
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 163–172,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Convolutional Neural Network with Word Embeddings for
Chinese Word Segmentation

Chunqi Wang1,2 and Bo Xu1

1Institute of Automation, Chinese Academy of Sciences
2University of Chinese Academy of Sciences
chqiwang@126.com, xubo@ia.ac.cn

Abstract

Character-based sequence labeling frame-
work is flexible and efficient for Chi-
nese word segmentation (CWS). Recently,
many character-based neural models have
been applied to CWS. While they obtain
good performance, they have two obvious
weaknesses. The first is that they heav-
ily rely on manually designed bigram fea-
ture, i.e. they are not good at captur-
ing n-gram features automatically. The
second is that they make no use of full
word information. For the first weakness,
we propose a convolutional neural model,
which is able to capture rich n-gram fea-
tures without any feature engineering. For
the second one, we propose an effective
approach to integrate the proposed model
with word embeddings. We evaluate the
model on two benchmark datasets: PKU
and MSR. Without any feature engineer-
ing, the model obtains competitive per-
formance — 95.7% on PKU and 97.3%
on MSR. Armed with word embeddings,
the model achieves state-of-the-art perfor-
mance on both datasets — 96.5% on PKU
and 98.0% on MSR, without using any ex-
ternal labeled resource.

1 Introduction

Unlike English and other western languages, most
east Asian languages, including Chinese, are writ-
ten without explicit word delimiters. However,
most natural language processing (NLP) applica-
tions are word-based. Therefore, word segmen-
tation is an essential step for processing those
languages. CWS is often treated as a character-
based sequence labeling task (Xue et al., 2003;
Peng et al., 2004). Figure 1 gives an intuitive

	� 	� �� �� �� �� �� 	�

�� �� � �� 	� �� �� ��

���� �

���� �
�� ����������� ����

� Figure 1: Chinese word segmentation as a sequence label-
ing task. This figure presents the common BMES (Begining,
Middle, End, Singleton) tagging scheme.

explaination. Linear models, such as Maximum
Entropy (ME) (Berger et al., 1996) and Con-
ditional Random Fields (CRF) (Lafferty et al.,
2001), have been widely used for sequence label-
ing tasks. However, they often depend heavily on
well-designed hand-crafted features.

Recently, neural networks have been widely
used for NLP tasks. Collobert et al. (2011) pro-
posed a unified neural architecture for various se-
quence labeling tasks. Instead of exploiting hand-
crafted input features carefully optimized for each
task, their system learns internal representations
automatically. As for CWS, there are a series
of works, which share the main idea with Col-
lobert et al. (2011) but vary in the network ar-
chitecture. In particular, feed-forward neural net-
work (Zheng et al., 2013), tensor neural network
(Pei et al., 2014), recursive neural network (Chen
et al., 2015a), long-short term memory (LSTM)
(Chen et al., 2015b), as well as the combination of
LSTM and recursive neural network (Xu and Sun,
2016) have been used to derive contextual repre-
sentations from input character sequences, which
are then fed to a prediction layer.

Despite of the great success of above models,
they have two weaknesses. The first is that they
are not good at capturing n-gram features automat-
ically. Experimental results show that their models
perform badly when no bigram feature is explic-
itly used. One of the strengths of neural networks
is the ability to learn features automatically. How-
ever, this strength has not been well exploited in

163

their works. The second is that they make no use
of full word information. Full word information
has shown its effectiveness in word-based CWS
systems (Andrew, 2006; Zhang and Clark, 2007;
Sun et al., 2009). Recently, Liu et al. (2016);
Zhang et al. (2016) utilized word embeddings to
boost performance of word-based CWS models.
However, for character-based CWS models, word
information is not easy to be integrated.

For the first weakness, we propose a convolu-
tional neural model, which is also character-based.
Previous works have shown that convolutional lay-
ers have the ablity to capture rich n-gram features
(Kim et al., 2016). We use stacked convolutional
layers to derive contextual representations from
input sequence, which are then fed into a CRF
layer for sequence-level prediction. For the sec-
ond weakness, we propose an effective approach
to incorporate word embeddings into the proposed
model. The word embeddings are learned from
large auto-segmented data. Hence, this approach
belongs to the category of semi-supervised learn-
ing.

We evaluate our model on two benchmark
datasets: PKU and MSR. Experimental results
show that even without the help of explicit n-gram
feature, our model is capable of capturing rich n-
gram information automatically, and obtains com-
petitive performance — 95.7% on PKU and 97.3%
on MSR (F score). Furthermore, armed with word
embeddings, our model achieves state-of-the-art
performance on both datasets — 96.5% on PKU
and 98.0% on MSR, without using any external
labeled resource. 1

2 Architecture

In this section, we introduce the architecture from
bottom to top.

