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Abstract

To enhance the expression ability of
distributional word representation learn-
ing model, many researchers tend to in-
duce word senses through clustering, and
learn multiple embedding vectors for each
word, namely multi-prototype word em-
bedding model. However, most related
work ignores the relatedness among word
senses which actually plays an impor-
tant role. In this paper, we propose a
novel approach to capture word sense re-
latedness in multi-prototype word embed-
ding model. Particularly, we differenti-
ate the original sense and extended senses
of a word by introducing their global oc-
currence information and model their re-
latedness through the local textual con-
text information. Based on the idea
of fuzzy clustering, we introduce a ran-
dom process to integrate these two types
of senses and design two non-parametric
methods for word sense induction. To
make our model more scalable and ef-
ficient, we use an online joint learning
framework extended from the Skip-gram
model. The experimental results demon-
strate that our model outperforms both
conventional single-prototype embedding
models and other multi-prototype embed-
ding models, and achieves more stable
performance when trained on smaller data.

1 Introduction

Word embedding, representing words in a low di-
mentional vector space, plays an increasing im-
portant role in various IR and NLP related tasks,
such as language modeling (Bengio et al., 2006;
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Mnih and Hinton, 2009), named entity recog-
nition and disambiguation (Turian et al., 2010;
Collobert et al., 2011), and syntactic parsing
(Socher et al., 2011, 2013). This trend has
been accelerated by the CBOW and the Skip-
gram models of (Mikolov et al., 2013b,a) due to
its efficiency and remarkable semantic composi-
tionality of embedding vectors (e.g. vec(king)-
vec(queen)=vec(man)-vec(woman)). However,
the assumption that each word is represented by
only one single vector is problematic when deal-
ing with the polysemous words.
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Figure 1: Relatedness among senses of the word
“book”.

To enhance the expression ability of the embed-
ding model, recent research has a rising enthusi-
asm for representing words at sense level. That
is, an individual word is represented as multiple
vectors, where each vector corresponds to one of
its meanings. Pervious work mostly focus on us-
ing clustering to induce word senses (each clus-
ter refers to one of the senses) and then learn the
word sense representations respectively (Reisinger
and Mooney, 2010; Huang et al., 2012; Tian et al.,
2014; Neelakantan et al., 2014; Li and Jurafsky,
2015). However, the above approaches ignore the
relatedness among the word senses. Hence the fol-
lowing limitations arise in the usage of hard clus-
tering. First of all, many clustering errors will
be caused by using hard clustering based method
because the senses of the polysemous word actu-
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ally have no distinct semantic boundary (Liu et al.,
2015). Secondly, due to dividing the occurrences
of a word into separate clusters, the embedding
model will suffer from more data sparsity issue as
compared to the Skip-gram model. Thirdly, the
embedding quality is considerably sensitive to the
clustering results due to the isolation of different
sense clusters.

To address this problem, we learn the embed-
ding vectors of the word senses with some com-
mon features if the senses are related. Instead
of clearly cutting the sense cluster boundaries,
one occurrence of the word will be assigned into
multiple sense clusters with different probabili-
ties, which agrees with a classic task of word
sense annotation, Graded Word Sense Assignment
(Erk and McCarthy, 2009; Jurgens and Klapaftis,
2013).

Actually, the senses of a polysemous word
are related not only by the contiguity of mean-
ing within a semantic field', but also by the ex-
tended relationship between the original meaning
and the extended meaning (Von Engelhardt and
Zimmermann, 1988). We investigate the relat-
edness of the synsets (word senses) in WordNet
(Miller, 1995) through the Wu & Palmer mea-
sure?> (Wu and Palmer, 1994), and present an in-
teresting example of the word “book™ in Figure
1. The right side is the similarity matrix of its 11
nominal synsets, where s; denotes the ith synset.
Each tile represents a similarity value between
two synsets whose color deepens as the value in-
creases. The left side is their frequencies in Word-
Net. On one hand, we can see apparent correla-
tions among these senses in different levels. Note
that (s1, s2,$11) are strongly related, and so are
(s6, s7) and (ss, S9, $10). This is because of their
extended relationship. Take (s1, s2,s11) for ex-
ample, s; refers to the sense of “the written work
printed on pages bound together”, so refers to
“physical objects consisting of a number of pages
bound together” and s3 refers to “a number of
sheets (or stamps, etc.) bound together”. QObvi-
ously, s; is the original meaning, so and s;; are
the extended meanings. Moreover, the relatedness
suggests that the senses share some common tex-
tual features in the contexts. On the other hand,
the frequency of the original meaning s; is much

!According to https://en.wikipedia.org/wiki/Polysemy.

