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Abstract

Word embeddings are commonly com-
pared either with human-annotated word
similarities or through improvements in
natural language processing tasks. We
propose a novel principle which compares
the information from word embeddings
with reality. We implement this princi-
ple by comparing the information in the
word embeddings with geographical po-
sitions of cities. Our evaluation linearly
transforms the semantic space to optimally
fit the real positions of cities and mea-
sures the deviation between the position
given by word embeddings and the real
position. A set of well-known word em-
beddings with state-of-the-art results were
evaluated. We also introduce a visualiza-
tion that helps with error analysis.

1 Introduction

In recent years the improvements in quality of
word embeddings led to significant improvements
in many natural language processing (NLP) tasks,
e.g. sentiment analysis (Maas et al., 2011), named
entity recognition (Lample et al., 2016), or ma-
chine translation (Zou et al., 2013). New mod-
els for word embeddings and improvements to
the old ones are introduced rapidly (Bojanowski
et al., 2017; Salle et al., 2016; Yin and Schütze,
2016). As the number of various word embed-
dings increases, it becomes very time consuming
to choose word embeddings for a particular task
(Nayak et al., 2016).

To mitigate the problem, it is necessary to pro-
vide appropriate evaluation together with the word
embeddings. The evaluation should cover multi-
ple properties of word embeddings in order to al-
low the user to choose the model directly based on

the results (Nayak et al., 2016). Many evaluation
approaches have already been proposed and they
can be roughly divided to intrinsic and extrinsic
(Schnabel et al., 2015).

The intrinsic evaluation measures the quality of
the model directly by comparison with human-
annotated data that capture semantic information.
The advantage of this approach is that it is fast,
simple, and easy to reproduce and analyze (Schn-
abel et al., 2015; Nayak et al., 2016). The main
issue is that the evaluation score often does not
correlate with improvements in NLP tasks (Chiu
et al., 2016).

The extrinsic evaluation is indirect and mea-
sures the improvements through other tasks – cur-
rently mainly through NLP tasks. The advantage
of this approach is that for each task we know
which model to choose. The disadvantage is the
computational complexity (Nayak et al., 2016).
For each new word embeddings we need to train
models for several approaches to several tasks
and find the optimal hyperparameters of the mod-
els. Moreover, the same data and implementations
should be used by all researchers for the evalua-
tion.

We propose a new evaluation paradigm that is
in between the intrinsic and extrinsic evaluation
(actually, half the people believe its intrinsic and
the other half believe its extrinsic). We measure
neither the semantic word similarity as in intrinsic
evaluation nor improvements in a particular task
that uses word embeddings. We compare the in-
formation encoded in word embeddings directly
with real-world data. We implement the paradigm
with geographical data. We take GPS coordinates
of cities and measure to what degree is the infor-
mation encoded in the word embeddings.

The paper is organized as follows. In Sec-
tion 2 we describe commonly used evaluation ap-
proaches for word embeddings and discuss their
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strengths and weaknesses. Our evaluation metric
is introduced in Section 3. In Section 4 we pro-
vide various experiments with our evaluation met-
ric, including evaluation of state-of-the-art word
embeddings. Finally, we conclude in Section 5.

2 Related Work

There are two common tasks which fall under in-
trinsic evaluation: word similarity and word anal-
ogy tasks.

In the word similarity task, the evaluation data
consist of pairs of words and their similarity anno-
tated by humans. The word embeddings are com-
pared with the evaluation data usually by Spear-
man rank correlation. The word similarity task has
a long tradition in the semantics research (Ruben-
stein and Goodenough, 1965). Currently there are
multiple corpora created to test different properties
of the word embeddings (Finkelstein et al., 2001;
Agirre et al., 2009; Luong et al., 2013; Hill et al.,
2015).

The word analogy task evaluates the ability of
the word embeddings to capture relations between
words consistently. The evaluation data consists
of questions (with answers) in the form: if word
a is related to word b the same way as word c is
related to word d, what word is d given a, b, and
c? The word embeddings are compared based on
their accuracy. The Google Word Analogy cor-
pus is usually used for evaluation (Mikolov et al.,
2013a). The word analogy task is closest to our
evaluation because some of the questions are also
based on real-world data, e.g. countries and their
capital cities. Unlike our evaluation, they handle
city names as common words, use the global se-
mantic space, and compare them using cosine sim-
ilarity.

