
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 555–565,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Capturing Long-range Contextual Dependencies with
Memory-enhanced Conditional Random Fields

Fei Liu Timothy Baldwin Trevor Cohn
School of Computing and Information Systems

The University of Melbourne
Victoria, Australia

fliu3@student.unimelb.edu.au
tb@ldwin.net t.cohn@unimelb.edu.au

Abstract

Despite successful applications across a
broad range of NLP tasks, conditional ran-
dom fields (“CRFs”), in particular the
linear-chain variant, are only able to model
local features. While this has important
benefits in terms of inference tractabil-
ity, it limits the ability of the model to
capture long-range dependencies between
items. Attempts to extend CRFs to cap-
ture long-range dependencies have largely
come at the cost of computational com-
plexity and approximate inference. In this
work, we propose an extension to CRFs
by integrating external memory, taking in-
spiration from memory networks, thereby
allowing CRFs to incorporate informa-
tion far beyond neighbouring steps. Ex-
periments across two tasks show substan-
tial improvements over strong CRF and
LSTM baselines.

1 Introduction

While long-range contextual dependencies are
prevalent in natural language, for tractability rea-
sons, most statistical models capture only local
features (Finkel et al., 2005). Take the sentence
in Figure 1, for example. Here, while it is easy to
determine that Interfax in the second sentence is a
named entity, it is hard to determine its semantic
class, as there is little context information. The us-
age in the first sentence, on the other hand, can be
reliably disambiguated due to the post-modifying
phase news agency. Ideally we would like to be
able to share such contexts across all usages (and
variants) of a given named entity for reliable and
consistent identification and disambiguation.

A related example is forum thread discourse
analysis. Previous work has largely focused on

linear-chain Conditional Random Fields (CRFs)
(Wang et al., 2011; Zhang et al., 2017), framing
the task as one of sequence tagging. Although
CRFs are adept at capturing local structure, the
problem does not naturally suit a linear sequen-
tial structure, i.e. , a post may be a reply to ei-
ther a neighbouring post or one posted far earlier
within the same thread. In both cases, contextual
dependencies can be long-range, necessitating the
ability to capture dependencies between arbitrarily
distant items. Identifying this key limitation, Sut-
ton and McCallum (2004) and Finkel et al. (2005)
proposed the use of CRFs with skip connections
to incorporate long-range dependencies. In both
cases the graph structure must be supplied a pri-
ori, rather than learned, and both techniques incur
the need for costly approximate inference.

Recurrent neural networks (RNNs) have been
proposed as an alternative technique for encoding
sequential inputs, however plain RNNs are unable
to capture long-range dependencies (Bengio et al.,
1994; Hochreiter et al., 2001) and variants such
as LSTMs (Hochreiter and Schmidhuber, 1997),
although more capabable of capturing non-local
patterns, still exhibit a significant locality bias in
practice (Lai et al., 2015; Linzen et al., 2016).

In this paper, taking inspiration from the work
of Weston et al. (2015) on memory networks
(MEMNETs), we propose to extend CRFs by in-
tegrating external memory mechanisms, thereby
enabling the model to look beyond localised fea-
tures and have access to the entire sequence.
This is achieved with attention over every en-
try in the memory. Experiments on named en-
tity recognition and forum thread parsing, both
of which involve long-range contextual dependen-
cies, demonstrate the effectiveness of the proposed
model, achieving state-of-the-art performance on
the former, and outperforming a number of strong
baselines in the case of the latter. A full imple-
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Figure 1: A NER example with long-range contextual dependencies. The vertical dash line indicates a
sentence boundary.

mentation of the model is available at: https:
//github.com/liufly/mecrf.

The paper is organised as follows: after review-
ing previous studies on capturing long range con-
textual dependencies and related models in Sec-
tion 2, we detail the elements of the proposed
model in Section 3. Section 4 and 5 present the
experimental results on two different datasets: one
for thread discourse structure prediction and the
other named entity recognition (NER), with anal-
yses and visualisation in their respective sections.
Lastly, Section 6 concludes the paper.

2 Related Work

In this section, we review the different families of
models that are relevant to this work, in captur-
ing long-range contextual dependencies in differ-
ent ways.

