(Yc, S)− log(
∑
Ȳ ∈Y

eζ(Ȳ ,S)) (6)

During decoding, the best sequence can be
found using the Viterbi algorithm. The original
Viterbi decoding algorithm builds an l × n score

table ξ in which l is the size of the label set (in-
cluding the beginning and end labels) and n is the
length of the sequence. ξj(yi) denotes the score
of the most probable partial path (up to position j)
with position j having the label yi. ξj(yi) is calcu-
lated using dynamic programming as in Equation
7.

ξj(yi) =
∑
yk∈Y

(ξj−1(yk) + δ(yk, yi)) + λj(yi)

(7)

At the end of the decoding process, sequence Ŷ
is predicted by selecting the best score at the end
of the sequence j = n and then completing the
sequence with a backward pointer (Equation 8).
Figure 3 depicts the whole RNN-CRF architecture

Ŷ [n] = arg max
yi

ξn(yi)

Ŷ [n− 1] = arg max
yk

(ξj−1(yk) + δ(yk, Ŷ [n]))

(8)

2.2 Stacked Residual RNN

A traditional way of adding more representational
power to a neural network is layer stacking. RNN
stacking has been successfully used in a lot of
works (Amodei et al., 2016). However, stacking

568



Figure 2: The application of percentage bias to Viterbi decoding

Figure 3: The RNN-CRF architecture

layers of neural networks suffers from the degra-
dation problem (He et al., 2016). This is due to
the difficulty in training a lot of stacked layers and
fit these layers to desired underlying mappings,
which leads to representational degradation.

The solution proposed to this problem, the
residual connection (He et al., 2016; Prakash
et al., 2016) tries to create shortcuts between non-
consecutive layers. However, the original addi-
tional residual connection (adding the input vec-
tor to the hidden representation) adds several con-
straints on the dimensionality of the hidden and
input layers, which might require vector clip-
ping (Prakash et al., 2016), and it might lead to
a loss of information.

In the original residual connection proposed
for image recognition, the residual information is
summed to the output of the upper layers (F(x) +
x). In our proposal, we want the upper layer of a
neural network to have direct access to the origi-
nal input, thus, the original input is now appended
to the output of the lower layers instead of being

summed. With this formulation, there is no di-
mensionality restriction, and furthermore, we ar-
gue that our proposed residual connection can be
used to mix feature learners of different complex-
ity (Figure 4). For example, when equipped with
our proposed residual connection, the top neural
network layer can act like a shallow one-layer fea-
ture learner. The two top layers can act like a
deeper two-layer feature learner. Equation set 9
shows the exact formulation of our proposed resid-
ual connection within the Stack RNN. Similar to
the Equation 1, we denote the biRNN function as
ρ and the concat function as ψ. This modelling
procedure is depicted in Figure 4.

h0
0, ...,h

0
n = ρ(x0, ..., xn)

ĥ0
0, ..., ĥ

0
n = ψ([x0,h0

0]), ..., ψ([h0
n, xn])

h1
0, ...,h

1
n = ρ(ĥ0

0, ..., ĥ
0
n)

hM0 , ...,hMn = ρ(ĥM−1
0 , ..., ĥM−1

n )

(9)

2.3 The bias decoding

Usually NER systems are evaluated with some
form of F-measure. For example, for the CoNLL
2013 Shared Task NER dataset, the evaluation
is performed by an external script using entity-
based F1-measure. Although it has been noted
that training on the evaluation metric is benefi-
cial (Xu et al., 2016), most of the deep models for
NER are trained with log-likelihood. The main
reason for this discrepancy is the difficulty in train-
ing with F-measures. Instead of trying to train on
F-measure directly, we look into a hybrid solution
where we train a model on log-likelihood first, and
then use a simpler “adaptation model” to manipu-
late the output of the base model to fit it to the
F-measure.

Inspired by Machine Translation research on
decoding with trainable noise (Gu et al., 2017), we

569



Figure 4: Feature learner mixture with residual connection

explore the possibility of adding trainable noise to
the Viterbi decoding process. Analogously to the
traditional threshold technique for maximizing the
F1 score in binary classification, we introduce a
simple percentage noise to the decoding process.
That is, during the construction of the score table
ξ (Equation 7), a label-specific percentage bias is
added to the calculation as in Equation 10. Figure
2 shows the application of this bias to the Viterbi
decoding.

