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Abstract

Compared to traditional statistical ma-
chine translation (SMT), neural machine
translation (NMT) often sacrifices ade-
quacy for the sake of fluency. We propose
a method to combine the advantages of tra-
ditional SMT and NMT by exploiting an
existing phrase-based SMT model to com-
pute the phrase-based decoding cost for an
NMT output and then using this cost to
rerank the n-best NMT outputs. The main
challenge in implementing this approach
is that NMT outputs may not be in the
search space of the standard phrase-based
decoding algorithm, because the search
space of phrase-based SMT is limited by
the phrase-based translation rule table. We
propose a soft forced decoding algorithm,
which can always successfully find a de-
coding path for any NMT output. We
show that using the forced decoding cost
to rerank the NMT outputs can success-
fully improve translation quality on four
different language pairs.

1 Introduction

Neural machine translation (NMT), which uses a
single large neural network to model the entire
translation process, has recently been shown to
outperform traditional statistical machine transla-
tion (SMT) such as phrase-based machine transla-
tion (PBMT) on several translation tasks (Koehn
et al., 2003; Bahdanau et al., 2015; Sennrich et al.,
2016a). Compared to traditional SMT, NMT gen-
erally produces more fluent translations, but of-
ten sacrifices adequacy, such as translating source
words into completely unrelated target words,
over-translation or under-translation (Koehn and
Knowles, 2017).
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There are a number of methods that combine the
two paradigms to address their respective weak-
nesses. For example, it is possible to incorpo-
rate neural features into traditional SMT models
to disambiguate hypotheses (Neubig et al., 2015;
Stahlberg et al., 2016). However, the search space
of traditional SMT is usually limited by transla-
tion rule tables, reducing the ability of these mod-
els to generate hypotheses on the same level of
fluency as NMT, even after reranking. There are
also methods that incorporate knowledge from tra-
ditional SMT into NMT, such as lexical translation
probabilities (Arthur et al., 2016; He et al., 2016),
phrase memory (Tang et al., 2016; Zhang et al.,
2017), and n-gram posterior probabilities based
on traditional SMT translation lattices (Stahlberg
etal., 2017). These improve the adequacy of NMT
outputs, but do not impose hard alignment con-
straints like traditional SMT systems and there-
fore cannot effectively solve all over-translation or
under-translation problems.

In this paper, we propose a method that ex-
ploits an existing phrase-based translation model
to compute the phrase-based decoding cost for
a given NMT translation.! That is, we force
a phrase-based translation system to take in the
source sentence and generate an NMT translation.
Then we use the cost of this phrase-based forced
decoding to rerank the NMT outputs. The phrase-
based decoding cost will heavily punish com-
pletely unrelated translations, over-translations,
and under-translations, as they will not be able to
be found in the translation phrase table.

One challenge in implementing this method is
that the NMT output may not be in the search
space of the phrase-based translation model,
which is limited by the phrase-based translation

'In fact, our method can take in the output of any up-
stream system, but we experiment exclusively with using it
to rerank NMT output.
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rule table. To solve this problem, we propose a
soft forced decoding algorithm, which is based on
the standard phrase-based decoding algorithm and
integrates new types of translation rules (deleting
a source word or inserting a target word). The
proposed forced decoding algorithm can always
successfully find a decoding path and compute a
phrase-based decoding cost for any NMT output.
Another challenge is that we need a diverse NMT
n-best list for reranking. Because beam search for
NMT often lacks diversity in the beam — candi-
dates only have slight differences, with most of the
words overlapping — we use a random sampling
method to obtain a more diverse n-best list.

We test the proposed method on English-to-
Chinese, English-to-Japanese, English-to-German
and English-to-French translation tasks, obtaining
large improvements over a strong NMT baseline
that already incorporates discrete lexicon features.

2 Attentional NMT

Our baseline NMT model is similar to the atten-
tional model of Bahdanau et al. (2015), which
includes an encoder, a decoder and an atten-
tion (alignment) model. Given a source sentence
F = {fi1,..., fs}, the encoder learns an annota-
tion h; = [ﬁj;ﬁj} for f; using a bi-directional
recurrent neural network.