Conditional Random Fields (CRFs). CRFs
(Lafferty et al., 2001), in particular linear-chain
CRFs, have been widely adopted and applied to
sequence labelling tasks in NLP, but have the crit-
ical limitation that they only capture local struc-
ture (Sutton and McCallum, 2004; Finkel et al.,
2005), despite non-local structure being common
in structured language classification tasks. In the
context of named entity recognition (“NER”), Sut-
ton and McCallum (2004) proposed skip-chain
CRFs as a means of alleviating this shortcom-
ing, wherein distant items are connected in a se-
quence based on a heuristic such as string identity
(to achieve label consistency across all instances
of the same string). The idea of label consistency
and exploiting non-local features has also been ex-
plored in the work of Finkel et al. (2005), who take
long-range structure into account while maintain-
ing tractable inference with Gibbs sampling (Ge-
man and Geman, 1984), by performing approxi-
mate inference over factored probabilistic models.
While both of these lines of work report impres-
sive results on information extraction tasks, they
come at the price of high computational cost and

incompatibility with exact inference.
Similar ideas have also been explored by Kr-

ishnan and Manning (2006) for NER, where they
apply two CRFs, the first of which makes pre-
dictions based on local information, and the sec-
ond combines named entities identified by the first
CRF in a single cluster, thereby enforcing label
consistency and enabling the use of a richer set of
features to capture non-local dependencies. Liao
and Grishman (2010) make a strong case for go-
ing beyond sentence boundaries and leveraging
document-level information for event extraction.

While we take inspiration from these earlier
studies, we do not enforce label consistency as a
hard constraint, and additionally do not sacrifice
inference tractability: our model is capable of in-
corporating non-local features, and is compatible
with exact inference methods.

Recurrent Neural Networks (RNNs). Re-
cently, the broad adoption of deep learning meth-
ods in NLP has given rise to the prevalent use of
RNNs. Long short-term memories (“LSTMs”:
Hochreiter and Schmidhuber (1997)), a particular
variant of RNN, have become particularly popu-
lar, and been successfully applied to a large num-
ber of tasks: speech recognition (Graves et al.,
2013), sequence tagging (Huang et al., 2015),
document categorisation (Yang et al., 2016), and
machine translation (Cho et al., 2014; Bahdanau
et al., 2014). However, as pointed out by Lai
et al. (2015) and Linzen et al. (2016), RNNs —
including LSTMs — are biased towards immedi-
ately preceding (or neighbouring, in the case of bi-
directional RNNs) items, and perform poorly in
contexts which involve long-range contextual de-
pendencies, despite the inclusion of memory cells.
This is further evidenced by the work of Cho et al.
(2014), who show that the performance of a basic
encoder–decoder deteriorates as the length of the
input sentence increases.

Memory networks (MEMNETs). More re-
cently, Weston et al. (2015) proposed memory
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networks and showed that the augmentation of
memory is crucial to performing inference re-
quiring long-range dependencies, especially when
document-level reasoning between multiple sup-
porting facts is required. Of particular interest to
our work are so-called “memory hops” in memory
networks, which are guided by an attention mech-
anism based on the relevance between a question
and each supporting context sentence in the mem-
ory hop. Governed by the attention mechanism,
the ability to access the entire sequence is similar
to the soft alignment idea proposed by Bahdanau
et al. (2014) for neural machine translation. In this
work, we borrow the concept of memory hops and
integrate it into CRFs, thereby enabling the model
to look beyond localised features and have access
to the whole sequence via an attention mechanism.

3 Methodology

In the context of sequential tagging, we assume
the input is in the form of sequence pairs: D =
{x(n),y(n)}Nn=1 where x(n) is the input of the
n-th example in dataset D and consists of a se-
quence: {x(n)

1 , x
(n)
2 , . . . , x

(n)
T }. Similarly, y(n) is

of the same length as x(n) and consists of the cor-
responding labels {y(n)

1 , y
(n)
2 , . . . , y

(n)
T }. For nota-

tional convenience, hereinafter we omit the super-
script denoting the n-th example.

In the case of NER, each xt is a word in a sen-
tence with yt being the corresponding NER label.
For forum thread discourse analysis, xt represents
the text of an entire post whereas yt is the dialogue
act label for the t-th post.