>The Wu & Palmer measure is an edge based approach
that is tied to the structure of WordNet. Also, one can try
different relatedness approaches and will find similar results.
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higher than that of the extended meanings sy and
511, which suggests that the word sense distribu-
tion in corpus should be taken into account when
modeling word sense relatedness.

In this paper, we propose a novel method,
namely FCSE (Fuzzy Clustering-based multi-
Sense Embedding model), that models the relat-
edness among word senses by using the fuzzy
clustering based method for word sense induc-
tion, and then learns sense embeddings via a vari-
ant of Skip-gram model. The basic idea behind
fuzzy clustering is that the senses may be related
and share common features through the overlaps
of the sense clusters. Based on our observations
of the original meaning and the extended mean-
ing, we further design two non-parametric meth-
ods, FCSE-1 and FCSE-2, to model the local
textual context information of senses as well as
their global occurrence distribution by incorporat-
ing the Generalized Polya Urn (GPU) model. For
efficiency and scalability, our proposed model also
adopts an online joint learning procedure.
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Figure 2: Framework of FCSE

2 The Framework of FCSE

FCSE adopts an online procedure that induces
the word sense and learns the sense embed-
dings jointly. Given a word sequence D =
{wi,wa,...,wpr}, we obtain the input of our
model, the word and its context words, by sliding
a window with the length of 2k + 1. The output
is also the context words. During the learning pro-
cess, two types of vectors are maintained for each
word, the global vector w; and its sense vectors®

3 All the vectors are randomly initialized.



w;". Note that the number of senses |.S;| is vary-
ing because the cluster method is non-parametric.

As shown in Figure 2, there are mainly two
steps: the clustering step and the embedding learn-
ing step. The former step incrementally clus-
ters all the occurrences of one word according
to its context vectors by computing the average
sum of the global vectors of the context words:
wi = ﬁ Z—kzgjgk witj. Each cluster refers to
one word sense, thus each occurrence will be an-
notated with at least one sense.

In the second step, we update the sense em-
beddings via a variant of the Skip-gram model
(Mikolov et al., 2013b). The main difference be-
tween our model and Skip-gram is that we aim to
predict the context words given the exact sense of
the target word instead of the word itself. More-
over, because several senses are assigned to the
current word with probabilities, we leverage all
the related senses to predict the context words.
The intuition is that the related senses tend to have
common context words as mentioned in Section
1. Thus, all the assigned sense vectors will be up-
dated with weights simultaneously as follows:

|Si]

M
L(D) = % D30 D> A logp(wiyjws)

i=1 —k<j<k s;
(1)

where the probability of p(w;j|w;") is defined
using softmax function, and s; denotes the sense
index of word w;. S; is the set of existing senses,
As,is the update weight of sense s;. We set the
weights proportional to the probabilities of the
current word being annotated with sense s;, which
is equivalent to the results of fuzzy clustering,
the likelihood of the context w{ assigned into the
sense cluster s;:

My, { p(si|w§)  siis sampled 2)

0 otherwise

Finally, we use negative sampling technique * for
efficient learning.

3 Word Sense Induction

Section 2 describes the framework of our model
including how to obtain the input features of clus-
tering and to use the cluster results for the sense

“More detailed information can be found in (Mikolov
et al., 2013b).
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embedding learning. In this section, we present
two fuzzy clustering based methods for clustering-
based word sense induction, FCSE-1 and FCSE-2.
Both of them are non-parametric and conduct on-
line procedures.