The decoder generates the target translation
from left to right. The probability of generating
next word e; is,>

Pyur (ei|elfl, F) = softmax (g (e;—1,1;, si))

)
where t; is a decoding state for time step ¢, com-
puted by,

ti = f(ti—1,€i—1,8i) (2

s; 1s a source representation for time %, calculated

as,
J
si=y aij-h
j=1

where «; ; scores how well the inputs around posi-
tion 7 and the output at position ¢z match, computed
as,

3)

exp (a (ti-1, hy))

i exp (a (ti-1, hx))
k=1

4)

al?] =

2 g, f and a in Equation 1, 2 and 4 are nonlinear, poten-
tially multi-layered, functions.
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As we can see, NMT only learns an atten-
tion (alignment) distribution for each target word
over all source words and does not provides ex-
act mutually-exclusive word or phrase level align-
ments. As a result, it is known that attentional
NMT systems make mistakes in over- or under-
translation (Cohn et al., 2016; Mi et al., 2016).

3 Phrase-based Forced Decoding for
NMT

3.1 Phrase-based SMT

In phrase-based SMT (Koehn et al., 2003), a
phrase-based translation rule r includes a source
phrase, a target phrase and a translation score
S (r). Phrase-based translation rules can be ex-
tracted from the word-aligned training set and then
used to translate new sentences. Word alignments
for the training set can be obtained by IBM models
(Brown et al., 1993).

Phrase-based decoding uses a list of translation
rules to translate source phrases in the input sen-
tence and generate target phrases from left to right.
A basic concept in phrase-based decoding is hy-
potheses. As shown in Figure 1, the hypothesis
H, consists of two rules 1 and r9. The score of
a hypothesis S (H) can be calculated as the prod-
uct of the scores of all applied rules.> An existing
hypothesis can be expanded into a new hypothesis
by applying a new rule. As shown in Figure 1, H;
can be expanded into Hy, H3 and Hy. Hs cannot
be further expanded, because it covers all source
words, while Hs and H4 can (and must) be further
expanded. The decoder starts with an initial empty
hypothesis Hy and selects the hypothesis with the
highest score from all completed hypotheses.

During decoding, hypotheses are stored in
stacks. For a source sentence with J words, the de-
coder builds J stacks. The hypotheses that cover
J source words are stored in stack s;. The de-
coder expands hypotheses in s1, s9, ..., S7 in turn
as shown in Algorithm 1. Here, EXPAND(H) is
expanding H to get new hypotheses and putting
the new hypotheses into corresponding stacks. For
each stack, a beam of the best n hypotheses is kept
to speed up the decoding process.

3In actual phrase-based decoding it is common to inte-
grate reordering probabilities in the forced decoding score
defined in Equation 9. However, because NMT generally pro-
duces more properly ordered sentences than traditional SMT,
in this work we do not consider reordering probabilities in
our forced decoding algorithm.



H1: had a headache last night

‘ () ‘ ‘ HEH (last night) ‘
S(H1)=S(r1)*S(r2)

Phrase Table
ri: I—>F (1)
r2: last night—>HEM (last night)
r3: had a headache—>:k(head) Jf(pain) 1
r4: had—>lz(eat) T
r5: a—>—(one)

Figure 1: An example of phrase-based decoding.

Algorithm 1 Standard phrase-based decoding.
Require: Source sentence I’ with length J
Ensure: Translation £ and decoding path D

initialize Hy and s1, s2, ..., S

EXPAND(H))

forj=1toJ —1do

for each hypothesis H in s; do
EXPAND(H 1)

select best hypothesis in sz

3.2 Forced Decoding for NMT

As stated in the introduction, our goal is not to
generate new hypotheses with phrase-based SMT,
but instead use the phrase-based model to calcu-
late scores for NMT output. In order to do so, we
can perform forced decoding, which is very sim-
ilar to the algorithm in the previous section but
discards all partial hypotheses that do not match
the NMT output. However, the NMT output is
not limited by the phrase-based rule table, so there
may be no decoding path that completely matches
the NMT output when using only the phrase-based
rules.

To remedy this problem, inspired by previous
work in forced decoding for training phrase-based
SMT systems (Wuebker et al., 2010, 2012) we
propose a soft forced decoding algorithm that can
always successfully find a decoding path for a
source sentence F' and an NMT translation .

First, we introduce two new types of rules Ry
and Rs.