The proposed model extends CRFs by integrat-
ing external memory and is therefore named a
Memory-Enhanced Conditional Random Field
(“ME-CRF”). We take inspiration from Memory
Networks (“MEMNETs”: Weston et al. (2015))
and incorporate so-called memory hops into
CRFs, thereby allowing the model to have unre-
stricted access to the whole sequence rather than
localised features as in RNNs (Lai et al., 2015;
Linzen et al., 2016).

As illustrated in Figure 2, ME-CRF can be di-
vided into two major parts: (1) the memory layer;
and (2) the CRF layer. The memory layer can be
further broken down into three main components:
(a) the input memory m1:t; (b) the output mem-
ory c1:t; and (c) the current input ut, which rep-
resents the current step (also known as the “ques-
tion” in the context of MEMNET). The input and

output memory representations are connected via
an attention mechanism whose weights are deter-
mined by measuring the similarity between the in-
put memory and the current input. The CRF layer,
on the other hand, takes the output of the memory
layer as input. In the remainder of this section, we
detail the elements of ME-CRF.

3.1 Memory Layer

3.1.1 Input memory

Every element (word/post) in a sequence x is en-
coded with xt = Φ(xt), where Φ(·) can be any
encoding function mapping the input xt into a
vector xt ∈ Rd. This results in the sequence
{x1, . . . ,xT }. While this new sequence can be
seen as the memory in the context of MEMNETs,
one major drawback of this approach, as pointed
out by Seo et al. (2017), is the insensitivity to
temporal information between memory cells. We
therefore follow Xiong et al. (2016) in inject-
ing temporal signal into the memory using a bi-
directional GRU encoding (Cho et al., 2014):

−→mt =
−−→
GRU(xt,

−→mt−1) (1)
←−mt =

←−−
GRU(xt,

←−mt+1) (2)

mt = tanh(
−→
W m
−→mt +

←−
W m
←−mt + bm) (3)

where
−→
W m,

←−
W m and bm are learnable parame-

ters.

3.1.2 Current input

This is used to represent the current step xt, be it
a word or a post. As in MEMNETs, we want to
enforce the current input to be in the same space
as the input memory so that we can determine the
attention weight of each element in the memory
by measuring the relevance between the two. We
denote the current input by ut = mt.

3.1.3 Attention

To determine the attention value of each element
in the memory, we measure the relevance between
the current step ut and mi for i ∈ [1, t] with a
softmax function:

pt,i = softmax(u>t mi) (4)

where softmax(ai) =
eai∑
j e

aj
.
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Figure 2: Illustration of ME-CRFs with a single memory hop, showing the network architecture at time
step t and t+ 1.

3.1.4 Output memory
Similar to mt, ct is the output memory, and is
calculated analogously but with a different set of
parameters in the GRUs and tanh layers of Equa-
tions (1), (2) and (3). The output memory is used
to generate the final output of the memory layer
and fed as input to the CRF layer.

3.1.5 Memory layer output
Once the attention weights have been computed,
the memory access controller receives the re-
sponse o in the form of a weighted sum over the
output memory representations:

ot =
∑

i

pt,ici (5)

This allows the model to have unrestricted access
to elements in previous steps as opposed to a sin-
gle vector ht in RNNs, thereby enabling ME-
CRFs to detect and effectively incorporate long-
range dependencies.

3.1.6 Extension
For more challenging tasks requiring complex rea-
soning capabilities with multiple supporting facts
from the memory, the model can be further ex-
tended by stacking multiple memory hops, in

which case the output of the k-th hop is taken as
input to the (k + 1)-th hop:

uk+1
t = ok

t + uk
t (6)

where uk+1
t encodes not only information at the

current step (uk
t ) but also relevant knowledge from

the memory (ok
t ). In the scope of this work, we

limit the number of hops to 1.

3.2 CRF Layer

Once the representation of the current step uK+1
t

is computed — incorporating relevant information
from the memory (assuming the total number of
memory hops is K) — it is then fed into a CRF
layer:

s(x,y) =
T∑

t=0

Ayt,yt+1 +
T∑

t=1

Pt,yt (7)

where A ∈ R|Y|×|Y| is the CRF transition matrix,
|Y| is the size of the label set, and P ∈ RT×|Y| is a
linearly transformed matrix from uK+1

t such that
P
>
t,: = Wsu

K+1
t where Ws ∈ R|Y|×h with h be-

ing the size of mt. Here, Ai,j represents the score
of the transition from the i-th tag to the j-th tag
whereas Pi,j is the score of the j-th tag at time i.
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Using the scoring function in Equation (7), we cal-
culate the score of the sequence y normalised by
the sum of scores of all possible sequences ỹ, and
this becomes the probability of the true sequence:

p(y|x) =
exp(s(x,y))∑

ỹ∈YX
exp(s(x, ỹ))

(8)

We train the model to maximise the probability
of the gold label sequence with the following loss
function:

L =
N∑

n=1

log p(y(n)|x(n)) (9)

where p(y(n)|x(n)) is calculated using the
forward–backward algorithm. Note that the model
is fully end-to-end differentiable.

