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Abstract

We propose to improve word sense
embeddings by enriching an automatic
corpus-based method with lexicographic
data. Information from a lexicon is intro-
duced into the learning algorithm’s objec-
tive function through a regularizer. The
incorporation of lexicographic data yields
embeddings that are able to reflect expert-
defined word senses, while retaining the
robustness, high quality, and coverage of
automatic corpus-based methods. These
properties are observed in a manual in-
spection of the semantic clusters that dif-
ferent degrees of regularizer strength cre-
ate in the vector space. Moreover, we
evaluate the sense embeddings in two
downstream applications: word sense dis-
ambiguation and semantic frame predic-
tion, where they outperform simpler ap-
proaches. Our results show that a corpus-
based model balanced with lexicographic
data learns better representations and im-
prove their performance in downstream
tasks.

1 Introduction

Word embeddings, as a tool for representing the
meaning of words based on the context in which
they appear, have had a considerable impact on
many of the traditional Natural Language Process-
ing tasks in recent years. (Turian et al., 2010;
Collobert et al., 2011; Socher et al., 2011; Glo-
rot et al., 2011) This form of semantic representa-
tion has come to replace in many instances tradi-
tional count-based vectors (Baroni et al., 2014), as
they yield high-quality semantic representations in
a computationally efficient manner, which allows
them to leverage information from large corpora.

Due to this success, some attention has been de-
voted to the question of whether their represen-
tational power can be refined to further advance
the state of the art in those tasks that can bene-
fit from semantic representations. One instance in
which this could be realized concerns polysemous
words, which has led to several attempts at repre-
senting word senses instead of simple word forms.
Doing so would help avoid the situation in which
several meanings of a word have to be conflated
into just one embedding, typical of simple word
embeddings.

Among the different approaches to learning
word sense embeddings, a distinction can be made
between those that make use of a semantic net-
work (SN) and those that do not. Approaches
in the latter group usually apply an unsupervised
strategy for clustering instances of words based on
the context formed by surrounding words. The re-
sulting clusters are then used to represent the dif-
ferent meanings of a word. These representations
characterize word usage in the training corpus
rather than lexicographic senses, and run the risk
of marginalizing under-represented word senses.
Nonetheless, for well represented word senses,
this strategy proves to be effective and adaptable
to changes.

The alternative is to integrate an SN in the learn-
ing process. This kind of resource encodes a lex-
icon of word senses, connecting lexically and se-
mantically related concepts, usually in the form of
a graph. Methods that take this approach are able
to work with lexicographic word senses as defined
by experts, usually integrating them in different
ways with corpus-learned embeddings. However,
their completeness depends on the quality of the
underlying SN.

In this paper, we present an approach that tries
to achieve a balance between these two variants.
We propose to make use of an SN for learn-
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ing word sense embeddings by leveraging its sig-
nal through a regularizer function that is applied
on top of a traditional objective function used to
learn embeddings from corpora. In this manner,
our model is able to merge these two opposed
sources of data with the expectation that each one
will balance the limitations of the other: flexible,
high-quality embeddings learned from a corpus,
with well defined separation between the expert-
defined senses of any given polysemic word. The
influence of each source of information can be reg-
ulated through a mix parameter.

As the corpus-based part of our model, we use
a version of the Skip-gram (Mikolov et al., 2013)
model that is modified so that it is able to learn
two distinct vocabularies: word senses and word
forms as introduced by Nieto-Piña and Johansson
(2015). Regarding the SN data, we focus our at-
tention on its underlying graph. We assume that
neighboring nodes in such a graph correspond to
semantically related concepts. Thus, given a word
sense, a sequence of related word senses can be
generated from its neighbors. A regularizer func-
tion can then be used to update their correspond-
ing embeddings so that they become closer in the
vector space. This has the benefit of creating clear
separations between the different senses of poly-
semic words, precisely as they are described in the
SN, even in the cases where this separation would
not be clear from the data in a corpus.