Based on our observations in Section 1, the oc-
currence of word senses is usually distinguishing
between the original meaning and the extended
meaning, while the original meaning and its ex-
tended meanings are semantically related with
some common textual contexts. Considering both
of the two aspects, in FCSE-1, we induce the word
sense according to the cluster probability propor-
tional to the distance of its centroid to the cur-
rent word’s contexts; and FCSE-2 utilizes a ran-
dom process, the Generalized Polya Urn (GPU)
model, to further incorporate the senses’ global
occurrence distribution.

3.1 FCSE-1

Adopting an online procedure, FCSE-1 clusters
the contexts of one word incrementally. When
first meet one word, we create a cluster with the
centroid of its context vector. Then, for each oc-
currence of the word, several existing clusters are
sampled following a probability distribution; or
a new cluster is created only if all the probabili-
ties of the context belonging to the clusters equal
to zero. Finally, all the sampled clusters will be
updated by adding the current context vector into
them.

Remember that each word w; is associated with
a global vector, varying number of clusters, and
the corresponding sense vectors. FCSE-1 mea-
sures the semantic distance of the context vector
to its cluster centers, and aims to sample the near-
est ones (maybe multiple related senses). Given
the context vector wy, the probability of the word
belonging to the existing /th sense is:

7 Sim(uf, wf)
0 if Sim(ul,w) < eunder
3)
where ,ué denotes the centroid of the /th sense
cluster, Z is the normalization term and Sim(-, -)
can be any similarity measurement. In the experi-
ments we use cosine similarity as the semantic dis-
tance measurement. €, i a pre-defined thresh-
old that indicates how easily we create a new sense
cluster. Similarly, we use another threshold €,per
for deciding the number of sampled clusters. Sup-

plos = tut) = {



pose that the probabilities {p,,|n; € S;} is ranked
in descending order, then we pick up the clus-
ters with top n; probabilities until p,,, — pn,+1 >
€upper- Note that the hyper-parameters meet 0 <
<1

€under; Cupper

3.2 FCSE-2

Since FCSE-1 uses two hyper-parameters to re-
spectively control a new cluster initialization and
the number of clusters sampled, which is difficult
to set manually. So, instead of the fixed thresholds,
we make a further randomization by introducing a
random process, GPU, in FCSE-2. Besides, more
inherit properties of the word senses can be taken
into account, including not only the local informa-
tion of the semantic distance from the context to
the cluster centers, but also the frequency, which
is related to how likely the current sense is an orig-
inal meaning or an extended meanings.

In this section, we will firstly give a brief sum-
marization of the GPU model, and then introduce
how to incorporate it into our model.

3.2.1 Generalized Polya Urn model

Polya urn model is a type of random process that
draws balls from an urn and replaces it along with
extra balls. Suppose that there are some balls of
colors in the urn at the beginning. For each draw,
the ball of the ¢th color is selected followed by the
distribution:

mg

p(color = i) = -
where m is the total number of balls, and m; is
the number of balls of the ¢th color. A standard
urn model returns the ball back along with an extra
ball of the same color, which can be seen as a rein-
forcement and sometimes expressed as the richer
gets richer. More detailed information can be
found in the survey paper (Pemantle et al., 2007).
Polya urn model can be used for non-parametric
clustering, where each data point refers to a ball
in the urn, and its cluster label is denoted by the
ball’s color.

Since the fixed replacement lacks of flexibility,
the GPU model conducts the reinforcement pro-
cess following another distribution over the colors.
That is, when a ball of color 7 is drawn, another
A;; balls of color j will be put back. Then, for
each draw, we replace the ball with different num-
ber of balls of various colors according to the dis-
tribution matrix A. As repeating this process, the
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drawing probability will be altered if the number
of extra balls are nonzero.

3.2.2 Incorporating GPU into Embedding
model

The induction process of the word senses can be
regarded as a GPU model. The original meaning
is sampled firstly, and then the extended meanings
are sampled through the reinforcement. That is,
we sample an extended meaning according to a
conditional probability given the original mean-
ing. The basic idea is that knowing the original
meaning is necessary for understanding the tar-
get word annotated with an extended meaning in a
document. For example, the extended meaning of
the word “milk” when used in the terms “glacier
milk” won’t be well understood unless we know
the original meaning of “milk”.