At test time, the model predicts the output se-
quence with maximum a posteriori probability:

y∗ = arg max
ỹ∈Yx

p(ỹ|x) (10)

Since we are only modelling bigram interactions,
we adopt the Viterbi algorithm for decoding.

4 Thread Discourse Structure Prediction

In this section, we describe how ME-CRFs can
be applied to the task of thread discourse structure
prediction, wherein we attempt to predict which
post(s) a given post directly responds to, and in
what way(s) (as captured by dialogue acts). This
is a novel approach to this problem and capable of
natively handling both tasks within the same net-
work architecture.

4.1 Dataset and Task
In this work, we adopt the dataset of Kim
et al. (2010),1 which consists of 315 threads and
1,332 posts, collected from the Operating System,
Software, Hardware and Web Development sub-
forums of CNET.2 Every post has been manually
linked to preceding post(s) in the thread that it is a
direct response to (in the form of “links”), and the
nature of the response for each link (in the form
of “dialogue acts”, or “DAs”). In this dataset, it is
not uncommon to see messages respond to posts
which occur much earlier in the thread (based on
the chronological ordering of posts). In fact, 18%

1http://people.eng.unimelb.edu.au/
tbaldwin/resources/conll2010-thread/

2http://forums.cnet.com/

of the posts link to posts other than their immedi-
ately preceding post.

The task is defined as follows: given a list of
preceding posts x1, . . . , xt−1 and the current post
xt, to classify which posts it links to (lt) and the
dialogue act (yt) of each such link. In the scope
of this work, ME-CRFs are capable of modelling
both tasks natively, and therefore a natural fit for
this problem.

4.2 Experimental Setup
In this dataset, in addition to the body of text,
each post is also associated with a title. We
therefore use two encoders, Φtitle(·) and Φtext(·),
to process them separately and then concatenate
xt = [Φtitle(xt); Φtext(xt)]>. Here, Φtitle(·) and
Φtext(·) take word embeddings as input, process-
ing each post at the word level, as opposed to the
post-level bi-directional GRU in Equations (1) and
(2), and the representation of a post xt (either title
or text) is obtained by transforming the last and
first hidden states of the forward and backward
word-level GRU, similar to Equation (3). Note
that Φtitle(·) and Φtext(·) do not share parame-
ters. As in Tang et al. (2016), we further restrict
mk

i = ck
i to curb overfitting.

In keeping with Wang (2014), we comple-
ment the textual representations with hand-crafted
structural features Φs(xt) ∈ R2:
• initiator: a binary feature indicating whether

the author of the current post is the same as
the initiator of the thread,
• position: the relative position of the current

post, as a ratio over the total number of posts
in the thread;

Also drawing on Wang (2014), we incorporate
punctuation-based features Φp(xt) ∈ R3: the
number of question marks, exclamation marks and
URLs in the current post. The resultant feature
vectors are projected into an embedding space by
Ws and Wp and concatenated with xi, resulting
in the new x′i. Subsequently, x′i is fed into the bi-
directional GRUs to obtain mi.

For link prediction, we generate a supervision
signal from the annotated links, guiding the atten-
tion to focus on the correct memory position:

LLNK =
N∑

n=1

T∑
t=1

CrossEntropy(l(n)
t ,p

(n)
t ) (11)

where l
(n)
t is a one-hot vector indicating where the

link points to for the t-th post in the n-th thread,
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and p
(n)
t = {pt,1, . . . , pt,t} is the predicted distri-

bution of attention over the t posts in the memory.
To accommodate the first post in a thread, as it
points to a virtual “head” post, we set a dummy
post, m0 = 0, of the same size as mi. While
the dataset contains multi-headed posts (posts with
more than one outgoing link), following Wang
(2014), we only include the most recent linked
post during training, but evaluate over the full set
of labelled links.