ξj(yi) =
∑
yk∈Y

(ξj−1(yk) + δ(yk, yi)) + byλj(yi)

(10)

To test this new percentage bias idea, we per-
form a quick experiment, where we limit the use
of bias to the most numerous class in the CoNLL
tag set, class O (words that do not belong to any
entity). We search for the best bias bO from the
range of [0.5, 1.5] using a value loop with step of
0.1. For each value of bO, we calculate the F1-
measure on the validation set, and choose the value
with the highest F1. We use our trained model
based on the Stack Residual architecture above as
the base probabilistic model. We find that the best
bO value is 1.1 (a value of 1.0 means without any
bias). Using this bO bias for the test data yields

the F1-measures of 91.22 compared to the original
score of 91.07 in the test set. This experiment sup-
ports our claim that the base model trained with
log-likelihood might not optimize well on a differ-
ent performance measure, and adding this percent-
age bias noise is really beneficial.

We extended this idea treating the biases as pa-
rameters. Thus the trainable bias decoding system
has the number of parameters equal to the num-
ber of classes. Training with gradient descent with
CoNLL’s entity-based F1 loss is rather difficult, as
it is hard to calculate the exact gradient. This is
solved using the numerical gradient methods as an
approximation, which is shown in Equation 11.

f ′b ∼
f(b+ ε)− f(b− ε)

2ε
(11)

The training procedure is then very similar to
stochastic gradient descent. Details on the choice
of hyper parameters and other experimental set-
tings are presented in the Experiment section.

3 Experiments

3.1 Dataset and Experimental settings
We have prepared and evaluated the pro-
posed methods on the English and Span-
ish sets of the CoNLL 2003 NER data

570



set2 (Tjong Kim Sang and De Meulder, 2003).
We have reused the training, development and test
set configuration of the CoNLL-2003 Shared Task
in our study.

The training set has been used to train the
system using several hyperparameter configura-
tions, the development set has been used to se-
lect the best configuration and the reported per-
formance of the final system is based on the test
set. The Spanish dataset has 8323/1915/1517
sentences in train/dev/test sets respectively. The
English dataset is almost twice as large with
14041/3250/3453 sentences in train/dev/test set.
For all of our models, the word-embedding size is
set to 100 for English and 64 for Spanish. The hid-
den vector size is 100 for both English and Span-
ish sets without the LM embeddings. With the
LM embeddings, the hidden vector size is changed
to 300 for English. We trained the model with
Stochastic Gradient Descent (SGD) with momen-
tum, using the learning rate of 0.005. For the bias
decoding, the ε hyperparameter for each update
is randomly chosen from a range of [0.01, ..., 0.1]
with step-size of 0.01. Because the base model
trained with sequence level log-likelihood fits very
well on the training set, the gradient calculated
with Equation 11 might be every small, thus we
opt to calculate the finite difference with respect
to the loss: log2(1−F1/100) instead of the F1 to
boost the gradient information in the points where
F1 is very close to 100 (perfect classification). The
learning rate for bias training is also set to 0.005.
Statistical significance has been determined using
a randomization version of the paired sample t-
test (Cohen, 1996).

We first conduct several series of experiments
to confirm the effectiveness of our two proposed
ideas: the Stack Residual RNN and the bias de-
coding, and the new Language Model embedding
in sub-section 3.2. The second sub-section: 3.4
compares our method with state-of-the-art results.

3.2 Component Analysis

Adding stack Residual RNN
Due to computational complexity, there is a prac-
tical limit on how many RNN layers we can stack.
In this series of experiment, we tested our model
without Stacked Residual RNN, and with 2, 3
and 4 Stacked layers. The word embeddings are
initialized using the pre-trained word vectors de-

2http://www.cnts.ua.ac.be/conll2003/ner

scribed below. The result of this series of ex-
periements is presented in Table 1.

From the result, we can see that the performance
seems to increase as we add more stacked layers,
and peak at three before dropping. We continue to
analyze other components using 3 Stacked Resid-
ual Layers of CRF-RNN as the base model, we
call this model 3 Res-RNN for short.