We give an overview of related work in Sec-
tion 2, and our model is described in detail in Sec-
tion 3. The resulting word sense embeddings are
evaluated in Section 4 on two separate automated
tasks: word sense disambiguation (WSD) and lex-
ical frame prediction (LFP). The experiments used
for evaluation allow us to investigate the influence
of the lexicographic data on the embeddings by
comparing different model parameterizations. We
conclude with a discussion of our results in Sec-
tion 5.

2 Related Work

The recent success of word embeddings as ef-
fective semantic representations across the broad
spectrum of NLP tasks has led to an increased in-
terest in developing embedding methods further in
order to acquire finer-grained representations able
to handle polysemy and homonymy. This effort
can be divided into two approaches: those that
tackle the problem as an unsupervised task, aiming

to discover different usages of words in corpora,
and those that make use of knowledge resources
as a way of injecting linguistic knowledge into the
models.

Among the earliest efforts in the former group
is the work of Reisinger and Mooney (2010) and
Huang et al. (2012), who propose to cluster occur-
rences of words based on their contexts to account
for different meanings. With the advent of the
Skip-gram model (Mikolov et al., 2013) as an ef-
ficient way of training prediction-based word em-
bedding models, much of the research into obtain-
ing word sense representations revolved around it.
Neelakantan et al. (2014) and Nieto-Piña and Jo-
hansson (2015) make use of context-based word
sense disambiguation (WSD) during corpus train-
ing to allow on-line learning of multiple senses of
a word with modified versions of Skip-gram. Li
and Jurafsky (2015) and Bartunov et al. (2016)
apply stochastic processes to allow for represen-
tations of a variable number of senses per word to
be learnt in unsupervised fashion from corpora.

The embeddings obtained using this approach
tend to be word-usage oriented, rather than repre-
sent formally defined word senses. While this is
descriptive of the texts in the corpus at hand, it can
be problematic for generalization. For instance,
word senses that are underrepresented or absent
in the training corpus will not be assigned a func-
tional embedding. On the other hand, due to the
ability of these models to process large amounts
of data, well-represented word senses will acquire
meaningful representations.

The alternative approach to unsupervised meth-
ods is to include data from knowledge resources,
usually graph-encoded semantic networks (SN)
such as WordNet (Miller, 1995). Chen et al.
(2014) and Iacobacci et al. (2015) propose to
make use of knowledge resources to produce a
sense-annotated corpus, on which known tech-
niques can then be applied to generate word sense
embeddings. A usual way of circumventing the
lack of sense-annotated corpora is to apply post-
processing techniques onto pre-trained word em-
beddings as a way of leveraging lexical informa-
tion to produce word sense embeddings. The fol-
lowing models share this method: Johansson and
Nieto-Piña (2015) formulate an optimization prob-
lem to derive multiple word sense representations
from word embeddings, while Pilehvar and Collier
(2016) and one of the models proposed by Jauhar
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et al. (2015) use graph learning techniques to do
so.

A characteristic of this approach is that these
models can generate embeddings for a complete
inventory of word senses. However, the depen-
dence on manually crafted resources can poten-
tially lead to incompleteness, in case of unlisted
word senses, or to inflexibility in the face of
changes in meaning, failing to account for new
meanings of a word.

The model that we present in this article tries
to preserve desirable characteristics from both ap-
proaches. On one side, the model learns word
sense embeddings from a corpus using a predic-
tive learning algorithm that is efficient, stream-
lined, and flexible with respect to being able to dis-
criminate between different usages of a word from
running text. This learning algorithm is based on
the idea of adding an extra latent variable to the
Skip-gram objective function to account for dif-
ferent senses of a word, that has been explored in
previous work by Jauhar et al. (2015) and Nieto-
Piña and Johansson (2015). On the other side, the
learning process is guided by a regularizer func-
tion that introduces information from an SN, in an
attempt to achieve a clear, complete, and fair divi-
sion between the different senses of a word. Fur-
thermore, from a technical point of view, the effect
of the regularizer function is applied in parallel to
the embedding learning process. This eliminates
the need for a two-step training process or pre-
trained word embeddings, and makes it possible
to regulate the influence that each source of data
(corpus and SN) has on the learning process.