R; A source word f can be translated into a spe-
cial word null. This corresponds to deleting f
during translation. The score of deleting f is cal-
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H2: ‘ had a headache ‘ ‘ last night‘
[01) | [ MEM(1ast night) ] [ k(head)  Ji(pain) T |
S(H2)=S(r1)*S(r2)*s(r3)

H3: had a headache last night
[3() | [ WEM(last night) | [ Z(eat) T |
S(H3)=S(r1)*s(r2)*s(r4)

H4: had E headache last night
[#0) | [ ¥ (1ast night) | [—(one)|
S(H4)=S(r1)*S(r2)*s(r5)

culated as,
s(fﬁnull):%n(f) (5)

71

where unalign (f) is how many times f is un-
aligned in the word-aligned training set 7 and |7 |
is the number of sentence pairs in 7 .

R, A target word e can be translated from a spe-
cial word null, which corresponds to inserting e
during translation. The score of inserting e is cal-
culated as,

unalign (e)

6
7] (6)

s(null —e) =
where unalign (e) is how many times e is un-
aligned in 7.

One motivation for Equations 5 and 6 is that
function words usually have high frequencies, but
do not have as clear a correspondence with a word
in the other language as content words. As a re-
sult, in the training set function words are more
often unaligned than content words. As an exam-
ple, Table 1 and Table 2 show how many times
different words occur and how many times they
are unaligned in the word-aligned training set of
English-to-Chinese and English-to-French tasks in
our experiments. As we can see, generally there
are less unaligned words in the English-to-French
task, however, function words are more likely to
be unaligned in both tasks. Based on Equation 5
and Equation 6, the scores of deleting or inserting
“of” and “a” will be higher.

In our forced decoding, we choose to model
the score of each translation rule that exists in the
phrase table as the product of direct and inverse
phrase translation probabilities. To make sure that



Words of a practice water  Algorithm 2 Forced phrase-based decoding.
Occur 1.3M 1.OM 22K 29K  Require: Source sentence F' with length J and
Unaligned | 0.51M 04IM  0.25K 3.5K translation £ with length 1

Table 1: The number of times that words occur
in the English-to-Chinese training corpus and the
number of times that they are unaligned.

Words of a practice  water
Occur 1.7M  0.83M 88K 74K
Unaligned | 0.16M 0.12M  0.38K 0.19K

Table 2: The number of times that words occur
in the English-to-French training corpus and the
number of times that they are unaligned.

the scale of the scores for Ry and Ry match the
other phrase (which are the product of two prob-
abilities), we use the square of the score in Equa-
tion 5/6 as the rule score for R1/Ro.

Algorithm 2 shows the forced decoding algo-
rithm that integrates the new rules. Because the
translation E' is given for the forced decoding al-
gorithm, the proposed forced decoding algorithm
keeps I stacks, where [ is the length of E. In
other words, the stack size is corresponding to
the target word size during forced decoding while
the stack size is corresponding to the source word
size during standard phrase-based decoding. The
stack s, in Algorithm 2 contains all hypotheses
in which the first ¢ target words have been gen-
erated. We expand hypotheses in s/, s5, ..., s} in
turn. When expanding a hypothesis H,jq in s},
besides expanding it using the original rule table
EXPAND(H4),* we also expand H,q by insert-
ing the next target word e;; at the end of H,4 to
get an additional hypothesis Hye,, and put Hieyp
into 7 ;. For a final hypothesis in stack s/, it may
not cover all source words. We update its score by
translating uncovered words into null.

Because different decoding paths can generate
the same final translation, there can be different
decoding paths that fit the NMT translation E.
We use the score of the single decoding path with
the highest decoding score as the forced decoding
score for F.

“The new introduced word inserting/deleting rules are not
used when performing EXPAND(H4).

155

Ensure: Decoding path D
initialize Hy and s/, s), ...
EXPAND(H))
expand Hy with rule null— e
fori =1to/ —1do

for each hypothesis H;j, in s; do
EXPAND(H ;)
expand H;; with rule null— e;4

/
781

for each hypothesis Hyy, in s, do
update S (Hy,) for uncovered source words

select best hypothesis in s’

4 Reranking NMT Outputs with
Phrase-based Decoding Score

We rerank the n-best NMT outputs using the
phrase-based forced decoding score according to
Equation 7.

log P (E|F) = wi -log P, (E|F) 4wz -log Sq (E|F) (7)

where P, (E|F) is the original NMT translation
probability as calculated by Equation 1;

I
P, (E|F) = HPNMT (€i|6§717F)

=1

®

Sa (E|F) is the forced decoding score, which is
the score of the decoding path D with the highest
decoding score as described above;

Sa(EIF)y=]] _.S) ©)

reD

wy and wy are weights that can be tuned on the
n-best list of the development set.