The extrinsic evaluation uses other NLP tasks
for comparison of word embeddings. Many tasks
are used for extrinsic evaluation, e.g. senti-
ment analysis (Schnabel et al., 2015), named en-
tity recognition (Konkol et al., 2015), or parsing
(Bansal et al., 2014). Word embeddings are com-
pared based on the improvements measured with
standard evaluation metrics for the given task.

Both intrinsic and extrinsic evaluations have
their advantages and disadvantages. The word
similarity task was analysed and criticized by mul-
tiple authors (Faruqui et al., 2016; Chiu et al.,
2016; Batchkarov et al., 2016; Gladkova and
Drozd, 2016). The advantages of word similar-

ity evaluation are that it is very fast and can be
easily interpreted from the linguistic point of view
(or generally by human). The corpora often suf-
fer from a subset of the following disadvantages:
low correlation with extrinsic evaluation (appli-
cations), polysemy is not supported, subjectivity
of single value similarity, overfitting (no training,
heldout, test sets), significance tests are not com-
mon for word similarity, and the data are often
small.

The word analogy task has the same disadvan-
tages as the word similarity task; moreover the
evaluation is quite slow, because it is necessary
to sort all words based on their similarity with the
question. Linzen (2016) provides a detailed analy-
sis of the word analogy task and shows that results
in this evaluation are to a large extent based on
proximity in the semantic space rather than con-
sistent offsets between the word pairs.

The main advantage of the extrinsic evaluation
is that it directly measures application improve-
ments. The main disadvantage is computational
complexity. There exist many tasks that could be
used for evaluation, but it is intractable to use all
of them (Nayak et al., 2016). Moreover, there
exist many approaches to all the tasks and some
embeddings might be good for one approach and
bad for the others. Choosing a single approach
as a general benchmark could lead to incorrect
conclusions. If we still want to choose a single
model, then which one? On one hand, the state-
of-the-art approaches of the tasks evolve in time –
state-of-the-art method may well become a base-
line in a few years. On the other hand, using base-
line approaches loses the ability to measure ap-
plication improvements. Word embeddings may
have a high score with the baseline approach, but
may contain the same information that is already
present in the state-of-the-art approach. Other em-
beddings may have low score with the baseline ap-
proach, but the information may be usable in the
state-of-the-art approach.

Many disadvantages of intrinsic evaluation are
also related to particular tasks in extrinsic evalu-
ation, e.g. named entity recognition or sentiment
analysis usually do not use significance tests, are
subjective, or use small data sets.

Nayak et al. (2016) propose a system for stan-
dard automatic extrinsic evaluation. They selected
a representative subset of tasks for the evaluation
and chose a single approach for each task (based
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on standard neural network architectures) in order
to achieve reasonable evaluation times (4-5 hours).
Even though this approach has the disadvantages
presented in the previous two paragraphs, it is def-
initely a step forward to a standardized evaluation.

3 Proposed Evaluation

The evaluation data set consists of a list of n names
of cities and their GPS coordinates stored in ma-
trix G ∈ Rn×2. We assume that Earth is perfectly
spherical and its radius is 6,371. Given the as-
sumption, the GPS coordinates in matrix G can
be transformed to Euclidean coordinates in ma-
trix Y ∈ Rn×3 and back. The word embed-
dings of cities are in matrix X ∈ Rn×d with a
d-dimensional vector for each city name. We nor-
malize rows of X and Y, because it is helpful for
stability of the optimization and we need only the
cosine similarity between the rows.

The first step of our evaluation is to find a sub-
space of the original d-dimensional word embed-
dings space that contains the information about
city locations. The word embeddings transformed
to the subspace are represented by matrix W ∈
Rn×3. The matrices W and Y have to share
the same dimensions because we want to com-
pare the distances between their rows (cities). We
are looking for a linear transformation W = XT
parametrized by transformation matrix T ∈ Rd×3.
We use the least squares cost function, the op-
timal transformation matrix T∗ is defined as a
transformation matrix that minimizes squared dis-
tances between real and approximate city posi-
tions ‖W −Y‖2. This optimization problem is
highly prone to overfitting as n ≈ d; moreover
the row rank of X is likely lower than n, because
the embeddings for cities are highly correlated and
thus they are likely linearly dependent. Thus we
employ L2 regularization. The final optimization
problem is given by Equation (1), where α is the
regularization weight.