3 Model Description

3.1 Learning Word Sense Embeddings

The Skip-gram word embedding model (Mikolov
et al., 2013) works on the premise of training the
vector for a wordw to be able to predict those con-
text words ci with which it appears often together
in a large training corpus, according to the follow-
ing objective function:

n∑
i=1

log p(ci|w)

where p(ci|w) can be approximated using the soft-
max function, The model, thus, works by main-
taining two separate vocabularies which represent
word forms in their roles as target and context

words. The resulting word embeddings (usually
those vectors trained for the target word vocabu-
lary) are able to store meaningful semantic infor-
mation about the words they represent.

The original Skip-gram model is, however, lim-
ited to word forms in both its vocabularies. Nieto-
Piña and Johansson (2015) introduced a modifica-
tion of this model in which the target vocabulary
holds a variable number of vectors for each word
form, intended to represent its different senses.
The training objective of such a model now has
the following shape:

log p(s|w) +
n∑

i=1

log p(ci|s) (1)

Thus the word sense embeddings are trained to
maximize the log-probability of context words ci
given a word’s sense s plus the log-probability of
that sense given the wordw. For our purposes, this
prior is a constant, p(s|w) = 1

n , as we do not have
information on the probability of each sense of a
given word.

This formulation requires a sense s of word w
to be selected for each instance in which the ob-
jective function above is applied. This word sense
disambiguation is applied on-line at training time
and based on the target word’s context: The sense
s chosen to disambiguate an instance of w is the
one whose embedding maximizes the dot product
with the sum of the context words’ embeddings.

arg max
s

es
∑

i
ci∑

s e
s
∑

i
ci

(2)

This unsupervised model learns different usages
of a word with minimal overhead computation on
top of the original, word-based Skip-gram. The
number of senses per word can be obtained from a
lexicon or set to a fixed number.

3.2 Embedding a Lexicon

In order to adapt the graph-structured nature of the
data in an SN to be used in continuous representa-
tions, we propose to introduce it through a regular-
izer that can act upon the same embeddings trained
by the unsupervised model described above.

Any given node s in a graph will have a set of
neighbors ni directly connected to it. In the graph
underlying an SN, we assume ni to be lexically
or semantically similar to s. In this setting, a col-
lection of sequences composed of word senses s
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and ni can be collected by visiting all nodes in
the SN’s graph and collecting its immediate neigh-
bors. Note that extracting such a collection of se-
quences from a semantic graph follows quite nat-
urally, but in fact it could be generated from any
other resource that relates concepts, such as a the-
saurus, even if it is not encoded in a graph, as long
as the relations it contains are relevant to the model
being trained.

We propose to use a collection of sequences of
related word senses to update their correspond-
ing word sense vectors by pulling any two vectors
closer together in their geometric space whenever
they are encountered in a sequence. This action
can be easily modeled by minimizing the follow-
ing expression:

k∑
i=1

||s− ni||2 (3)

for each sequence of word senses
(s, n1, n2, . . . , nk). By minimizing the dis-
tance in the vector space between vectors
representing interconnected concepts according
to the SN’s organization, the vector model is
effectively representing that organization in a way
that geometrical distance correlates with lexical
or semantical relatedness, a central concept in the
word embedding literature.

3.3 Combined Model

The two preceding sections describe the two parts
of a combined model that is able to learn simulta-
neously from a corpus and an SN. This is achieved
by training embeddings from a corpus with the
objective described in Equation 1, and comple-
menting this procedure with lexicographic data by
means of using Equation 3 as a regularizer. The
extent of the regularizer’s influence on the model
is adapted by a mix parameter ρ ∈ [0, 1]: the
higher the value of ρ, the more influence the SN
data has on the model, and vice versa.

Thus, the objective function of our model is as
follows:

log p(s|w)+(1−ρ)
n∑

i=1

log p(ci|s)−ρ
m∑

j=1

||s−nj ||2

In practice, this objective is realized by alter-
nating updates through each of the model’s parts,
the number of which is regulated by ρ. Updates on
the corpus-based part are executed with Skip-gram

with negative sampling (Mikolov et al., 2013),
adapted to work with a vocabulary of word senses
as explained in §3.1.