Correspondingly, in the GPU model, a urn de-
notes a word, the ball and the color refers to the
occurrence and the sense, respectively. Note that
each ball has an index that distinguishes different
occurrences. Thus, the balls of the same color cor-
respond to a sense cluster.

We sample the related senses in two stages. In
the first stage, for the occurrence of the word w;,
we sample a sense s;, = [ considering the global
distribution of the word senses as well as the se-
mantic distance from the context features to the
cluster center. In the second stage, several senses
are sampled conditioned on the previous result:
p<3ie = lllsio = l)

In this way, we find the original meaning and
the extended meanings separately following dif-
ferent distributions. Considering the observation
that the original meaning occurs more frequently
(as described in Section 1), we define the probabil-
ity distribution of the original meaning as follows:

i Sim(ub,wg) 1€ S,

— c y+m; 1) 1 1
p(szo ”wz) X { ’H:Ymi l is new

4

where m; is the total number of occurrences of
the target word w;, m;; is the number of the /th
cluster and we have Zf “m;; = m,;. Note that v is
a hyper-parameter that indicates how likely a new
cluster will be created, and its impact decreases as
the size of training data m; increases.

The probability of sampling an extended mean-
ing is proportional to the semantic distance of the
corresponding cluster center to the context fea-



tures as well as the cluster center sampled in the
first stage, which is defined as follows:

Sio c
]

2

®)

where €. varies from 0 to 1 and controls the
strength of the reinforcement. We will talk about
it in the next subsection.

Sampling separately, the relatedness of the orig-
inal meaning and the extended meanings are mod-
eled and each occurrence of the word has been
annotated with one original sense and several ex-
tended senses (or there is no additional extended
meanings). Note that the likelihood of the oc-
currence of the word annotated with an extended
meaning is p(sie = U'|sio = 1, w§)p(sio = l|w§).
Clearly, the probabilities of sampling the extended
meanings are always lower than that of the origi-
nal meaning.

p(sie = U'|sio = 1, w§) o €c-Sim(w;’,

)

3.3 Relationship with State-of-the-art
Methods

FCSE-1 The hyper-parameters meet 0 <
€unders Cupper < 1. €yupper 18 used to control the
number of clusters assigned to the current word,
and FCSE-1 will degrade to hard assignment if
we set €ypper = 0, which is similar with the NP-
MSSG model in (Neelakantan et al., 2014). We
can use €,,,4er to control the sense number of each
word, and an extreme case of €,,,4., = 0 denotes
that we create only a sense cluster for each word,
then the model is equivalent to the Skip-gram.

FCSE-2 The number of the extended meanings
|Sie| varies from 0 to |S; |, where S;' denotes
the set excluding the original meaning st. The
hyper-parameter 0 < €. < 1 is used to control
the strength of the GPU reinforcement as well as
the number of the extended meanings. Particu-
larly, if we set ¢ = 0, the second sample for
the extended meanings has been turned off, and
then FCSE-2 degrades to the SG+ model in (Li
and Jurafsky, 2015), which is another state-of-the-
art method for multi-prototype word embedding
model based on hard clustering. By setting v = 0
in Equation 4, which is used to control the proba-
bility of creating a new sense, FCSE-2 won’t cre-
ate new senses. Learning a single sense for each
word makes the step of sense sampling becomes
meaningless. Thus, FCSE-2 uses the only em-
bedding of the current word to predict its context
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words, which is equivalent to the Skip-gram.

4 Empirical Evaluation

In this section, we demonstrate the effectiveness
of our model from two aspects, qualitative and
quantitative analysis. For qualitative analysis, we
presents nearest 10 neighbors for each word sense
to give an intuitive impression. For quantitative
analysis, we conduct a series of experiments on
the NLP task of word similarity using two bench-
mark datasets, and explore the influence of the size
of training corpus.