T∗ = arg min
T

(‖XT−Y‖2 + α ‖T‖2) (1)

Finally, we can compare W and Y. The pri-
mary metric for the evaluation is mean geographic
distance, i.e. the distance between two points on a
globe measured on the surface. We firstly need to
normalize rows of W because the vectors can be
above or below the surface. The geographic dis-
tance can be measured using Equation (2), where

g is the geographic distance, wi and yi denote the
i-th row of W and Y respectively, and r is the
radius of Earth.

g = r · arccos(wi · yi) (2)

While the mean geographic distance is a good
metric for a global view, it does not take the lo-
cal structure into account, i.e. a random model
moves the cities in all directions and breaks the lo-
cal structure (nearest neighbors), but other model
(with the same mean geographic distance) can
move the cities in one direction and preserve lo-
cal structure. We measure the ability of the em-
beddings to capture local structure by Precision at
K (Prec@K). This metric creates two sets of K
nearest neighbors for each city, one for the eval-
uation data Y and one for the transformed word
embeddings W. The precision between these two
sets is averaged over all cities.

We also provide more statistics that help with
understanding of the primary score. Median ge-
ographic distance gives a better idea about com-
mon distances, because it is not affected by ex-
treme values. Sometimes, we found it easier to
think about the errors in angles rather than dis-
tances, mainly because angles are independent of
the size of the globe.

4 Experiments

In this section we firstly describe the data used for
the proposed evaluation. Then we briefly intro-
duce the word embeddings used to demonstrate
the proposed evaluation. Finally, we follow with
experiments that show some properties of the eval-
uation.

4.1 Data

We downloaded the list of 640 known cities
from https://www.timeanddate.com/
worldclock/full.html and further ad-
justed it. We removed cities that consist of
multiple words from the list, because the eval-
uated models were trained only on single word
expressions. It has lead to a reduction of the set
to 540 cities. Then we created a dictionary of the
top 10,000 words from Wikipedia and filtered out
cities not present in the models, which resulted
into a set of 483 cities. Finally we removed cities
with ambiguous names and inconsistent use of
diacritics, leaving us with 440 cities.
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Model Data Dimension Mean distance Median distance Mean angle Prec@10 Prec@20
Random placement — — 10007 10007 90◦ 0.03 0.06
Random embeddings — 300 10040 10422 90.3◦ 0.031 0.065
GloVe 6B 50 3776 3086 34.0◦ 0.144 0.236
GloVe 6B 100 3177 2565 28.6◦ 0.150 0.258
GloVe 6B 200 2756 2158 24.8◦ 0.210 0.336
GloVe 6B 300 2604 2116 23.4◦ 0.218 0.339
GloVe 42B 300 2504 1948 22.5◦ 0.192 0.313
GloVe 840B 300 2044 1681 18.4◦ 0.260 0.408
LexVec – cc 58B 300 1992 1662 17.9◦ 0.267 0.414
LexVec – w + nc 7B 300 1908 1508 17.2◦ 0.304 0.439
MetaEmbeddings — 200 3322 2845 29.9◦ 0.129 0.237
SkipGram – BoW2 1-5B 300 2279 1762 20.5◦ 0.278 0.407
SkipGram – BoW5 1-5B 300 1985 1642 17.9◦ 0.273 0.422
SkipGram – Dep 1-5B 300 3240 2464 29.1◦ 0.176 0.265
FastText 1-5B 300 1686 1429 15.2◦ 0.338 0.482
WoRel 2.5B 300 1921 1487 17.3◦ 0.284 0.446
LSA 1-5B 300 1437 1159 12.9◦ 0.423 0.563
PPMI-SVD 2.5B 300 1869 1487 16.8◦ 0.331 0.466

Table 1: Results of the selected set of word embeddings.

The data needed to be split into the training and
test set. The training set is used to find optimal
transformation matrix T∗ and optimal regulariza-
tion weight α. The test set is used for the evalua-
tion.

We manually selected the train set from the
cities to evenly cover geographical area by the
cities with the highest Wikipedia term frequency.
The final train set contains 124 cities and the final
test set contains 316 cities.

4.2 Word Embeddings

We chose a set of well-known word embeddings
to show their differences using the proposed eval-
uation. In the following paragraphs we briefly in-
troduce the chosen word embeddings.

SkipGram is a neural network based model
(Mikolov et al., 2013b). Levy and Goldberg
(2014) provide trained SkipGram models with two
sizes of the context window (2, 5) and their own
model that uses dependency-based context, de-
noted by SkipGram - BoW2, SkipGram - BoW5,
and SkipGram - Dep, respectively.

GloVe is a log-bilinear model that tries to find
word embeddings that are good at predicting
global word co-occurence statistics (Pennington
et al., 2014). We use embeddings provided by au-
thors of the model trained on various corpus sizes
(6, 42, and 840 billions words) and with various
vector dimensions (50, 100, 200, 300).