On top of the formulation of the lexicon-based
part of the model given in the previous section we
propose two variations on this model in order to
explore the extent to which the SN data can be
used to influence the combined model explained
in the following section. The initial formulation
of the model will be referenced as V0 in this pa-
per.

In the first variation (henceforth V1) we propose
to only apply Equation 3 on word senses pertain-
ing to polysemous words. If by using the SN we
intend to learn clear separations between differ-
ent senses of a word, it attends to reason to limit
its application to those cases, while monosemous
words can be sufficiently well trained by the usual
corpus-based approach, and act as semantic an-
chors in the broader vector space.

The second variation (henceforth V2) deals with
the specific architecture of the corpus-based train-
ing algorithm. As mentioned in the previous sec-
tion, this model trains a target and a context vo-
cabulary. We propose to use the regularizer to act
not only on word sense vectors, but also on con-
text (word form) vectors. By doing this we expect
the context vocabulary to be ready for instances of
different senses of a word, training context vectors
to be potentially more effective in the disambigua-
tion scheme introduced in Equation 2. This varia-
tion introduces an extra term into Equation 3,

n∑
i=0

||w(s)− w(ni)||2

where w(x) is a mapping from a given sense x to
its corresponding word form.

4 Experiments

4.1 Experimental Setting

We trained the three variants of our model using
different parameterizations of ρ ∈ (0, 1). Each of
these instances learned target and context embed-
dings of 50 dimensions, using a window of size 5
on the corpus-based part of the training algorithm,
for a total number of 5 iterations over a number of
updates equal to the size of the training corpus.

Below we describe the lexicon and corpus used
to train the sense embeddings.
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4.1.1 SALDO: a Semantic Network of
Swedish Word Senses

SALDO (Borin et al., 2013) is the largest graph-
structured semantic lexicon available for Swedish.
The version used here contains roughly 125,000
concepts (word senses) organized into a single se-
mantic network.

The sense nodes in the SALDO network are
connected by edges that are defined in terms of se-
mantic descriptors. A descriptor of a sense is an-
other sense used to define its meaning. The most
important descriptor is called the primary descrip-
tor (PD), and since every sense in SALDO (except
an abstract root sense) has a single unique PD, the
PD subgraph of SALDO forms a tree. In most
cases, the PD of a sense s is a hypernym or a syn-
onym of s, but other types of semantic relations
are also possible.

To exemplify, Figure 1 shows a fragment of
the PD tree. In the example, there are some cases
where the PD edges correspond to hypernymy,
such as hard rock being a type of rock music,
which in turn is a type of music, but there are
also other types of relations, such as music being
defined in terms of to sound.

lata..2 ’to sound’

musik..1 ’music’

rock..2 ’rock music’

ljud..1 ’sound’

jazz..1 ’jazz’ spela..1 ’to play’

’instrument’’hard rock’ instrument..1

gitarr..1 ’guitar’

hardrock..1
o

o

Figure 1: A fragment of the network in SALDO.

4.1.2 Training Corpus
For training the embedding models, we created
a mixed-genre corpus of approximately 1 bil-
lion words downloaded from Språkbanken, the
Swedish language bank.1 The texts were to-
kenized, part-of-speech-tagged and lemmatized.
Compounds were segmented automatically and
when a compound-word lemma was not listed as
an entry in the SALDO lexicon, we used the com-
pound parts instead. For instance, hårdrock ‘hard
rock’ would occur as a single token in the corpus,
while rockstjärna ‘rock star’ would be split into
two separate tokens.

1http://spraakbanken.gu.se

4.2 Qualitative Inspection of Word Senses

By inspecting lists of nearest neighbors to a given
embedding, some insight can be gained into how
a model represents the meaning of the concept it
represents. It is especially interesting in the case
of polysemous words, where the neighbors of each
of its senses can help judging how well it manages
to separate their different meanings.