2.1 Lookup Table

The first step to process a sentence by deep neu-
ral networks is often to transform words or char-
acters into embeddings (Bengio et al., 2003; Col-
lobert et al., 2011). This transformation is done
by lookup table operation. A character lookup ta-
bleMchar ∈ R|Vchar|×d (where |Vchar| denotes the
size of the character vocabulary and d denotes the
dimension of embeddings) is associated with all

1The tensorflow (Abadi et al., 2016) implementation
and related resources can be found at https://github.
com/chqiwang/convseg.

Input

Convolution

Gating

Output

×

σ

Figure 2: Structure of a convolutional layer with GLU. There
are five input channels and four output channels in this figure.

characters. Given a sentence S = (c1, c2, ..., cL),
after the lookup table operation, we obtain a ma-
trix X ∈ RL×d where the i’th row is the character
embedding of ci.

Besides the character, other features can be eas-
ily incorporated into the model (we shall see word
feature in section 3). We associate to each feature
a lookup table (some features may share the same
lookup table) and the final representation is cal-
culated as the concatenation of all corresponding
feature embeddings.

2.2 Convolutional Layer

Many neural network models have been explored
for CWS. However, experimental results show that
they are not able to capure n-gram information au-
tomatically (Pei et al., 2014; Chen et al., 2015a,b).
To achieve good performance, n-gram feature
must be used explicitly. To overcome this weak-
ness, we use convolutional layers (Waibel et al.,
1989) to encode contextual information. Con-
volutional neural networks (CNNs) have shown
its great effectiveness in computer vision tasks
(Krizhevsky et al., 2012; Simonyan and Zisser-
man, 2014; He et al., 2016). Recently, Zhang
et al. (2015) applied character-level CNNs to text
classification task. They showed that CNNs tend
to outpeform traditional n-gram models as the
dataset goes larger. Kim et al. (2016) also ob-
served that character-level CNN learns to differ-
entiate between different types of n-grams — pre-
fixes, suffixes and others, automatically.

Our network is quite simple — only convolu-
tional layers is used (no pooling layer). Gated lin-

164

1c 2c 3c 4c 5c 6c 7c 8c

Figure 3: Stacked convolutional layers. There is one input
layer on the bottom and three convolutional layers on the top.
Dashed white circles denote paddings. Black circles and lines
mark the pyramid in the perspective of c4.

ear unit (GLU) (Dauphin et al., 2016) is used as the
non-linear unit in our convolutional layer, which
has been shown to surpass rectified linear unit
(ReLU) on the language modeling task. For sim-
plicity, GLU can also be easily replaced by ReLU
with performance slightly hurt (with roughly the
same number of network parameters). Figure 2
shows the structure of a convolutional layer with
GLU. Formally, we define the number of input
channels as N , the number of output channels as
M , the length of input as L and kernel width as k.
The convolutional layer can be written as

F (X) = (X ∗W + b)⊗ σ(X ∗ V + c)

where ∗ denotes one dimensional convolution op-
eration, X ∈ RL×N is the input of this layer, W ∈
Rk×N×M , b ∈ RM , V ∈ Rk×N×M , c ∈ RM are
parameters to be learned, σ is the sigmoid function
and ⊗ represents element-wise product. We make
F (X) ∈ RL×M by augmenting the input X with
paddings.

A succession of convolutional layers are
stacked to capture long distance information.
From the perspective of each character, informa-
tion flows in a pyramid. Figure 3 shows a network
with three convolutional layers stacked. On the
topmost layer, a linear transformation is used to
transform the output of this layer to unnormalized
label scores E ∈ RL×C , where C is the number of
label types.

2.3 CRF Layer

For sequence labeling tasks, it is often beneficial
to explicitly consider the correlations between ad-
jacent labels (Collobert et al., 2011).

Correlations between adjacent labels can be
modeled as a transition matrix T ∈ RC×C . Given

a sentence S = (c1, c2, ..., cL), we have corre-
sponding scores E ∈ RL×C given by the con-
volutional layers. For a label sequence y =
(y1, y2, ..., yL), we define its unnormalized score
to be

s(S, y) =
L∑

i=1

Ei,yi +
L−1∑
i=1

Tyi,yi+1 .

then the probability of the label sequence is de-
fined as

P (y|S) =
es(S,y)∑

y′∈Y es(S,y′)

where Y is the set of all valid label sequences.
This actually takes the form of linear chain CRF
(Lafferty et al., 2001). Then the final loss of the
proposed model is defined as the negative log-
likehood of the ground-truth label sequence y∗

L(S, y?) = −logP (y?|S).