FastText is an extension to SkipGram, where
the word is represented as character n-grams
(Bojanowski et al., 2017). We use embeddings
provided by authors of the model trained on
Wikipedia.

LexVec is based on factorization of posi-
tive point-wise mutual information matrix using
proven strategies from GloVe, SkipGram, and
methods based on singular value decomposition
(Salle et al., 2016). We use two models provided
by the authors of the model trained on Wikipedia
and News Crawl (LexVec - w + nc), and Common
Crawl (LexVec - cc).

MetaEmbeddings is an ensemble method that
combines several embeddings (Yin and Schütze,
2016). We use the embeddings provided by the
authors of the model.

WoRel is an extension of SkipGram, where a
phrase (instead of a word) is used to guess the
context words (Konkol, 2017). We use the model
provided by the authors trained on Wikipedia and
Gigaword corpus.

LSA is a count based method that creates a
word-document co-occurrence matrix and reduces
its dimension by singular value decomposition
(SVD) (Landauer et al., 1998). We trained the
models on Wikipedia.

PPMI-SVD creates word co-occurrence matrix
where the co-ocurence is measured by positive
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pointwise mutual information. The dimension
of the matrix is then reduced by SVD. We used
the hyperwords package (Levy et al., 2015) and
trained it on Wikipedia and Gigaword corpus.

4.3 Evaluation

In our first experiment we evaluate the selected set
of embeddings with the proposed evaluation met-
ric. The results are shown in Table 1.

We provide results for two baselines. The first
baseline (random placement) places cities ran-
domly on the globe. The results for this base-
line are computed analytically. The second base-
line generates random embeddings, each value is
selected randomly from uniform distribution be-
tween−1 and 1. The random embeddings are then
evaluated in the same way as normal embeddings.
The results show average results for five random
embeddings. The comparison of the baselines
show that the evaluation works as expected: ran-
dom embeddings produce randomly placed cities.

The results show that all the evaluated word
embeddings are significantly better than the base-
lines. This proves that the embeddings do not cap-
ture only the similarity between words but also
nontrivial knowledge about the world.

Most geographic information was clearly cap-
tured by LSA, followed by FastText. A group
of models, namely WoRel, SkipGram – BoW5,
PPMI-SVD, and LexVec, achieved similar results
and are only slightly worse than FastText. Surpris-
ingly, GloVe (trained with similar amount of data)
performed significantly worse. MetaEmbeddings
achieved the worst results, probably because the
ensemble was optimized for other purposes.

There is a high correlation between the per-
formance in the mean geographic distance and
Prec@10 measures. Models that are good at cap-
turing global structure tend to be good at capturing
local structure.

The type of the training data is probably more
important than the size of the data. This can
be seen on the LexVec models, where the model
trained on Wikipedia and news articles outper-
forms the other model trained on significantly
more data. Still, an extreme amount of data leads
to good results as seen on the results of GloVe
trained on various corpus sizes.

Recently, most of the NLP tasks use word em-
beddings based on local (window-based) context.
Surprisingly, our evaluation shows that LSA, a
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Figure 1: Distribution of distance errors.

method based on global (document-wide) con-
text, outperforms all the other models in the pro-
posed evaluation. The comparison of count based
(PPMI-SVD) and predictive models (e.g. Skip-
Gram, FastText) shows no significant differences
between these two approaches.

Our evaluation shows that the mainstream mod-
els such as SkipGram and GloVe that perform sim-
ilarly in intrinsic word similarity and extrinsic task
based evaluations may have very different results
in other types of evaluation.

4.4 Error Analysis

Figure 1 shows the distribution of geographic dis-
tance errors for individual cities. The distance er-
ror is reasonable (≤ 2500 km) for approximately
90% of the cities for most of the word embed-
dings. Unfortunately, the rest of the cities has sig-
nificantly larger error. In this section, we try to
identify the source of the extreme errors.

Firstly, we suspected that the reason is sparse-
ness and the extreme errors are caused by under-
represented words. In Figure 2 we show a re-
lation between the number of occurrences of the
city name in Wikipedia (training data for most of
the methods) and the mean distance error. The
word occurrences are equidistantly grouped into
ten bins. We concluded that there is no clear rela-
tion between the number of occurrences of a city
name and the distance error.

We also suspected ambiguity with common
words. To check this hypothesis, we counted how
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Figure 2: Relation between the number of occur-
rences of the city name and the distance error for
LSA.

many times the city name appears as lowercase
and how many times with a capital letter. We
found out that most of the words does not appear at
all in lowercase version. A small portion of words
has significant number of occurrences of the low-
ercase version (e.g. Phoenix), but they do not cor-
relate with the distance error.