In Table 1 we list nearest neighbors for each of
the two senses of the Swedish word rock: ‘coat’
and ‘rock music’. The neighboring concepts in the
table are extracted from two separate vector mod-
els trained with different parameterizations for the
mix parameter ρ: The first, ρ = 0.01, has little
influence from the lexicon and thus is similar to
a corpus-only approach; the second, ρ = 0.5, al-
lows for more information from the lexicon to in-
fluence the embeddings. In our corpus, the music
sense is overrepresented; this can be seen in the
table, where both senses trained with ρ = 0.01
have most of their nearest neighbors semantically
related to music. The model that is more influ-
enced by the lexicon with ρ = 0.5 is, however,
able to learn two distinct senses. Note how the mu-
sic sense is not negatively affected by this change:
many of its nearest neighbors are the same in both
models, and all of them keep the music-related
topic in common.

It is also interesting to filter these lists of near-
est neighbors to limit them to unlisted words; i.e.,
words that are not present in the lexicon and ap-
pear only in the corpus. This provides an ob-
servation of how well those embeddings that are
trained by both parts of the model are integrated
with those others whose training is based only on
the corpus. Table 2 contains such lists of unlisted
items for the two senses of rock on two mod-
els with different parameterization. It presents a
similar behavior to the previous experiment: In a
model with low influence from the lexicon, the
representations of both senses tend towards that
of the overrepresented one; when more influence
from the lexicon is allowed, a clear separation of
the two senses into their expected meanings is ob-
served.

4.3 Word Sense Disambiguation

We trained and evaluated several parameteriza-
tions of our model on a Swedish language word
sense disambiguation (WSD) task. The aim of this
task is to select a sense of an instance of a polyse-
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rock-1 ‘coat’ rock-2 ‘rock music’
ρ = 0.01 ρ = 0.5 ρ = 0.01 ρ = 0.5
syrtut ‘frock coat’ syrtut ‘frock coat’ hårdrock ‘hard rock music’ punk ‘punk music’
Rhythm ‘rhythm music’ kappa ‘coat’ pop ‘pop music’ rappa ‘to rap’
rockband ‘rock band’ kåpa ‘cowl’ punk ‘punk music’ rap ‘rap music’
Peepshows ‘peep shows’ päls ‘fur coat’ jazza ‘to jazz’ pop ‘pop music’
skaband ‘ska band’ mudd ‘cuff’ dödsmetall ‘death metal music’ jam ‘music jam’

Table 1: Nearest neighbors for the two senses of rock ‘coat’ and ‘ rock music’ for different ρ.

rock-1 ‘coat’ rock-2 ‘rock music’
ρ = 0.01 ρ = 0.5 ρ = 0.01 ρ = 0.5
Rhythm ‘rhythm music’ jesussandaler ‘Jesus sandals’ nu-metal ‘nu metal’ metal ‘metal music’
Peepshows ‘peep shows’ tubsockar ‘tube socks’ goth ‘ goth music’ rnb ‘RnB music’
skabandk ‘ska band’ blåjeans ‘blue jeans’ psytrance ‘ psytrance music’ indie ‘indie music’
Punkrock ‘punk rock’ snowjoggers ‘snow joggers’ boogierock ‘boogie rock’ dubstep ‘dubstep music’
sleaze ‘to sleaze’ midjekort ‘doublet jacket’ synthband ‘synth music band’ goth ‘goth music’

Table 2: Nearest unlisted neighbors for the two senses of rock ‘coat’ and ‘rock music’ for different ρ.

mous word in context. For this purpose, we use a
disambiguation mechanism similar to the one in-
troduced in §3.1. Given an ambiguous word in
context, a score is calculated for each of its pos-
sible senses by applying the expression in Equa-
tion 2; however, to correct for skewed sense dis-
tributions, we replaced the uniform prior with a
power-law prior P (sk|w) ∝ k−2, where k is the
numerical identifier of the sense. The highest scor-
ing sense is then selected to disambiguate that in-
stance of the word.