During training, the loss function is minimized
by back propagation. During test, Veterbi algo-
rithm is applied to quickly find the label sequence
with maximum probability.

3 Integration with Word Embeddings

Character-based CWS models have the superior-
ity of being flexible and efficient. However, full
word information is not easy to be incorporated.
There is another type of CWS models: the word-
based models. Models belong to this category
utilize not only character-level information, but
also word-level (Zhang and Clark, 2007; Andrew,
2006; Sun et al., 2009). Recent works have shown
that word embeddings learned from large auto-
segmented data lead to great improvements in
word-based CWS systems (Liu et al., 2016; Zhang
et al., 2016). We propose an effective approach
to integrate word embeddings with our character-
based model. The integration brings two bene-
fits. On the one hand, full word information can
be used. On the other hand, large unlabeled data
can be better exploited.

To use word embeddings, we design a set of
word features, which are listed in Table 1. We as-
sociate to the word features a lookup table Mword.
Then the final representation of ci is defined as

R(ci) =Mchar[ci]⊕
Mword[ci]⊕Mword[ci−1ci]⊕ · · ·⊕
Mword[cici+1ci+2ci+3]

165

Length Features
1 ci
2 ci−1ci cici+1

3 ci−2ci−1ci ci−1cici+1 cici+1ci+2

4
ci−3ci−2ci−1ci ci−2ci−1cici+1

ci−1cici+1ci+2 cici+1ci+2ci+3

Table 1: Word features at position i given a sentence S =
(c1, c2, ..., cL). Only the words that include the current char-
acter ci (marked with underline) are considered as word fea-
ture. Hence, the number of features can be controlled in a
reasonable range. We also restrict the max length of words
to 4 since few words contain more than 4 characters in Chi-
nese. Note that the feature space is still tremendous (O(N4),
where N is the number of characters).

where ⊕ denotes the concatenation operation.
Note that the max length of word features is set
to 4, therefore the feature space is extremely large
(O(N4)). A key step is to shrink the feature space
so that the memory cost can be confined within
a feasible scope. In the meanwhile, the problem
of data sparsity can be eased. The solution is as
following. Given the unlabeled data Dun and a
teacher CWS model, we segment Dun with the
teacher model and get the auto-segmented data
D′un. A vocabulary Vword is generated from D′un

where low frequency words are discarded 2. We
replace Mword[∗] with Mword[UNK] if ∗ /∈ Vword

(UNK denotes the unknown words).

To better exploit the auto-segmented data D′un,
we adopt an off-the-self tool word2vec3 (Mikolov
et al., 2013) to pretrain the word embeddings.
The whole procedure is summarized as following
setps:

1. Train a teacher model that does not rely on
word feature.

2. Segment unlabeled data D with the teacher
model and get the auto-segmented data D′.

3. Build a vocabulary Vword from D′. Replace
all words not appear in Vword with UNK.

4. Pretrain word embeddings on D′ using
word2vec.

5. Train the student model with word feature us-
ing the pretrained word embeddings.

Note that no external labeled data is used in this
procedure.

2The threshold of frequency is set to 5, which is the de-
fault setting of word2vec.

3https://code.google.com/p/word2vec

Hyper-parameters Value
dimension of character embedding 200
dimension of word embedding 50
number of conv layers 5
number of channels per conv layer 200
kernel width of filters 3
dropout rate 0.2

Table 2: Hyper-parameters we choose for our model.

4 Experiments

4.1 Settings

Datasets We evaluate our model on two bench-
mark datasets, PKU and MSR, from the second
International Chinese Word Segmentation Bake-
off (Emerson, 2005). Both datasets are commonly
used by previous state-of-the-art models. For both
datasets, last 10% of the training data are used as
development set. The unlabeled data used in this
work is news data collected by Sogou 4.

We do not perform any preprocessing for these
datasets, such as replacing continuous digits and
English characters with a single token.
Dropout Dropout (Srivastava et al., 2014) is a
very efficient method for preventing overfit, espe-
cially when the dataset is small. We apply dropout
to our model on all convolutional layers and em-
bedding layers. The dropout rate is fixed to 0.2.
Hyper-parameters For both datasets, we use
the same set of hyper-parameters, which are pre-
sented in Table 2. For all convolutional layers, we
just use the same number of channels. Following
the practice of designing very deep CNN in com-
puter vision (Simonyan and Zisserman, 2014), we
use a small kernal width, i.e. 3, for all convolu-
tional layers. To avoid computational inefficiency,
we use a relatively small dimension, i.e. 50, for
word embeddings.
Pretraining Character embeddings and word
embeddings are pretrained on unlabeled or auto-
segmented data by word2vec. Since the pretrained
embeddings are not task-oriented, they are fine-
tuned during supervised training by normal back-
propagation.5

Optimization Adam algorithm (Kingma and
Ba, 2014) is applied to optimize our model. We
use default parameters given in the original paper

4http://www.sogou.com/labs/resource/
ca.php

5We also try to use fixed word embeddings as Zhang et al.
(2016) do but no significant difference is observed.