The easiest way to get an n-best list for NMT
is by using the n-best translations from beam
search, which is the standard decoding algorithm
for NMT. While beam search is likely to find the
highest-scoring hypothesis, it often lacks diversity
in the beam: candidates only have slight differ-
ences, with most of the words overlapping. In or-
der to obtain a more diverse list of hypotheses for
reranking, we additionally augment the 1-best hy-
pothesis discovered by beam search with transla-
tions sampled from the NMT conditional proba-
bility distribution.

The standard method for sampling hypotheses
in NMT is ancestral sampling, where we randomly
select a word from the vocabulary according to



Py (e5le", F) (Shen et al., 2016). This will SOURCE _ TARGET
. . TRAIN  #Sents 1.90M
make a diverse list of hypotheses, but may reduce #Words | 52.2M 49 7M
the probability of selecting a highly scoring hy- en-de #Vocab | 113K 376K
pothesis, and the whole n-best list may not con- DEV z%;é‘rtgs 676K 3’002 30K
tain any candidate with better translation quality TEST — #Sents 2169
than the standard beam search output. #Words | 46.8K 44.0K
: TRAIN  #Sents 1.99M
Instead, we take an altfernatlve app.roach that #Words | 54.4M €0.4M
proved empirically better in our experiments: at en-fr #Vocab | 114K 137K
each time step ¢, we use sampling to randomly DEV #Sents 3,003
select the next word from ¢’ and ¢’ according to #Words | 71.1K 81.1K
) TEST #Sents 1.5K
Equation 10. Here, ¢’ and €” are the two target #Words | 27.1K 29.8K
words with the highest probability according to TRAIN  #Sents 954K
Equation 1 #Words | 40.4M 37.2M
q : en-zh #Vocab | 504K 288K
P Nei—l DEV #Sents 2K
Prgm (¢') = ﬂ"(e 5 LF) — #Words | 77.5K 75.4K
Prarr (¢ F )+ Py (€€ F) TEST  #Sents 7K
J2) (6”) . PNNIT(EII\Eﬁ_laF) #Words | 58.1K 55.5K
rdm - PNJ\/IT<e/‘€Zi_1’F)+PN1\/IT(eu‘ei_lvF) TRAIN #Sents 3.14M
( 10) #Words | 104M 118M
. . en-ja #Vocab | 273K 150K
The sampling process ends when (/s) is selected DEV #Sents 7K
as the next word. #Words | 66.5K 74.6K
. . TEST #Sents 2K
We repeat the decoding process 1, 000 times to #Words | 70.6K 785K

sample 1,000 outputs for each source sentence.
We additionally add the 1-best output of standard
beam search, making the size of the list used for
reranking to be 1, 001.

S Experiments

5.1 Settings

We evaluated the proposed approach for English-
to-Chinese (en-zh), English-to-Japanese (en-ja),
English-to-German (en-de) and English-to-French
(en-fr) translation tasks. For the en-zh and en-
ja tasks, we used datasets provided for the patent
machine translation task at NTCIR-9 (Goto et al.,
2011).°> For the en-de and en-fr tasks, we used
version 7 of the Europarl corpus as training data,
WMT 2014 test sets as our development sets and
WMT 2015 test sets as our test sets. The detailed
statistics for training, development and test sets are
given in Table 3. The word segmentation was done
by BaseSeg (Zhao et al., 2006) for Chinese and
Mecab® for Japanese.

We built attentional NMT systems with Lam-
tram’. Word embedding size and hidden layer size

5Note that NTCIR-9 only contained a Chinese-to-English
translation task, we used English as the source language in
our experiments. In NTCIR-9, the development and test sets
were both provided for the zh-en task while only the test set
was provided for the en-ja task. We used the sentences from
the NTCIR-8 en-ja and ja-en test sets as the development set
in our experiments.

Shttp://sourceforge.net/projects/mecab/files/
"https://github.com/neubig/lamtram

Table 3: Data sets.

are both 512. We used Byte-pair encoding (BPE)
(Sennrich et al., 2016b) and set the vocabulary size
to be 50K. We used the Adam algorithm for opti-
mization.

To obtain a phrase-based translation rule ta-
ble for our forced decoding algorithm, we used
GIZA++ (Och and Ney, 2003) and grow-diag-
final-and heuristic to obtain symmetric word
alignments for the training set. Then we extracted
the rule table using Moses (Koehn et al., 2007).