For this task, ME-CRF is jointly trained to pre-
dict both the link and dialogue act with the follow-
ing loss function:

L′ = αLDA + (1− α)LLNK (12)

where LDA is the CRF likelihood defined in Equa-
tion (9), and α is a hyper-parameter for balancing
the emphasis between the two tasks.

Training is carried out with Adam (Kingma and
Ba, 2015) over 50 epochs with a batch size of
32. We use the following hyper-parameter set-
tings: word embedding size of 20, Wp ∈ R100×3,
Ws ∈ R50×2, α = 0.5, hidden size of Φtitle and
Φtext is 20, hidden size of

−−→
GRU and

←−−
GRU is 50.

Dropout is applied to all GRU recurrent units on
the input and output connections with a keep rate
of 0.7.

Lastly, we also explore the idea of curriculum
learning (Bengio et al., 2009), by fixing the CRF
transition matrix A = 0 for the first e = 20
epochs, after which we train the parameters for the
remainder of the run. This allows the ME-CRF to
learn a good strategy for DA and link prediction,
as independent “maxent” type classifier, before at-
tempting to learn sequence dynamics. We refer to
this variant as “ME-CRF+”.

4.3 Evaluation

Following Wang (2014), we evaluate based on
post-level micro-averaged F-score. All experi-
ments were carried out with 10-fold cross valida-
tion, stratifying at the thread level.

We benchmark against the following previous
work: the feature-rich CRF-based approach of
Kim et al. (2010), where the authors trained inde-
pendent models for each of link and DA classifica-
tion (“CRFKIM”); the feature-rich CRF-based ap-
proach of Wang (2014), where the author further
extended the feature set of Kim et al. (2010) and
jointly trained a CRF over the link and DA pre-
diction tasks (“CRFWANG”); and the dependency

Model Link DA Joint

CRFKIM 86.3 75.1 —
CRFWANG 82.3 73.4 66.5
DEPPARSER 85.0 75.7 70.6

MEMNET 85.8 76.0 69.5

ME-CRF 86.4 77.5 70.9
ME-CRF+ 86.3 77.4 71.2

Table 1: Post-level Link and DA F-scores. Per-
formance for ME-CRF and ME-CRF+ is marco-
averaged over 5 runs.

parser-based approach of Wang (2014), where the
author treated the discourse structure prediction
task as a constrained dependency parsing problem,
with posts as nodes in the dependency graph, and
the constraint that links must connect to preced-
ing posts in the thread (“DEPPARSER”).3 In ad-
dition to the CRF/parser-based systems, we also
build a MEMNET-based baseline (named MEM-
NET) where MEMNET shares the architecture of
the memory layer in ME-CRF but excludes the
use of the CRF layer. Instead, MEMNET, follow-
ing the work of Sukhbaatar et al. (2015), predicts
the final answer by:

ŷ = softmax(WDA(uK+1)) (13)

where ŷ is the predicted DA distribution, WDA ∈
R|Y|×d is a parameter matrix for the model to
learn, andK = 1 is the total number of hops. This
is equivalent to classifying link and DA indepen-
dently at each time step t without taking transi-
tions between DA labels into account.

4.4 Results

The experimental results are presented in Table 1,
wherein the first three rows are the three baseline
systems.

State-of-the-art post-level results. ME-CRFs
achieve state of the art results in terms of joint
post-level F-score, substantially better than the
baselines. While ME-CRF slightly outperforms
the current state-of-the-art (DEPPARSER), ME-
CRF+ improves the performance and achieves a
further 0.3% absolute gain.

3Note that a mistake was found in the results in the origi-
nal paper (Wang et al., 2011), and we use the corrected results
from Wang (2014).
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Figure 3: Breakdown of post-level Joint F-scores
by post depth, where e.g. “[1, 2]” is the joint F-
score over posts of depth 1–2, i.e. the first or
second post in the thread. Note that we take
the reported performance of CRFWANG and DEP-
PARSER from Wang (2014).

Curriculum learning improves joint prediction.
Despite the slight performance drop on the DA and
link prediction tasks, ME-CRF+, with the CRF
transition matrix frozen for the first 20 epochs,
achieves a ∼0.3% absolute gain in joint F-score
over ME-CRF. This suggests that the sequence
dynamics between posts, while difficult to capture,
are beneficial to the overall task (resulting in more
coherent DA and link predictions) if trained with
proper initialisation.