166

Models
PKU MSR

P R F P R F
(Tseng, 2005) 94.6 95.4 95.0 96.2 96.6 96.4
(Zhang and Clark, 2007) - - 94.5 - - 97.2
(Zhao and Kit, 2011) - - 95.40 - - 97.58
(Sun et al., 2012) 95.8 94.9 95.4 97.6 97.2 97.4
(Zhang et al., 2013) 96.5 95.8 96.1 - - 97.45
(Pei et al., 2014) - - 95.2 - - 97.2
(Chen et al., 2015a)∗� 96.5 96.3 96.4 97.4 97.8 97.6
(Chen et al., 2015b)∗� 96.6 96.4 96.5 97.5 97.3 97.4
(Cai and Zhao, 2016)� 95.8 95.2 95.5 96.3 96.8 96.5
(Liu et al., 2016) - - 95.67 - - 97.58
(Zhang et al., 2016) - - 95.7 - - 97.7
(Xu and Sun, 2016)∗� - - 96.1 - - 96.3
CONV-SEG 96.1 95.2 95.7 97.4 97.3 97.3
WE-CONV-SEG (+ word embeddings) 96.8 96.1 96.5 97.9 98.1 98.0

Table 3: Performance of our models and previous state-of-the-art models. Note that (Chen et al., 2015a,b; Xu and Sun, 2016)
used a external Chinese idiom dictionary. To make the comparison fair, we mark them with ∗. Chen et al. (2015a,b); Cai and
Zhao (2016); Xu and Sun (2016) also preprocessed the datasets by replacing the conitinous English character and digits with a
unique token. We mark them with �.

and we set batch size to 100. For both datasets, we
train no more than 100 epoches. The final models
are chosen by their performance on the develop-
ment set.

Weight normalization (Salimans and Kingma,
2016) is applied for all convolutional layers to ac-
celerate the training procedure and obvious accel-
eration is observed.

4.2 Main Results

Table 3 gives the performances of our models, as
well as previous state-of-the-art models. Two pro-
posed models are shown in the table:
• CONV-SEG It is our preliminary model

without word embeddings. Character embed-
dings are pretrained on large unlabeled data.
• WE-CONV-SEG On the basis of CONV-

SEG, word embeddings are used. We use
CONV-SEG as the teacher model (see sec-
tion 3).

Our preliminary model CONV-SEG achieves
competitive performance without any feature en-
gineering. Armed with word embeddings, WE-
CONV-SEG obtains state-of-the-art performance
on both PKU and MSR datasets without using any
external labeled data. WE-CONV-SEG outper-
forms state-of-the-art neural model (Zhang et al.,
2016) in a large margin (+0.8 on PKU and +0.3
in MSR). Chen et al. (2015b) preprocessed all
datasets by replacing Chinese idioms with a sin-

0 20 40 60 80 100
epoches

91

92

93

94

95

96

97

98

d
e
v
 s
co
re

CONV-SEG
WE-CONV-SEG

0 20 40 60 80 100
epoches

90

92

94

96

98

d
e
v
 s
co
re

CONV-SEG
WE-CONV-SEG

Figure 4: Learning curves (dev scores) of our models on
PKU (left) and MSR (right).

gle token and thus their model obtains excellent
score on PKU dataset. However, WE-CONV-SEG
achieves the same performance on PKU and out-
performs their model on MSR, without any data
preprocessing.

We also observe that WE-CONV-SEG con-
verges much faster compared to CONV-SEG. Fig-
ure 4 presents the learning curves of the two mod-
els. It takes 10 to 20 epoches for WE-CONV-SEG
to converge while it takes more than 60 epoches
for CONV-SEG to converge.

4.3 Network Depth

Network depth shows great influence on the per-
formance of deep neural networks. A too shallow
network may not fit the training data very well
while a too deep network may overfit or is hard
to train. We evaluate the performance of the pro-
posed model with varying depth. Figure 5 shows

167

1 3 5 7 11 15
number of conv layers

94.5

95.0

95.5

96.0

96.5

97.0

97.5
d
e
v
/t
e
st
 s
co
re

PKU test
MSR test
PKU dev
MSR dev

Figure 5: Scores on dev set and test set with respect to the
number of convolutional layers. The vertical dashed line
marks the depth we choose.