As baselines for this experiment, we used ran-
dom sense and first sense2 selection. Additionally,
we show the results achieved by a disambiguation
system, UKB, based on Personalized PageRank
(Agirre and Soroa, 2009), and which was trained
on the PD tree from SALDO. The implementa-
tion of this model makes no assumptions on the
underlying graph and thus it is easily adaptable
to work with any kind of SN. Our models were
all parameterized with ρ = 0.9 based on the re-
sults obtained on the SweFN dataset. All evalu-
ated systems including the baselines are unsuper-
vised: none of them has used a sense-annotated
corpus during training.

4.3.1 Sense-annotated Datasets

We evaluated the WSD systems on eleven differ-
ent datasets, which to our knowledge are all sense-
annotated datasets that exist for Swedish. The
datasets consist of instances, where each instance

2No frequency information is available for SALDO’s
sense inventory and the senses are not ordered by frequency.
The senses are ordered by lexicographers so that the lower-
numbered senses are more “central” or “primitive”, which of-
ten but not always correlates with the sense frequency.

is a sentence where a single target word has been
selected for disambiguation.

Two datasets consist of lexicographical exam-
ples (Lex-Ex): the SALDO examples (SALDO-
ex) and Swedish FrameNet examples (SweFN-ex).
The latter of these is annotated in terms of seman-
tic frames, but there is a deterministic mapping
from frames to SALDO senses.

Two additional datasets are taken from the
Senseval-2 Swedish lexical sample task (Kokki-
nakis et al., 2001). It uses a different sense in-
ventory, which we mapped manually to SALDO
senses. The lexical sample originally consisted
of instances for 40 lemmas, out of which we re-
moved 7 lemmas because they were unambiguous
in SALDO. Since we are using an unsupervised
experimental setup, we report results not only on
the designated test set but also on the training set.

The other datasets come from the Koala anno-
tation project (Johansson et al., 2016). The latest
version consists of seven different corpora, each
sampled from text in a separate domain: blogs,
novels, Wikipedia, European Parliament proceed-
ings, political news, newsletters from a govern-
ment agency, and government press releases. Un-
like the two lexicographical example sets and the
Senseval-2 lexical sample, in which the instances
have been selected by lexicographers to be proto-
typical and to have a good coverage of the sense
variation, the instances in the Koala corpora are
annotated ‘as is’ in running text.

The sentences in all datasets were tokenized,
compound-split, and lemmatized, and for each
target word we automatically determined the set
of possible senses, given its context and inflec-

289



Test set Subset Size RND S1 UKB V0 V1 V2
Lex-Ex Average 2,365 39.86 53.90 54.76 61.23 61.26 58.34

SweFN-Ex 1,197 40.43 54.80 54.64 60.90 61.90 59.06
SALDO-Ex 1,168 39.29 53.00 54.88 61.56 60.62 57.62

Senseval Average 8,237 35.90 50.36 44.37 54.29 52.95 53.61
Train 6,995 35.98 50.48 45.43 54.40 53.57 53.11
Test 1,242 35.83 50.24 43.32 54.19 52.33 54.11

Koala Average 11,167 41.83 69.50 67.17 65.17 73.49 68.59
Blogs 2,222 41.86 71.02 66.70 60.98 67.78 64.27
Europarl 1,838 41.80 66.16 65.61 61.26 71.60 68.28
Novels 2,446 41.04 72.85 67.46 67.95 73.47 71.30
Wikipedia 2,444 42.50 75.98 67.59 73.65 76.68 73.98
Political news 1,082 40.60 69.41 69.04 67.47 75.69 69.59
Newsletters 280 42.04 63.57 65.00 58.93 73.21 64.29
Press releases 855 42.99 67.49 68.77 65.96 76.02 68.42

Total 21,769 40.40 63.18 60.77 62.48 67.53 64.00

Table 3: WSD accuracy on baselines, UKB, and the three variants of our model (ρ = 0.9) on all test sets.

tion. We only considered senses of content words:
nouns, verbs, adjectives, and adverbs. Multi-word
targets were not included, and we removed all in-
stances where only one sense was available.3

4.3.2 Disambiguation Results

Table 3 shows disambiguation accuracies for our
models on the datasets described above, along
with the scores achieved by our baselines and the
UKB model. The results of each variant of our
model were obtained with a parameterization of
ρ = 0.9, which was chosen as the best scoring
value on the Swe-FN subset used as validation set.
The model which only applies the regularizer to
polysemous words (V1) dominates most highest
scores, overtaken in some instances by V0 and in
one by the first sense baseline. Note how the gen-
eral magnitudes of the scores within each type of
dataset underline their different characteristics ex-
plained above.