For English, the 3 and 4 stacked layer improve-
ments are significant (p < 0.025) compared to
the baseline model and between the stacked layer
models, the improvement between 2 and 3 layers
is significant (p < 0.035).

For Spanish, the 3 stacked layer improvement is
significant (p < 0.03), with respect to the baseline
model. Improvement between the 3 stacked layer
and the 4 stacked layer models is significant (p <
0.03).

Adding Language Model Embedding
Pre-trained word embeddings have shown useful
in Natural Language Processing tasks, but provide
information about the word but not about its con-
text. Previous work has explored using language
models in addition to word embeddings (Peters
et al., 2017) with positive results. We have eval-
uated our system using pre-trained language mod-
els using the 3 Stacked Residual Layer configura-
tion. First, we test the models with forward-only
LM embeddings (foreLM), then we test the model
with both forward and backLM (backLM). The re-
sult of this series of experiments is presented in
Table 2.

The gain from the LM embedding is not con-
sistent. It seems to work very well with English,
where it improves performance substantially even
though this improvement is not specially signifi-
cant. However, the LM does not improve the per-
formance at all in Spanish. Adding the foreLM
and backLM significantly decreases performance.

Adding Bias Decoding
We test the bias decoding on models with and
without LM embeddings, with results shown in
Table 3. The bias-decoding increases the perfor-
mance across the board, however the performance
increases are not consistent. The increases are no-
table on some cases (3 Res-RNN + bias on both
English and Spanish, 3 Res-RNN + foreLM +
backLM + bias for Spanish), while in some cases
the increases are minimal (3 Res-RNN + foreLM
+ bias on both English and Spanish, 3 Res-RNN +
foreLM + backLM + bias on English).

571



System F1 English F1 Spanish
CRF-RNN no Stack Residual 90.43 85.41
CRF-RNN 2 Stack Residual 90.72 85.88
CRF-RNN 3 Stack Residual 91.07 ? 86.24 ?
CRF-RNN 4 Stack Residual 91.02 ? 85.51

Table 1: Analysis of the Stack Residual Component. ? indicates significance (p < 0.05) versus CRF-
RNN no Stack Residual.

System F1 English F1 Spanish
3 Res-RNN 91.07 ? 86.24 ?
3 Res-RNN+foreLM 91.43 ? 86.13 ?
3 Res-RNN+foreLM +backLM 91.66 ? 85.83

Table 2: Analysis of the Language Model Embedding. ? indicates significance (p < 0.05) versus CRF-
RNN no Stack Residual in Table 1.

For English, adding bias to the 3 Res-RNN
without LM yields a significant improvement (p <
0.013), while for Spanish, the boost from adding
bias to the 3 Res-RNN + foreLM + backLM model
is significant (p < 0.011).

3.3 External Knowledge Learning
3.3.1 Word embedding
English word embedding was obtained from
Word2vec-api3. The embedding dimension is 100
and it was trained using GloVe with AdaGrad. For
the generation of Spanish word embeddings we
followed Lample et al. (2016), using Spanish Gi-
gaword Third Edition4 as corpus with an embed-
ding dimension of 64, a minimum word frequency
cutoff of 4 and a window size of 8.

3.3.2 Language Modeling
In some experiments, we used both forward and
backward language models. The English forward
language model was obtained from TensorFlow5

using the One Billion Word Benchmark6 (Chelba
et al., 2013) and has a perplexity of 30. As
the code generating this pre-trained model is not
available, we made use of a substitute which pro-
duces a higher perplexity language model. For the
backward English language model and the Span-
ish forward and backward ones, they were gener-
ated using an LSTM based baseline7 (Jozefowicz

3https://github.com/3Top/word2vec-
api/blob/master/README.md

4https://catalog.ldc.upenn.edu/ldc2011t12
5https://github.com/tensorflow/models/tree/master/lm 1b
6https://github.com/ciprian-chelba/1-billion-word-

language-modeling-benchmark
7https://github.com/rafaljozefowicz/lm

et al., 2016). This code estimates a forward lan-
guage model and was adapted to estimate a back-
ward language model. Language models were es-
timated using the One Billion Word benchmark.
The vocabulary for the backward English model is
the same as the pre-generated forward model. The
perplexity for estimated backward English lan-
guage model is 46; despite the discrepancy in per-
plexity with the forward language model the per-
formance using this language model still improves
the named entity recognition task. The vocabulary
for the Spanish language models was generated
using tokens with frequency > 2. The perplexity
for the forward and backward Spanish language
models are 56 and 57 respectively.