Model Options PKU MSR
without pretraining 94.7 96.7
with pretraining 95.7 97.3

Table 4: Test performances with or without pretraining char-
acter embeddings. “without pretraining” means that the char-
acter embeddings are randomly initialized.

the results. It is obvious that five convolutional
layers is a good choise for both datasets. When
we increase the depth from 1 to 5, the perfor-
mance is improved significantly. However, when
we increase depth from 5 to 7, even to 11 and 15,
the performance is almost unchanged. This phe-
nomenon implies that CWS rarely relies on con-
text larger than 11 6. With more training data,
deeper networks may perform better.

4.4 Pretraining Character Embeddings

Previous works have shown that pretraining char-
acter embeddings boost the performance of neural
CWS models significantly (Pei et al., 2014; Chen
et al., 2015a,b; Cai and Zhao, 2016). We verify
this and get a consistent conclusion. Table 4 shows
the performances with or without pretraining. Our
model obtains significant improvements (+1.0 on
PKU and +0.6 on MSR) with pretrained character
embeddings.

Models PKU MSR PKU MSR
(Cai and Zhao, 2016)� 95.5 96.5 - -
(Zheng et al., 2013) 92.8‡ 93.9‡ - -
(Pei et al., 2014) 94.0 94.9 - -
(Chen et al., 2015a) 94.5† 95.4† 96.1∗ 96.2∗

(Chen et al., 2015b) 94.8† 95.6† 96.0∗ 96.6∗

(Xu and Sun, 2016) - - 96.1∗ 96.3∗

CONV-SEG 95.7 97.3 - -

(Pei et al., 2014)
95.2 97.2

- -
(+1.2) (+2.3)

(Chen et al., 2015a) - -
96.4∗ 97.6∗

(+0.3) (+1.4)

(Chen et al., 2015b) - -
96.5∗ 97.3∗

(+0.5) (+0.7)

AVEBE-CONV-SEG
95.4 97.1

- -
(-0.3) (-0.2)

W2VBE-CONV-SEG 95.9 97.5
- -

(+0.2) (+0.2)

Table 5: The first/second group summarize results of models
without/with bigram feature. The number in the parentheses
is the absolute improvement given by explicit bigram feature.
Results with ∗ used external dictionary. Results with † come
from Cai and Zhao (2016). Results with ‡ come from Pei
et al. (2014). � marks word-based models.

4.5 N-gram Features
In this section, we test the ability of our model in
capturing n-gram features. Since unigram is indis-
pensable and trigram is beyond memory limit, we
only consider bigram.

Bigram feature has shown to play a vital role
in character-based neural CWS models (Pei et al.,
2014; Chen et al., 2015a,b). Without bigram fea-
ture, previous models perform badly. Table 5
gives a summarization. Without bigram feature,
our model outperforms previous character-based
models in a large margin (+0.9 on PKU and +1.7
on MSR). Compared with word-based model (Cai
and Zhao, 2016), the improvements are also sig-
nificant (+0.2 on PKU and +0.8 on MSR).

Then we arm our model with bigram feature.
The bigram feature we use is the same with Pei
et al. (2014); Chen et al. (2015a,b). The dimen-
sion of bigram embedding is set to 50. Follow-
ing Pei et al. (2014); Chen et al. (2015a,b), the bi-
gram embeddings are initialized by the average of
corresponding pretrained character embeddings.
The result model is named AVEBE-CONV-SEG
and the performance is shown in Table 5. Unex-
pectedly, the performance of AVEBE-CONV-SEG
is worse than the preliminary model CONV-SEG
that uses no bigram feature (-0.3 on PKU and -0.2

6Context size is calculated by (k − 1) × d + 1, where k
and d denotes the kernel size and the number of convolutional
layers, respectively.

168

on MSR). This result is dramatically inconsistent
with previous works, in which the performance is
significantly improved by the method. We also ob-
serve that the training cost of AVEBE-CONV-SEG
is much lower than CONV-SEG. Hence we can
conclude that the inconsistency is casued by over-
fitting. A reasonable conjecture is that the model
CONV-SEG already capture abundant bigram fea-
ture automatically, therefore the model is tend to
overfit when bigram feature is explicitly added.