Additionally, for the sake of making a more de-
tailed analysis of the influence of the parameter
ρ that dominates the extent of the lexicon’s influ-
ence on the model, Figure 2 shows the average
performance of our models on each dataset for a
wide range of values for ρ. There is a clear pattern
across all models and datasets by which a greater
input from the SN translates into a better perfor-
mance in WSD. These figures also confirm the su-
perior performance of the variant V1 of our model
seen in Table 3.

3In addition, to facilitate a comparison to the UKB system
as a baseline, we removed a small number of instances that
could not be lemmatized unambiguously.

4.4 Frame Prediction

In our second evaluation, we investigated how
well the sense vector models learned by the dif-
ferent training algorithms correspond to seman-
tic classes defined by the Swedish FrameNet
(Friberg Heppin and Toporowska Gronostaj,
2012). In a frame-semantic model of lexical mean-
ing (Fillmore and Baker, 2009), the meaning of
words is defined by associating them with broad
semantic classes called frames; for instance, the
word falafel would belong to the frame FOOD.
Important classes of frames include those corre-
sponding to objects and people, mainly populated
by nouns, such as FOOD or PEOPLE BY AGE;
verb-dominated frames corresponding to events,
such as IMPACT, STATEMENT, or INGESTION;
and frames dominated by adjectives, often refer-
ring to relations, qualities, and states, e.g. ORIGIN

or EMOTION DIRECTED.
In case a word has more than one sense, it may

belong to more than one frame. In the Swedish
FrameNet, unlike its English counterpart, these
senses are explicitly defined using SALDO (see
§4.1.1): for instance, for the highly polysemous
noun slag, its first sense (‘type’) belongs to the
frame TYPE, the second (‘hit’) to IMPACT, the
third (‘battle’) to HOSTILE ENCOUNTER, etc.

In the evaluation, we trained classifiers to de-
termine whether a SALDO sense, represented as
a sense vector, belongs to a given frame or not.
To train the classifiers, we selected the 546 frames
from the Swedish FrameNet for which at least 5
entries were available. In total we had 28,842
verb, noun, adjective, and adverb entries, which
we split into training (67% of the entries in each
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Figure 2: Average WSD accuracies on all instances of each dataset for different values of ρ on the three
variants of our model.

frame) and test sets (33%). For each frame, we
used LIBLINEAR (Fan et al., 2008) to train a lin-
ear support vector machine, using the vectors of
the senses associated with that frame as positive
training instances, and all other senses listed in
FrameNet as negative instances.
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Figure 3: MAP scores for the frame prediction
classifiers for the different types of models.

4.4.1 Evaluation Results
At test time, for each frame we applied the SVM
scoring function of its classifier to each sense in
the test set. The ranking induced by this score was
evaluated using the Average Precision (AP) met-
ric commonly used to evaluate rankers; the goal of

this ranking step is to score the senses belonging to
the frame higher than those that do not. We com-
puted the Mean Averaged Precision (MAP) score
by macro-averaging the AP scores over the set of
frames.

Figure 3 shows the MAP scores of frame pre-
dictors based on different sense vector models. We
compared the three training algorithms described
in Section 3 for different values of the regulariza-
tion strength parameter ρ. As a baseline, we in-
cluded a model that does not distinguish between
different senses: it represents a SALDO sense with
the word vector of its lemma.