3.4 Comparative performance

Table 4 shows the performance of our best sys-
tems compared to the state-of-the-art results on
ConLL dataset. We focus our comparison to the
systems with the same experimental setups (stan-
dard train/val/test split, without the use of external
label data). The best previous systems (Ma and
Hovy, 2016; Lample et al., 2016) are based upon a
similar architecture (CRF-RNN) to ours. Lample
et al. (2016) employed LSTM for character-based
embedding, while Ma and Hovy (2016) employed
CNN for character-based embedding8. Overall,
we achieve state-of-the-art results on both English
and Spanish.

8There are several other works reporting very strong re-
sult on English NER: Chiu et al. (91.62) (2015), Yang et
al. (91.20) (2016) and Peter et al.(91.93) (2017), however,
these results are not comparable to ours due to the difference
in experimental setup (Ma and Hovy, 2016).

572



System F1 on English F1 on Spanish
3 Res-RNN 91.07 ? 86.24?
3 Res-RNN + foreLM 91.43 ? 86.13?
3 Res-RNN + foreLM + backLM 91.66 ? 85.83
3 Res-RNN + bias 91.23 ?† 86.31 ?
3 Res-RNN + foreLM + bias 91.45 ? 86.14 ?
3 Res-RNN + foreLM + backLM + bias 91.69 ? 86.00 ?†

Table 3: Analysis of the bias decoding. ? indicates significance (p < 0.05) versus CRF-RNN no Stack
Residual in Table 1. † indicates significance versus the configuration with no bias.

System F1 on English F1 on Spanish
CRF-RNN no Stack Residual 90.43 85.41
(Passos et al., 2014) 90.05 –
(dos Santos and Guimarães, 2015) – 82.21
(Gillick et al., 2016) 84.57 81.83
(Lample et al., 2016) 90.94 85.75
(Ma and Hovy, 2016) 91.21 –
3 Res-RNN + bias 91.23 86.31
3 Res-RNN + foreLM + bias 91.45 86.14
3 Res-RNN + foreLM + backLM + bias 91.69 86.00

Table 4: Compare our model with systems with comparable experimental settings

4 Discussion

Overall, our model achieves the state-of-the-
arts for both English and Spanish Named Entity
Recognition. For Spanish, our base model with
three layers of Stacked Residual RNN already out-
performs the current state-of-the-art.

From the results above, we can see that our in-
novations, the Stacked Residual connection and
bias decoding consistently improve the perfor-
mance across both data sets. However, the im-
provements from bias decoding is somewhat small
in some models. The numerical gradient for train-
ing is noisy, and sometimes the SGD process
might take several epochs to find an improvement
on the development set. This happens especially
on the English dataset because the base model
trained with sequence level log-likelihood fits very
well on the training set. Even with the boost-
ing trick presented during the Experiments sec-
tion, the training is still very slow. At first, we
expected that the biases might give us some ideas
about the trade-off between precision and recall
similar to the thresholding technique for binary
classification, i.e. the based log-likelihood model
might favors precision or recall. However, from
the analysis of the biases, we found no obvious
trends favoring precision or recall.

Interestingly, the Language Model embeddings
seem to have opposite effects on Spanish and En-
glish. While it is very helpful in English, it only
degrades the performance for Spanish. The En-
glish LMs also improve convergence rate, while
it is the opposite for Spanish. We attribute this
difference in the quality of the Language Model
involved. For English, the LMs are arguably bet-
ter, with much lower perplexities than the LMs for
Spanish. The Spanish models also have less data
to train with, and it might affect the performance.

5 Conclusions and Future Work

We have explored two innovations over the base-
line CRF-RNN model for sequence classification:
the Stacked Residual Connection, and bias decod-
ing. With these two improvements, it is possible
to achieve state-of-the-art performance in Named
Entity Recognition for both English and Spanish.

As future work, we will further investigate
trainable bias decoding, and try to solve the prob-
lems presented. As the methods presented are gen-
eral and language/domain independent, we plan to
apply it to other domains such as health-care and
expand the applications beyond NER.