A practicable way to overcome overfitting is
to introduce priori knowledge. We introduce pri-
ori knowledge by using bigram embeddings di-
rectly pretrained on large unlabeled data, which
is simmillar with (Mansur et al., 2013). We con-
vert the unlabeled text to bigram sequence and
then apply word2vec to pretrain the bigram em-
beddings directly. The result model is named
W2VBE-CONV-SEG, and the performance is also
shown in Table 5. This method leads to substan-
tial improvements (+0.5 on PKU and +0.4 MSR)
over AVEBE-CONV-SEG. However, compared to
CONV-SEG, there are only slight gains (+0.2 on
PKU and MSR).

All above observations verify that our proposed
network has considerable superiority in capturing
n-gram, at least bigram features automatically.

4.6 Word Embeddings

Word embeddings lead to significant improve-
ments over the strong baseline model CONV-SEG.
The improvements come from the teacher model
and the large unlabeled data. A natural question
is how much unlabeled data can lead to significant
improvements. We study this by halving the unla-
beled data. Figure 6 presents the results. As the
unlabeled data becomes smaller, the performance
remains unchanged at the beginning and then be-
comes worse. This demonstrates that the mass of
unlabeled data is a key factor to achieve high per-
formance. However, even with only 68MB unla-
beled data, we can still observe remarkable im-
provements (+0.4 on PKU and MSR). We also ob-
serve that MSR dataset is more robust to the size
of unlabeled data than PKU dataset. We conjec-
ture that this is because MSR training set is larger
than PKU training set7.

We also study how the teacher’s performance
influence the student. We train other two mod-

7There are 2M words in MSR training set but only 1M
words in PKU training set.

1/1
2.2GB

1/2
1.1GB

1/4
535MB

1/8
268MB

1/16
135MB

1/32
68MB

1/∞
0

size of unlabeled data

95.5

96.0

96.5

97.0

97.5

98.0

te
st

 s
co

re

0.4

0.4

PKU
MSR

Figure 6: Test performances with varying size of unlabeled
data for pretraining word embeddings. With full size, the
model is WE-CONV-SEG. With the 0 size, the model degen-
erates to CONV-SEG.

Models
teacher student

PKU MSR PKU MSR
WE-CONV-SEG 95.7 97.4 96.5 98.0
worse teacher 95.4 97.1 96.4 97.9
better teacher 96.5 98.0 96.5 98.0

Table 6: Performances of student models and teacher mod-
els. A previous trained model maybe reused in following so
that there are some

els that use different teacher models. One of them
uses a worse teacher and the other uses a better
teacher. The results are shown in Table 6. As ex-
pected, the worse teacher indeed creates a worse
student, but the effect is marginal (-0.1 on PKU
and MSR). And the better teacher brings no im-
provements. These facts demonstrate that the stu-
dent’s performance is relatively insensitive to the
teacher’s ability as long as the teacher is not too
weak.

Not only the pretrained word embeddings, we
also build a vocabulary Vword from the large auto-
segmented data. Both of them should have posi-
tive impacts on the improvements. To figure out
their contributions quantitatively, we train a con-
trast model, where the pretrained word embed-
dings are not used but the word features and the
vocabulary are persisted, i.e. the word embeddings
are randomly initialized. The results are shown in
Table 7. According to the results, we conclude that
the pretrained word embeddings and the vocabu-
lary have roughly equal contributions to the final

169

Models PKU MSR
WE-CONV-SEG 96.5 98.0
-word emb 96.1 97.6
-word feature 95.7 97.3

Table 7: Performances of our models with different word
feature options. “-word emb” denotes the model in which
word features and the vocabulary are used but the pretrained
word embeddings are not. “-word feature” denotes the model
that uses no word feature, i.e. CONV-SEG.

improvements.

5 Related Work

CWS has been studied with considerable efforts in
NLP commutinity. Xue et al. (2003) firstly mod-
eled CWS as a character-based sequence label-
ing problem. They used a sliding-window maxi-
mum entropy classifier to tag Chinese characters
into one of four position tags, and then coverted
these tags into a segmentation using rules. Fol-
lowing their work, Peng et al. (2004) applied
CRF to the problem for sequence-level predic-
tion. Recently, under the sequence labeling frame-
work, various neural models have been explored
for CWS. Zheng et al. (2013) firstly applied a
feed-forward neural network for CWS. Pei et al.
(2014) improved upon Zheng et al. (2013) by ex-
plicitly modeling the interactions between local
context and previous tag. Chen et al. (2015a) pro-
posed a gated recursive neural network (GRNN)
to model the combinations of context characters.
Chen et al. (2015b) utilized Long short-term mem-
ory (LSTM) to capture long distant dependencies.
Xu and Sun (2016) combined LSTM and GRNN
to efficiently integrate local and long-distance fea-
tures.