MEMNET vs. ME-CRFs. We see consistent
gains across all three tasks when the CRF layer is
added. Although not presented in Table 1, the dif-
ference is most notable at the thread-level (i.e. a
thread is correct iff all posts are tagged correctly),
highlighting the importance of sequential transi-
tional information between posts.

CRF vs. ME-CRFs. Note that CRFKIM is not
trained jointly on the two component tasks, but in-
dividually on each task. Without additional data,
jointly training on the two tasks generates results
that are comparable or substantially better over the
individual tasks. This highlights the effectiveness
of ME-CRF, especially with the link prediction
performance comparable to that of a single-task
model CRF, and surpassing it in the case of DA.
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Figure 4: Breakdown of post-level Link and DA
F-scores by post depth.

4.5 Analysis

We break the performance down by the depth of
each post in a given thread, and present the re-
sults in Figure 3. Although below the baselines
for the interval [1, 2], ME-CRF+ consistently out-
performs CRFWANG from depth 3 onwards, and is
superior to DEPPARSER for depths [7, ). Break-
ing down the performance further to the individual
tasks of Link and DA prediction, as displayed in
Figure 4, we observe a similar trend. In line with
the findings in the work of Wang (2014), this con-
firms that prediction becomes progressively more
difficult as threads grow longer, which is largely
due to the increased variability in discourse struc-
ture. Despite the escalated difficulty, ME-CRF+
is substantially superior to the baselines when
classifying deeper posts.

Between the CRF-based models, it is worth
noting that despite the lower performance for
[1, 2], ME-CRF+ benefits from having global ac-
cess to the entire sequence, and consistently out-
performs CRFWANG for depths [3, ), highlight-
ing the effectiveness of the memory mechanism.
Overall, these results validate our hypothesis that
having unrestricted access to the whole sequence
is beneficial, especially for long-range dependen-
cies, offering further evidence of the power of
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ME-CRFs.

5 Named Entity Recognition

In this section, we present experiments in a sec-
ond setting: named entity recognition, over the
CoNLL 2003 English NER shared task dataset
(Tjong Kim Sang and De Meulder, 2003). Our in-
terest here is in evaluating the ability of ME-CRF
to capture document context, to aid in the identifi-
cation and disambiguation of NEs.

5.1 Dataset and Task

The CoNLL 2003 NER shared task dataset
consists of 14, 041/3, 250/3, 453 sentences in
the training/development/test set, resp., extracted
from 946/216/231 Reuters news articles from the
period 1996–97. The goal is to identify individ-
ual token occurrences of NEs, and tag each with
its class (e.g. LOCATION or ORGANISATION).
Here, we use the IOB tagging scheme. In terms
of tagging schemes, while some have shown
improvements with a more expressive IOBES
marginally (Ratinov and Roth, 2009; Dai et al.,
2015), we stick to the BIO scheme for simplicity
and the observation of little improvement between
these schemes by Lample et al. (2016).

5.2 Experimental Setup

We choose Φ(xt) to be a lookup function, return-
ing the corresponding embedding xt of the word
xt. In addition to the word features, we employ a
subset of the lexical features described in Huang
et al. (2015), based on whether the word:
• starts with a capital letter;
• is composed of all capital letters;
• is composed of all lower case letters;
• contains non initial capital letters;
• contains both letters and digits;
• contains punctuation.

These features are all binary and refered to as
Φl(xt). Similar to the thread structure predic-
tion experiments, we concatenate Φl(xt) with xt

to generate the new input x′ to the bi-directional
GRUs in Equations (1) and (2).

In order to incorporate information in the docu-
ment beyond sentence boundaries, we encode ev-
ery word sequentially in a document with Φ and−−→
GRU and

←−−
GRU, and store them in the memory mi

and ci for i ∈ [1, t′], where t′ is the index of the
current word t in the document.