4.1 Data Preparation

We train our model on Wikipedia, the April 2010
dump also used by (Huang et al., 2012; Liu et al.,
2015; Neelakantan et al., 2014). Before training,
we have conducted a series of preprocessing steps.
At first, the articles have been splitted into sen-
tences, following by stemming and lemmatization
using the python package of NLTK>. Then, we
rank the vocabulary according to their frequencies,
and only learn the embeddings of the top 200,000
words. The other words out of the vocabulary are
replaced by a pre-defined mark “UNK”. Note that
FCSE is slower than word2vec®, but the efficiency
is far away from being an obstacle on training.

Below we describe three baseline methods and
parameter settings, followed by qualitative anal-
ysis of nearest neighbors of each word sense.
Then, quantitative performance will be presented
via experiments on two benchmark word similar-
ity tasks.

4.2 Baseline Methods

Word Embedding model can be roughly divided
into two types: single vector embedding model
and multi-prototype embedding model. To vali-
date the performance, we compare our model with
three models of both the two types: Skip-gram,
NP-MSSG and SG+. The reason why we select
them as the baseline methods is because: (i) they
are the state-of-the-art methods of word embed-
ding model; (ii)) NP-MSSG and SG+ adopts the
similar learning framework to our model.

e Skip-gram™ aims to leverage the current
word to predict the context words and learn

Shttp://www.nltk.org/
®https://code.google.com/archive/p/
word2vec/.



Apple

Skip-gram*
loganberry, macintosh

iigs, boysenberry, apricot, nectarine, ibook, ipad, blackberry, blackcurrants,

NP-MSSG ganberry’ e]derﬂower, apriCOt

nectarine, boysenberry, peach, blackcurrants, pear, passionfruit, feijoa, lo-

writer, ibook, ipod

macintosh, mac, iigs, macworks, macwrite, bundled, compatible, laser-

FCSE-1 plum, cherry, blueberry

nectarine, blackcurrants, loganberry, pear, boysenberry, strawberry, apricot,

macintosh, imac, iigs, ibook, ipod, pcpaint, iphone, booter, ipad, macbook

Berry

Skip-gram*

greengage, thimbleberry, loganberry, dewberry, boysenberry, pome, pas-
sionfruit, acai, maybellene, blackcurrant

NP-MSSG*
acai, loganberry, ripe

thimbleberry, pome, nectarine, greengage, fruit, boysenberry, dewberry,

FCSE-1 berry, passionfruit, litchi

nectarine, thimbleberry, blueberry, fruit, pome, loganberry, apple, elder-

sherrell

gordy, taylor, lambert, osborne, satchell, earland, thornton, fullwood, allen,

Table 1: Nearest 10 neighbors of each sense of the words “apple” and “berry”, computed by cosine

similarity, for different models.

the embeddings within a two-layer neural
network.

e NP-MSSG* measures the distance of the cur-
rent word to each sense, picks up the nearest
one and learning its embedding via a standard
Skip-gram model.

e SG+* improves the NP-MSSG model by in-
troducing a random process that induces the
word sense with probabilities.

The symbol * denotes that we, instead of using
their released codes, carefully reimplement these
models for the sake of making the comparisons as
fairly as possible. Thus, all the models share the
same program switched by the correspondingly
parameters (as described in Section 3.3). Note that
there may be some minor differences such as op-
timizing tricks between our program and that of
their released.

4.3 Parameter Setting

As discussed in Section 3.3, our model can de-
grade to the baseline methods by switching dif-
ferent parameters: the threshold €,pper, €. and the
max number of word senses Nas 4 x. All the meth-
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ods are implemented on the same java program’,

and use, at the greatest extent, the same settings in-
cluding the training corpus, shared parameters and
the program code, etc.

Switching parameters For FCSE-1 and NP-
MSSG, €ypper 1s set 0.05 and 0, respectively. Sim-
ilarly, We set ¢, = 1 for FCSE-2, and ¢, = 0 for
SG+. When setting Nysax = 1, all the multi-
prototype word embedding models degrade to sin-
gle vector embedding model, that is, the Skip-
gram model.

Shared parameters Following the original pa-
pers of NP-MSSG and SG+, the threshold €,,,4er
in FCSE-1 is also set with -0.5, and v = 0.01 is
used in both FCSE-2 and SG+. The initial learn-
ing rate o = 0.015 is used for parameter estima-
tion. We pick up 5 words as the context window,
and 400 dimensional vectors to learn sense embed-
dings of the top 200,000 frequent words. Note that
all the parameters including the embedding vec-
tors are initialized randomly.