Our proposed model is also a neural sequence
labeling model. The difference from above mod-
els lies in that CNN is used to encode contextual
information. CNNs have been successfully ap-
plied in many NLP tasks, such as text classifica-
tion (Kalchbrenner et al., 2014; Kim, 2014; Zhang
et al., 2015; Conneau et al., 2016), language mod-
eling (Kim et al., 2016; Pham et al., 2016; Dauphin
et al., 2016), machine translation (Meng et al.,
2015; Kalchbrenner et al., 2016; Gehring et al.,
2016). Experimental results show that the convo-
lutional layers are capable to capture more n-gram
features than previous introduced networks. Col-
lobert et al. (2011) also proposed a CNN based
seuqence labeling model. However, our model

is significantly different from theirs since theirs
adopt max-pooling to encode the whole sentence
into a fixed size vector and use position embed-
dings to demonstrate which word to be tagged
while ours does not. Our model is more efficient
due to the sharing structure in lower layers. Con-
temporary to this work, Strubell et al. (2017) ap-
plied dilated CNN to named entity recognition.

The integration with word embeddings is in-
spired by word-based CWS models (Andrew,
2006; Zhang and Clark, 2007; Sun et al., 2009).
Most recently, Zhang et al. (2016); Liu et al.
(2016); Cai and Zhao (2016) proposed word-based
neural models for CWS. Particularly, Zhang et al.
(2016); Liu et al. (2016) utilized word embed-
dings learned from large auto-segmented data,
which leads to significant improvements. Differ-
ent from their word-based models, we integrate
word embeddings with the proposed character-
based model.

Simillar to this work, Wang et al. (2011) and
Zhang et al. (2013) also enhanced character-based
CWS systems by utilizing auto-segmented data.
However, they didn’t use word embeddings, but
only used statistics features. Sun (2010) and Wang
et al. (2014) combined character-based and word-
based CWS model via bagging and dual decom-
position respectively and achieved better perfor-
mance than single model.

6 Conclusion

In this paper, we address the weaknesses of
character-based CWS models. We propose a novel
neural model for CWS. The model utilizes stacked
convolutional layers to derive contextual repre-
sentations from input sequence, which are then
fed to a CRF layer for prediction. The model
is capable to capture rich n-gram features auto-
matically. Furthermore, we propose an effective
approach to integrate the proposed model with
word embeddings, which are pretrained on large
auto-segmented data. Evaluation on two bench-
mark datasets shows that without any feature en-
gineering, much better performance than previ-
ous models (also without feature engineering) is
obtained. Armed with word embeddings, our
model achieves state-of-the-art performance on
both datasets, without using any external labeled
data.

170

Acknowledgements

This work is supported by the National Key
Research & Development Plan of China
(No.2013CB329302). Thanks anonymous
reviewers for their valuable suggestions. Thanks
Wang Geng, Zhen Yang and Yuanyuan Zhao for
their useful discussions.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Galen Andrew. 2006. A hybrid markov/semi-markov
conditional random field for sequence segmenta-
tion. In Conference on Empirical Methods in Nat-
ural Language Processing, pages 465–472.

Yoshua Bengio, R Ducharme, jean, Pascal Vincent,
and Christian Janvin. 2003. A neural probabilistic
language model. Journal of Machine Learning Re-
search, 3(6):1137–1155.

Adam L Berger, Vincent J. Della Pietra, and Stephen
A. Della Pietra. 1996. A maximum entropy ap-
proach to natural language processing. Computa-
tional Linguistics, 22(1):39–71.

Deng Cai and Hai Zhao. 2016. Neural word segmenta-
tion learning for chinese. In Meeting of the Associa-
tion for Computational Linguistics, pages 409–420.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, and Xuan-
jing Huang. 2015a. Gated recursive neural network
for chinese word segmentation. In ACL (1), pages
1744–1753.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu,
and Xuanjing Huang. 2015b. Long short-term mem-
ory neural networks for chinese word segmenta-
tion. In Conference on Empirical Methods in Nat-
ural Language Processing, pages 1197–1206.

Ronan Collobert, Jason Weston, L Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(1):2493–2537.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and
Yann Lecun. 2016. Very deep convolutional net-
works for natural language processing. arXiv
preprint arXiv:1606.01781.

Yann N. Dauphin, Angela Fan, Michael Auli, and
David Grangier. 2016. Language modeling with
gated convolutional networks.

Thomas Emerson. 2005. The second international chi-
nese word segmentation bakeoff. In Proceedings of
the fourth SIGHAN workshop on Chinese language
Processing, volume 133.