573



References
Dario Amodei, Sundaram Ananthanarayanan, Rishita

Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guo-
liang Chen, et al. 2016. Deep speech 2: End-to-end
speech recognition in english and mandarin. In In-
ternational Conference on Machine Learning. pages
173–182.

Masayuki Asahara and Yuji Matsumoto. 2003.
Japanese named entity extraction with redundant
morphological analysis. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology-Volume 1. Association
for Computational Linguistics, pages 8–15.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Daniel M Bikel, Scott Miller, Richard Schwartz,
and Ralph Weischedel. 1997. Nymble: a high-
performance learning name-finder. In Proceedings
of the fifth conference on Applied natural language
processing. Association for Computational Linguis-
tics, pages 194–201.

Robert Busa-Fekete, Baiázs Szörényi, Krzysztof Dem-
bczyński, and Eyke Hüllermeier. 2015. Online f-
measure optimization. In Proceedings of the 28th
International Conference on Neural Information
Processing Systems. MIT Press, Cambridge, MA,
USA, NIPS’15, pages 595–603.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005 .

Jason PC Chiu and Eric Nichols. 2015. Named en-
tity recognition with bidirectional lstm-cnns. arXiv
preprint arXiv:1511.08308 .

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Paul R Cohen. 1996. Empirical methods for artificial
intelligence. IEEE Intelligent Systems (6):88.

Cı́cero Nogueira dos Santos and Victor Guimarães.
2015. Boosting named entity recognition with neu-
ral character embeddings. CoRR abs/1505.05008.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2016. Multilingual language process-
ing from bytes. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 1296–
1306.

Jiatao Gu, Kyunghyun Cho, and Victor OK Li. 2017.
Trainable greedy decoding for neural machine trans-
lation. arXiv preprint arXiv:1702.02429 .

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pages
770–778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410 .

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
convolutional neural networks for discourse compo-
sitionality. arXiv preprint arXiv:1306.3584 .

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies. Association for Computational Linguistics,
San Diego, California, pages 260–270.

Zachary C Lipton, Charles Elkan, and Balakrishnan
Naryanaswamy. 2014. Optimal thresholding of clas-
sifiers to maximize f1 measure. In Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, pages 225–239.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
arXiv preprint arXiv:1603.01354 .

Andrew McCallum and Wei Li. 2003. Early results for
named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proceedings of the seventh conference on Natu-
ral language learning at HLT-NAACL 2003-Volume
4. Association for Computational Linguistics, pages
188–191.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech. volume 2, page 3.

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classification.
Lingvisticae Investigationes 30(1):3–26.

Alexandre Passos, Vineet Kumar, and Andrew Mc-
Callum. 2014. Lexicon infused phrase embed-
dings for named entity resolution. arXiv preprint
arXiv:1404.5367 .

574



Matthew E Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
arXiv preprint arXiv:1705.00108 .

Aaditya Prakash, Sadid A Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji
Farri. 2016. Neural paraphrase generation with
stacked residual lstm networks. arXiv preprint
arXiv:1610.03098 .

Lisa F Rau. 1991. Extracting company names from
text. In Artificial Intelligence Applications, 1991.
Proceedings., Seventh IEEE Conference on. IEEE,
volume 1, pages 29–32.

Satoshi Sekine and Chikashi Nobata. 2004. Definition,
dictionaries and tagger for extended named entity hi-
erarchy. In LREC. pages 1977–1980.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language modeling.
In Interspeech. pages 194–197.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4.
Association for Computational Linguistics, pages
142–147.

Quan Hung Tran, Ingrid Zukerman, and Gholamreza
Haffari. 2017. A hierarchical neural model for learn-
ing sequences of dialogue acts. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers. Association for Computational Lin-
guistics, Valencia, Spain, pages 428–437.

Wenduan Xu, Michael Auli, and Stephen Clark. 2016.
Expected f-measure training for shift-reduce parsing
with recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, San Diego, Califor-
nia, pages 210–220.

Zhilin Yang, Ruslan Salakhutdinov, and William Co-
hen. 2016. Multi-task cross-lingual sequence tag-
ging from scratch. arXiv preprint arXiv:1603.06270
.

575