As the figure shows, almost all sense-aware vec-
tor models outperformed the model that just used
lemma vectors. The result shows tendencies that
are different from what we saw in the WSD ex-
periments. The best MAP scores were achieved
with mid-range values of ρ, so it seems that this
task requires embeddings that strike a balance be-
tween representing the lexicon structure faithfully
and representing the cooccurrence patterns in the
corpus. An model with very light influence of the
lexicon was hardly better than just using lemma
embeddings, and unlike what we saw for the WSD
task we see a strong dropoff when increasing ρ.
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In addition, the tendencies here differ from the
WSD results in that the training algorithm that
only applies the lexicon-based regularizer to pol-
ysemous words (V1) gives lower scores than the
other two approaches. We believe that this is be-
cause it is crucial in this task that sense vectors
are clustered into coherent groups, which makes it
more useful to move sense vectors closer to their
neighbors even when they are monosemous; this
as opposed to the WSD task, where it is more
useful to leave the monosemous sense vectors in
place as “anchors” for the senses of polysemous
words. The context-regularized training algorithm
(V2) gives no improvement over the original ap-
proach (V0), which is expected since context vec-
tors are not used in this task.

Frame Lemma V0 V1
ANIMALS 0.73 0.86 0.76
FOOD 0.72 0.84 0.77
REMOVING 0.20 0.50 0.22
MAKE NOISE 0.40 0.62 0.46
ORIGIN 0.90 0.90 0.89
COLOR 0.73 0.88 0.80
FREQUENCY 0.40 0.43 0.35
TIME VECTOR 0.40 0.52 0.27

Table 4: Frame prediction AP scores for selected
frames dominated by nouns, verbs, adjectives, and
adverbs respectively.

To get a more detailed picture of the strengths
and weaknesses of the models in this task, we
selected eight frames: two frames dominated by
nouns, two for verbs, two for adjectives, two for
adverbs. Table 4 shows the AP scores for these
frames of the lemma-vector baseline, the initial
approach (V0), and the version that only regu-
larizes senses of polysemous words (V1). All
lexicon-aware models used a ρ value of 0.7. Al-
most across the board, the V0 method gives very
strong improvements. The exception is the frame
ORIGIN, which contains adjectives of ethnicity
and nationality (Mexican, African, etc); this set of
adjectives is already quite coherently clustered by
a simple word vector model and is not substan-
tially improved by any lexicon-based approach.

5 Conclusion

In this article we have introduced a family of word
sense embedding models that are able to lever-
age information from two concurrent sources of
information: a semantic network and a corpus.
Our hypothesis was that by combining them, the

robustness and coverage of embeddings trained
on a large corpus could achieve a more balanced
and linguistically informed representation of the
senses of polysemic words. This point has been
proved in the evaluation of our models on Swedish
language tasks.

A manual inspection of the word sense repre-
sentation through their nearest neighbors exempli-
fied it in §4.2. Indeed, an increased influence from
the SN causes a clearer distinction between differ-
ent senses of a word, even in the case where one
of them is underrepresented in the corpus.

A WSD experiment was carried out on a variety
of sense-annotated datasets. Our model consis-
tently outperformed random and first sense base-
lines, as well as a comparable graph-based WSD
system trained on a Swedish SN, which underlines
the fact that the strength of our model resides in a
combination of lexicon- and corpus-learning.

This is further confirmed in the evaluation of
our model on a frame prediction task: A well
balanced combination of lexicon and corpus data
produces word sense embeddings that outperform
common word embeddings when used to predict
their semantic frame membership. Furthermore,
this superiority is uniform across common frames
dominated by different parts of speech.

An analysis of different values of our model’s
mix parameter ρ showed the value of using lexi-
cographic information in conjunction with corpus
data. Especially on WSD, larger values of ρ (i.e.,
more influence from the SN) generally lead to im-
proved results.

In conclusion, we have shown that automatic
word sense representation benefits greatly from
using a semantic network in addition to the
usual corpus-learning. The combination of these
sources of information yields robust, high-quality,
and balanced embeddings that excel in down-
stream tasks where accurate representation of
word meaning is crucial. Given these findings, we
intend to continue exploring more refined ways in
which data from a semantic network can be lever-
aged to increase sense-awareness in embedding
models.
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