Jonas Gehring, Michael Auli, David Grangier, and
Yann N. Dauphin. 2016. A convolutional encoder
model for neural machine translation.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aaron Van Den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
655–665, Baltimore, Maryland. Association for
Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI’16,
pages 2741–2749. AAAI Press.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. pages 1097–1105.

John D. Lafferty, Andrew Mccallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. pages 282–289.

Yijia Liu, Wanxiang Che, Jiang Guo, Bing Qin, and
Ting Liu. 2016. Exploring segment representations
for neural segmentation models.

Mairgup Mansur, Wenzhe Pei, and Baobao Chang.
2013. Feature-based neural language model and chi-
nese word segmentation. In IJCNLP, pages 1271–
1277.

Fandong Meng, Zhengdong Lu, Mingxuan Wang,
Hang Li, Wenbin Jiang, and Qun Liu. 2015. En-
coding source language with convolutional neural
network for machine translation. arXiv preprint
arXiv:1503.01838.

171

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2014. Max-
margin tensor neural network for chinese word seg-
mentation. In Meeting of the Association for Com-
putational Linguistics, pages 293–303.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detec-
tion using conditional random fields. In Proceed-
ings of the 20th international conference on Compu-
tational Linguistics, page 562. Association for Com-
putational Linguistics.

Ngoc Quan Pham, Germn Kruszewski, and Gemma
Boleda. 2016. Convolutional neural network lan-
guage models. In Conference on Empirical Methods
in Natural Language Processing, pages 1153–1162.

Tim Salimans and Diederik P. Kingma. 2016. Weight
normalization: A simple reparameterization to ac-
celerate training of deep neural networks.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Emma Strubell, Patrick Verga, David Belanger, and
Andrew Mccallum. 2017. Fast and accurate se-
quence labeling with iterated dilated convolutions.

Weiwei Sun. 2010. Word-based and character-based
word segmentation models: Comparison and com-
bination. In Proceedings of the 23rd International
Conference on Computational Linguistics: Posters,
pages 1211–1219. Association for Computational
Linguistics.

Xu Sun, Houfeng Wang, and Wenjie Li. 2012. Fast on-
line training with frequency-adaptive learning rates
for chinese word segmentation and new word detec-
tion.

Xu Sun, Yaozhong Zhang, Takuya Matsuzaki, Yoshi-
masa Tsuruoka, and Jun’Ichi Tsujii. 2009. A dis-
criminative latent variable chinese segmenter with
hybrid word/character information. In Human Lan-
guage Technologies: the 2009 Conference of the
North American Chapter of the Association for
Computational Linguistics, pages 56–64.

Huihsin Tseng. 2005. A conditional random field word
segmenter. In In Fourth SIGHAN Workshop on Chi-
nese Language Processing.

Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hin-
ton, Kiyohiro Shikano, and Kevin J Lang. 1989.
Phoneme recognition using time-delay neural net-
works. IEEE transactions on acoustics, speech, and
signal processing, 37(3):328–339.

Mengqiu Wang, Rob Voigt, and Christopher D Man-
ning. 2014. Two knives cut better than one: Chinese
word segmentation with dual decomposition. In
Meeting of the Association for Computational Lin-
guistics, pages 193–198.

Yiou Wang, Jun ’ Ichi Kazama, Yoshimasa Tsuruoka,
Wenliang Chen, Yujie Zhang, and Kentaro Tori-
sawa. 2011. Improving chinese word segmentation
and pos tagging with semi-supervised methods us-
ing large auto-analyzed data. In International Joint
Conference on Natural Language Processing.

Jingjing Xu and Xu Sun. 2016. Dependency-based
gated recursive neural network for chinese word seg-
mentation. In The 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, page 567.

Nianwen Xue et al. 2003. Chinese word segmentation
as character tagging. Computational Linguistics and
Chinese Language Processing, 8(1):29–48.

Longkai Zhang, Houfeng Wang, Xu Sun, and Mairgup
Mansur. 2013. Exploring representations from un-
labeled data with co-training for chinese word seg-
mentation.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Transition-based neural word segmentation. In
Meeting of the Association for Computational Lin-
guistics, pages 421–431.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Yue Zhang and Stephen Clark. 2007. Chinese segmen-
tation with a word-based perceptron algorithm. In
ACL 2007, Proceedings of the Meeting of the Asso-
ciation for Computational Linguistics, June 23-30,
2007, Prague, Czech Republic.

Hai Zhao and Chunyu Kit. 2011. Integrating unsu-
pervised and supervised word segmentation: The
role of goodness measures. Information Sciences,
181(1):163–183.

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. 2013.
Deep learning for chinese word segmentation and
pos tagging. In Conference on Empirical Methods
in Natural Language Processing.

172