5.2 Results and Analysis

Table 4 shows results of the phrase-based SMT
system8, the baseline NMT system, the lexicon
integration method (Arthur et al., 2016) and the
proposed reranking method. We tested three fea-
tures for reranking: the NMT score F,,, the forced
decoding score S; and a word penalty (WP) fea-
ture, which is the length of the translation. The
best NMT system and the systems that have no
significant difference from the best NMT system
at the p < 0.05 level using bootstrap resampling
(Koehn, 2004) are shown in bold font.

As we can see, integrating lexical translation
probabilities improved the baseline NMT system

8We used the default Moses settings for phrase-based
SMT.
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en-zh en-ja en-de en-fr

dev test dev test dev test dev test
PBMT 30.73  27.72 | 35.67 33.46 | 1237 1395 | 2596 27.50
NMT 34.60 3271 | 41.67 39.00 | 12.52 14.05 | 23.63 23.99
NMT+lex 36.06 34.80 | 4447 41.09 | 13.36 15.60 | 24.00 2491
NMT+lex+rerank(FP,,) 3438 3323 | 38.92 3418 | 12.34 13.59 | 23.13 23.61
NMT+lex+rerank(Sy) 36.17 34.09 | 4291 40.16 | 13.08 1529 | 2428 25.71
NMT+lex+rerank( P, +S4) 3794 3559 | 4534 41.75 | 14.56 16.61 | 2596 27.12
NMT+lex+rerank(P,+WP) 3744 3493 | 4581 4190 | 13.75 1546 | 2447 25.09
NMT+lex+rerank(S4+WP) 36.44 33.73 | 43.52 4049 | 13.39 1571 | 2474  26.25
NMT+lex+rerank(P,+S4+WP) | 38.69 35.75 | 46.92 43.17 | 14.61 16.65 | 25.98 27.15

Table 4: Translation results (BLEU). NMT+lex: (Arthur et al., 2016); NMT+lex+rerank: we rerank the
n-best outputs of NMT+lex using different features (F,,, Sy and WP).

en-zh en-ja en-de en-fr

METEOR chrF | METEOR chrF | METEOR chrF | METEOR chrF
PBMT 34.70 37.87 | 35.22 39.45 | 26.66 50.02 | 32.33 56.36
NMT 34.51 3991 | 35.07 42.02 | 24.91 44.50 | 29.58 49.99
NMT+lex 35.56 42.22 | 36.48 44.34 | 2549 45.67 | 30.10 50.89
NMT+lex+rerank(FP,) 34.56 40.80 | 32.63 38.57 | 23.57 40.35 | 29.15 48.64
NMT+lex+rerank(Sq) 36.02 42.65 | 36.87 44.85 | 26.48 48.73 | 31.56 54.42
NMT+lex+rerank(P,+Sq) 36.40 43.73 | 37.22 45.69 | 26.26 47.27 | 31.62 53.99
NMT+lex+rerank(P,+WP) 36.04 42.86 | 36.90 4493 | 25.03 44.05 | 30.21 50.78
NMT+lex+rerank(Sq+WP) 36.34 42.78 | 37.05 45.03 | 26.16 47.82 | 31.32 53.75
NMT+lex+rerank(P,+Sqs+WP) | 36.88 44.09 | 37.94 46.66 | 26.20 47.12 | 31.61 53.98

Table 5: METEOR and chrF scores on the test sets for different system outputs in Table 4.

en-zh en-ja en-de en-fr

dev test dev test dev test dev test
PBMT 1.008 1.018 | 1.005 0998 | 1.077 1.069 | 0.986 1.004
NMT 0.953 0954 | 0960 0961 | 1.059 1.038 | 0.985 0.977
NMT+lex 0.936 0966 | 0955 0963 | 1.054 1.019 | 1.030 0.977
NMT+lex+rerank(Py,) 0.875 0.898 | 0.814 0.775 | 0.874 0.854 | 0.904 0.900
NMT+lex+rerank(Sy) 0973 0989 | 0985 0.981 | 1.062 1.060 | 1.030 1.031
NMT+lex+rerank( P, +S4) 0.949 0965 | 0945 0.936 | 1.000 0.992 | 0.999 0.992
NMT+lex+rerank( P, +WP) 0996 1.019 | 0.999 0.983 | 1.000 0.975 | 0.998 1.001
NMT+lex+rerank(S3+WP) 1.000 1.024 | 1.001 1.001 | 1.011 1.007 | 0.999 0.989
NMT+lex+rerank(P,+S4+WP) | 0.990 1.014 | 1.000 0.986 | 1.000 0.989 | 1.000 0.992