"We will publish the code if accepted, which
is based on the published project of SG+ in
https://github.com/jiweil/mutli-sense-embedding.



4.4 Qualitative Analysis

Before conducting the experiments on word simi-
larity task, we first give qualitative analysis of our
model as well as two baseline models® by repre-
senting the word sense with its nearest neighbors,
which are computed through cosine similarity of
the embeddings between each of the word senses
and the senses of the other words.

Table 1 presents the nearest 10 neighbors of
each sense of two words ranked through the sim-
ilarity. Skip-gram shows a mixed result of differ-
ent senses, while the other two models produce a
reasonable number of word sense, and their neigh-
bors are indeed semantically correlated. For the
word “Apple”, there are two meanings of the fruit
and technology company. NP-MSSG and FCSE-
1 can differentiate the two senses, but FCSE-1
clearly achieves a more coherent ranking results.
For the word “Berry”, FCSE-1 outperforms NP-
MSSG for it successfully identifies another sense
of person’s name except the dominant sense of
fruit. This is because “Berry” is used as a person’s
name much less frequently than a fruit. Thus, it
may cause the data sparsity issue, while our model
is capable of addressing this problem by improv-
ing the usage of training corpus, which will be fur-
ther discussed in Section 4.5.3.

4.5 Word Similarity

In this subsection, we evaluate our embeddings
on two classic tasks of measuring word similarity:
word similarity and contextual word similarity. To
better test the ability of our model to address the
problem of data sparsity, we train it using only
30% of the training corpus (sampled randomly).
Also, we give comparisons with the performance
using all the training data.

WordSim353 (Finkelstein et al., 2001) is a
benchmark dataset for word similarity. It contains
353 word pairs and their similarity scores assessed
by 16 subjects. SCWS, released by (Huang et al.,
2012), is a benchmark dataset for contextual word
similarity, which computes the semantic related-
ness between two words conditioned on the spe-
cific context. It consists 2,003 pairs of words and
their sentential contexts. WordSim353 focuses on
the ambiguity among similar words, and SCWS is
for the ambiguity of word senses in different con-

8To be fair, we only show the comparisons among FCSE-
1, NP-MSSG and Skip-gram, since the paper of SG+ (Li and
Jurafsky, 2015) didn’t give the qualitative results.

texts.

4.5.1 Evaluation Metrics

To evaluate the performance of our model, we
compute the similarity between each word pair
through some measurement, and then use the
spearman correlation between our results and the
human judgments to evaluate the performance of
the model.

Working on WordSim353, we compute the
average similarity between the word pairs the
same as(Reisinger and Mooney, 2010; Neelakan-
tan et al.,, 2014). And working on SCWS, we
use two similarity measurements, avgSimC and
maxSimC, proposed by (Neelakantan et al., 2014;
Liu et al., 2015). avgSimC focuses on evaluating
the average similarity between all the senses of the
two words, and maxSimC evaluates the similarity
between the senses with max probability for the
current word.

4.5.2 Results and Analysis

Table 2 and 3 shows the overall performance of
our proposed model as well as the baseline meth-
ods on WordSim353 and SCWS datasets. We
only obtain lower performance numbers for SG+,
which suggests that they may be more susceptible
to noise and worse generalization ability. How-
ever, this is a fair comparison because all the meth-
ods share the same parameter settings and the
code. The following is indicated in the results:

Model p x 100
NP-MSSG* 67.3
SG+* 66.9
Skip-gram* 66.7
FCSE-1 68.8
FCSE-2 69.5

Table 2: Results on the wordsim353 dataset. The
table presents spearman correlation p between
each model’s similarity rank results and the human
judgement.

e Both of FCSE-1 and FCSE-2 outperform all
of the baseline methods, because it models
the relatedness among word senses through
the common features, which inherits the ad-
vantages of multi-prototype model and en-
sures adequate training data as compared to
single vector model.
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Model avg | max
NP-MSSG* | 64.0 | 65.2
SG+* 64.4 | 65.6
Skip-gram* | 64.1 | 65.5
FCSE-1 67.1 | 67.1
FCSE-2 66.3 | 67.5

Table 3: Results on the SCWS dataset. “avg” and
“max” respectively denotes the similarity mea-
surements of avgSimC and maxSimC.

e The skip-gram model achieves rather com-
parative performance due to its good general-
ization ability, especially in a smaller training
set as compared to hard-cluster based multi-
prototype word embedding models.