Lastly, we manually checked all the cities with
extreme distance errors. We found out that the
main problem is ambiguity with other named en-
tities that are more famous than the city, e.g. the
city Kobe is overshadowed by Kobe Bryant, Bis-
marck by Otto von Bismarck, Montgomery by the
common first name. A special case of this problem
is multiple cities with the same name. This is not
a problem if there is large difference between the
fame of the cities (e.g. London), but it is a prob-
lem for cities that are similar in size and fame (e.g.
Midland, Kingstown, Bridgetown).

4.5 Embeddings Dimension

The dimension of the word embeddings obviously
affects their results (Table 1). In this experiment
we explore the effect of higher dimensions on the
results. This should provide a hint to the authors of
the semantic spaces how to choose the appropriate
dimension.

In Figure 3, we show the results of LSA with
dimension ranging from 100 to 1000. The perfor-
mance degrades quickly as we decrease the dimen-
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Figure 3: The relation between dimension of the
vector space and the mean distance error for LSA.

sion under 300. The results slightly improve as we
increase the dimension from 300 to 600. There
are no significant improvements as the dimension
is increased over 600.

4.6 Regularization

The proposed evaluation uses regularization and
requires the regularization weight α. Setting opti-
mal regularization weight is difficult for some al-
gorithms. We conducted an experiment to prove
that the regularization weight does not play an im-
portant role in the evaluation, i.e. the scores of the
embeddings are not heavily affected by our inabil-
ity to find optimal regularization weights.

We performed randomized 10-fold cross-
validation to find optimal regularization weight
multiple times. The variance of the found regu-
larization weights and also the impact of this vari-
ance were very small for a particular word embed-
dings method. Moreover, the optimal regulariza-
tion weight is very similar for all the word em-
beddings. Figure 4 shows the mean geographic
distance as a function of the regularization weight
and suggests that the function can be easily opti-
mized.

4.7 Noise Sensitivity

Given a set of models, the evaluation metric
should be able to rank them reliably based on their
quality. Batchkarov et al. (2016) propose a test
of the reliability. They incrementally add noise to
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Figure 4: Influence of the regularization weight
α = eβ on the mean geographic distance. The
values are computed using 10 fold cross-validation
on the training data.

word embeddings and assume that word embed-
dings with more noise have lower quality. The
metric should be able to capture the differences
of the quality and smoothly and monotonically go
from good results to results of random embed-
dings.

In Figure 5 we show the behavior of the pro-
posed metric. We use the best embeddings (LSA)
as a starting point. Then we add noise uniformly
sampled from interval [0, p] to each value in the
embeddings. The parameter p is incrementally in-
creased with step 0.01 from 0 to 1. For each value
of p we repeat the evaluation 1000 times. The pro-
posed metric works as expected. Firstly, the mean
distance error almost linearly increases. As the
embeddings become more random the increases
slow down until they converge to the results of ran-
dom embeddings.

4.8 Visualization

As a side effect, our evaluation approach also pro-
duces a natural visualization presented in Figure 6.
The visualization can be used for comparison of
methods, error analysis, or demonstration of se-
mantics and unsupervised learning. The transfor-
mation also allows us to visualize common words
on the map, not only city names.
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Figure 5: The effect of noise added to LSA em-
beddings. The figure shows mean value and stan-
dard deviation of 1000 runs. The red line on the
top represents random city placement.

5 Conclusion

We have proposed a new evaluation method for
word embeddings. It measures how much infor-
mation about geographic location of cities is con-
tained in word embeddings. This type of eval-
uation differs from previously presented evalua-
tions and forms a new word embeddings evalua-
tion paradigm. The new paradigm does not evalu-
ate the embeddings from the natural language pro-
cessing view, but rather from the artificial intelli-
gence view, where the algorithm tries to capture
some information about the world.

We have analyzed both the evaluation metric
and commonly used embeddings. We have shown
that the metric is stable and can reliably distin-
guish between good and poor models.

LSA achieved the best results with mean geo-
graphic distance error of 1437 kilometers. Surpris-
ingly, it outperformed mainstream models such
as SkipGram. GloVe, with state-of-the-art results
from other evaluations, performed rather poorly in
the proposed evaluation.

In the future, we would like to implement the
proposed paradigm with other similar evaluations,
where we try to find out if the model is able to
capture a specific real-world information.

The dataset and the evaluation software can be
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