Training is carried out with Adam, over 100
epochs with a batch size of 32. We use the fol-
lowing hyper-parameter settings: word embed-
ding size = 50; hidden size of

−−→
GRU and

←−−
GRU = 50;−→

W m and
←−
W m ∈ R50×50; and bm ∈ R50. Dropout

is applied to all GRU recurrent units on the in-
put and output connections, with a keep rate of
0.8. We initialise ME-CRF with pre-trained word
embeddings and keep them fixed during training.
While we report results only on the test set, we use
early stopping based on the development set.

5.3 Evaluation

Evaluation is based on span-level NE F-score,
based on the official CoNLL evaluation script.4

We compare against the following baselines:
1. a CRF over hand-tuned lexical features

(“CRF”: Huang et al. (2015))
2. an LSTM and bi-directional LSTM

(“LSTM” and “BI-LSTM”, resp.: Huang
et al. (2015))

3. a CRF taking features from a convolutional
neural network as input (“CONV-CRF”: Col-
lobert et al. (2011))

4. a CRF over the output of either a sim-
ple LSTM or bidirectional LSTM (“LSTM-
CRF” and “BI-LSTM-CRF”, resp.: Huang
et al. (2015))

Note that for our word embeddings, while we ob-
serve better performance with GLOVE (Penning-
ton et al., 2014), for fair comparison purposes,
we adopt the same SENNA embeddings (Collobert
et al., 2011) as are used in the baseline methods.5

5.4 Results

The experimental results are presented in Table 2.
Results for the baseline methods are based on the
published results of Huang et al. (2015) and Col-
lobert et al. (2011). Note that none of the sys-
tems in Table 2 use external gazetteers, to make
the comparison fair. As can be observed, ME-
CRF achieves the best performance, beating all
the baselines.

To gain a better understanding of what the
model has learned, Table 3 presents two examples

4http://www.cnts.ua.ac.be/conll2000/
chunking/conlleval.txt

5Lample et al. (2016) report a higher result of 90.9 using
a BI-LSTM-CRF architecture, but augmented with skip n-
grams (Ling et al., 2015) and character embeddings. Due to
the differing underlying representation, we exclude it from
the comparison.
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Model F-score

CRF 86.1
LSTM 83.7
BI-LSTM 85.2
CONV-CRF 88.7

LSTM-CRF 88.4
BI-LSTM-CRF 88.8

ME-CRF 89.5

Table 2: NER performance on the CoNLL 2003
English NER shared task dataset.

where ME-CRF focuses on words beyond the cur-
rent sentence boundaries. In the example on the
left, where the target word is Juventus (an Ital-
ian soccer team), ME-CRF directs the attention
mainly to the occurrence of the same word in a
previous sentence and a small fraction to Manch-
ester (a UK soccer team, in this context). Note
that it does not attend to the other NE (Europe)
in that sentence, which is of a different NE class.
In the example on the right, on the other hand,
ME-CRF allocates attention to the same words
as the target word in the current sentence. Note
that the second occurrence of Interfax in the mem-
ory is the same occurrence as the first word in the
current sentence. While more weight is placed
on the second Interfax, close to one third of the
attention is also asigned to the first occurrence.
Given that the memory, mi and ci, is encoded
with bi-directional GRUs, the first Interfax should,
to some degree, capture the succeeding neighbour-
ing elements: news agency.

This is reminiscent of label consistency in the
works of Sutton and McCallum (2004) and Finkel
et al. (2005), but differs in that the consistency
constraint is soft as opposed to hard in previous
studies, and automatically learned without the use
of heuristics.

6 Conclusion

In this paper, we have presented ME-CRF, a
model extending linear-chain CRFs by including
external memory. This allows the model to look
beyond neighbouring items and access long-range
context. Experimental results demonstrate the ef-
fectiveness of the proposed method over two tasks:
forum thread discourse analysis, and named entity
recognition.

Memory pt,i

. . .
Manchester 0.23
United 0.00
face 0.00
Juventus 0.65
in 0.00
Europe 0.00
. . .

European champions
Juventus . . .

Memory pt,i

. . .
, 0.00
Interfax 0.32
news 0.00
agency 0.00
said 0.00
. 0.00
Interfax 0.68

Interfax quoted
Russian . . .

Table 3: An NER example showing learned atten-
tion to long-range contextual dependencies. The
last row is the current sentence. The underlined
words indicate the target word xt, and the dashed
line indicates a sentence boundary.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning (ICML 2009). Mon-
treal, Canada, pages 41–48.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neu-
ral Networks 5(2):157–166.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
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