FCSE-2 achieves the best performance due
to the separately sample for the original
meaning and the extended meanings, which
follows different distributions incorporating
both the global and local information.

We also investigate the ability of our method
that helps address the data sparsity issue by train-
ing on different size of data.

4.5.3 Training on Different Size Data

Generally speaking, the embedding model per-
forms better when trained on a larger corpus. The
multi-prototype embedding model suffers more
data sparsity issue than single prototype embed-
ding due to its further partition on the set of words’
contexts by clustering, and then performs even
worse using a smaller training corpus. In this sub-
section, we study the capability of FCSE to helps
address this problem by testing the performance
when training on different size corpus.

Figure 3 shows the comparison between the per-
formance of all the models trained on 30% data
and on 100% data. As the training data decreases,
all the models perform worse especially the hard
clustering based method. Compared to full cor-
pus, we can see more apparent gap between NP-
MSSG and FCSE-1 (from 2.6% to 3.1%), SG+
and FCSE-2 (from 0.1% to 1.9%). That is, the
gap between FCSE and other methods gets closer
when there are adequate training corpus, which is
in accordance with the intuition. The data spar-
sity issue gradually vanishes along with the growth
of training data. Besides, the performance of the
single-prototype word embedding model increases
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Figure 3: The performance of each model when
training on different size of data

only 1.6%. Our proposed model, both FCSE-1 and
FCSE-2, achieves more stable performance (0.2%
and 0.6% changes).

5 Related Work

Multi-prototype word embedding has been exten-
sively studied in the literature (Chen et al., 2014;
Cao et al., 2017; Liu et al., 2015; Reisinger and
Mooney, 2010; Huang et al., 2012; Tian et al.,
2014; Neelakantan et al., 2014; Li and Jurafsky,
2015). They can be roughly divided into three
groups. The first group is clustering based meth-
ods. As described in Section 1, (Reisinger and
Mooney, 2010; Huang et al., 2012; Tian et al.,
2014; Neelakantan et al., 2014; Li and Jurafsky,
2015) use clustering to induce word sense and then
learn sense embeddings via Skip-gram model. The
second group is to introduce topics to represent
different word senses, such as (Liu et al., 2015)
considers that a word under different topics leads
to different meanings, so it embeds both word
and topic simultaneously and combines them as
the word sense. However, it is difficult to de-
termine the number of topics. The third group
incorporates external knowledge (i.e. knowledge
bases) to induce word/phrase senses. (Chen et al.,
2014) jointly represents and disambiguates the
word sense on the basis of the synsets in Word-
Net. (Cao et al., 2017) regards entities in KBs
as word/phrase senses, and first learn word/phrase
and sense embeddings separately, then align them
via Wikipedia anchors. However, it fails to deal
with the words that are not included in knowledge
bases.



6 Conclusion

In this paper, we propose a novel method that
models the word sense relatedness in multi-
prototype word embedding model. It considers
the difference and relatedness between the orig-
inal meanings and the extended meanings. Our
proposed method adopts an online framework to
induce the word sense and learn sense embeddings
jointly, which makes our model more scalable
and efficient. Two non-parametric methods for
fuzzy clustering produce flexible number of word
senses. Particularly, FCSE-2 introduces the Gen-
eralized Polya Urn process to integrate both the
global occurrence information and local textual
context information. The qualitative and quantita-
tive results demonstrate the stable and higher per-
formance of our model.

In the future, we are interested in incorporating
external knowledge, such as WordNet, to super-
vise the clustering results, and in extending our
model to learn more precise sentence and docu-
ment embeddings.
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