Table 6: Ratio of translation length to reference length for different system outputs in Table 4.

and reranking with the three features all together
achieved further improvements for all four lan-
guage pairs. Even on English-to-Chinese and
English-to-Japanese tasks, where the NMT system
outperformed the phrase-based SMT system by 7-
8 BLEU scores, using the forced decoding score
for reranking NMT outputs can still achieve sig-
nificant improvements. With or without the word
penalty feature, using both P,, and S, for rerank-
ing gave better results than only using P, or Sy
alone. We also show METEOR and chrF scores
on the test sets in Table 5. Our reranking method
improved both METEOR and chrF significantly.

The Word Penalty Feature The word penalty
feature generally improved the reranking results,
especially when only the NMT score P, was used
for reranking. As we can see, using only P, for
reranking decreased the translation quality com-

pared to the standard beam search result of NMT.
Because the search spaces of beam search and ran-
dom sampling are quite different, the best beam
search output does not necessarily have the high-
est NMT score compared to random sampling out-
puts. Therefore, even the P, reranking results do
have higher NMT scores, but have lower BLEU
scores according to Table 4. To explain why this
happened, we show the ratio of translation length
to reference length in Table 6. As we can see, the
P, reranking outputs are much shorter. This is be-
cause NMT generally prefers shorter translations,
since Equation 8 multiplies all target word proba-
bilities together. So the word penalty feature can
improve the P, reranking results considerably, by
preferring longer sentences. Because the forced
decoding score Sy as shown in Equation 9 does
not obviously prefer shorter or longer sentences,
when Sy was used for reranking, the word penalty
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Source
5 % glucose .

for hypophysectomized (hypop hy sec to mized) rats, the drinking water additionally contains

Reference % F(for) Z(remove) FEfA (hypophysis) A(big) f(rat) , X HI7K(drinking water) #(in) 73
#halso) & 7F (contain) 5 26 Hi%j #E (glucose) -

PBMT FH T (for) K(big) f(rat) HEf&(hypophysis) HySecto, (Hy Secto, ) X 7K(drinking wa-
ter) %M (also) & 7H (contain) 5 % % (glucose) -

NMT X T (for) 1 (pass) B Mi(cecum) HI(of) K(big) f(rat) , XHI7K(drinking water) 734 (also)
%7H (contain) 5 % HZ%jH# (glucose) -

§ﬁ$33+ P, X F(for) {K(low) B (cheese) £& H (protein) YIER(remove) HI(of) K(big) fi(rat) , H

NMT+lex+P,,+WP 7K (drinking water) 734 (also) &6 (contain) 5 % % 1 (glucose) -

Eiﬁﬂiﬁi&wp #F(for) T (hypophysis) E(is) BBk (remove) K (big) Fl(rat) Hi(in) , P/ (drinking
water) % Malso) & H (contain) 5 %6 #j % #H (glucose) -

§x¥1i2111€:1§2+wp XFF(for) ZE{&(hypophysis) 7E(is) PIFRk(remove) Hi(of) K(big) f(rat) F(in) , H

7K (drinking water) %34 (also) ¥ ’H (contain) 5 % % #(glucose) -

Table 7: An example of improving inaccurate rare word translation by using .S, for reranking.

feature became less helpful. When both P, and S,
were used for reranking, the word penalty feature
only achieved further significant improvement on
the English-to-Japanese task.

T1 NMT+lex):

for —*F (for) -3.04
74 hy —{fK(low) -12.19
ry: null—P&(cheese) -21.99
Te: null—%E H(protein) -13.83

to mized — V] (remove) -6.22

null—HJ(of) -1.53

rats — K (big) f5(rat) -1.52
, the drinking water —, XF7K(drinking water)  -1.38

additionally contains — %4 Malso) & A (contain) -3.68

5% —5% -0.51

glucose . — %M (glucose) - -0.60
rq: hypop—null -25.33

sec—null -20.66

Ty NMT+lex+P,,+S4):

for — % F (for) -3.04
hypop hy —Z&{# (hypophysis) -5.09
the —7E(is) -5.32

to mized — V] Fk(remove) -6.22

null—HJ(of) -1.53

rats — K (big) f(rat) -1.52
, —H(in) , -4.11
drinking water —/ZX Fl 7K (drinking water) -1.03

additionally contains — % %Malso) & ’H (contain) -3.68

5% —5% -0.51

glucose . —Hi%j 1 (glucose) - -0.60

sec—null -20.66

Table 9: Forced decoding paths for T; and Ts:
used rules and log scores. The translation rules
with shade are used only for T; or Ts.
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Table 7 gives translation examples of our
reranking method from the English-to-Chinese
task. The source English word “hypophysec-
tomized” is an unknown word which does not oc-
cur in the training set. By employing BPE, this
word is split into “hypop”, “hy”, “sec”, “to” and
“mized”. The correct translation for “hypophy-
sectomized” is “Z:(remove) 1A (hypophysis)”
as shown in the reference sentence. The orig-
inal attentional NMT translated it into incor-
rect translation “3J(pass) H Mi(cecum)”. Af-
ter integrating lexicons, the NMT system trans-
lated it into “{f(low) E(cheese) & H (protein) 1)
F(remove)”. The last word “¥J] FR(remove)” is
correct, but the rest of the translation is still wrong.
Only by using the forced decoding score Sy for
reranking, we get the more accurate translation
“TE & (hypophysis) 7E(is) YIFR(remove)”.

To further demonstrate how the reranking
method works, Table 9 shows translation rules and
their log-scores contained in the forced decoding
paths found for T;, the NMT translation with-
out reranking and Ty, the NMT translation using
both P, and S; for reranking. As we can see,
the four rules r,, rp, 7. and r4 used for T have
low scores. 7, is an unlikely translation. In 7y,
r. and g, “T&(cheese)”, “Z& El(protein)” and “hy-
pop” are content words, which are unlikely to be
deleted or inserted during translation. Table 9 also
shows that the translation of function words is very
flexible. The score of inserting a function word
“HJ(of)” is very high. The translation rule “the
—7F(is)” used for T is incorrect, but its score is
relatively high, because function words are often



Source such changes in reaction conditions include but are not limited to
an increase in temperature or change in ph .

Reference Ffr(such) AR (said) . N(reaction) %  {#(condition) #(of)
4 45 (change) ], Hi(include) {H (but) N(not) R T(limit)
13 (temperature) J(of) & [l (increase) 2k (or) pH {E(value) A(of) I{{ZF(change) -

PBMT M (in) Hi(of)  3X Fh(such) 2 fk(change) Hi(ofy [ Ri(reaction) %
4 (condition) £ #H(include) 1B (but) N(not) FR T (limit)
&Il (increase) ['(of) &% (temperature) B (or) pH 22 {{(change) -

NMT X FH(such) X [ (reaction) & F(condition) HJ(of) 22 f¥(change) £ ¥ (include) {H(but) N(not)
PR T (limit) pH Bf(or) pH H(of) Z8{t.(change) -

NMT-+lex X Fi(such) [N (reaction) 5 (condition) A¥(of) 281t (change) ¥ (include) , 1H.(but) N(not)

NMT+ex+F, FRF(limit) , pH KJ(of) Fi(increase) Bi(or) pH Z5{{(change) -

NMT+lex+Sy X Fi(such) X N (reaction) Z&%F(condition) H(of) 22 f¥(change) £ ¥ (include) H(but) N(not)
FRF(limit) , #EE (temperature) F(of) 7 =i (increase) B (or) (2% (change) pH {E(value) -

NMT+lex+P,+Sq IXFH(such) R (reaction) 5% (condition) f*(of) ZZ ¥ (change) 1 FE(include) , {H(but) (not)
FRTF(limit) , {&Z (temperature) F(of) F5i(increase) Bl (or) {2 (change) pH {E(value) -

NMT+lex+P,, +WP X FH(such) &R (reaction) %4 (condition) f¥(of) Z2 f¥(change) &1 FE(include) , {H(but) N (not)
FRF(limit) , pH K(of) F+i(increase) B (or) £ A5 (change) pH {E(value) -

NMT+lex+54+WP X Ffi(such) [ R (reaction) £5(condition) f¥(of) Z5{t.(change) B ¥ (include) , {E(but) A(not)

NMT+lex+Pp,+Sq+WP

PR (limit)

15 (temperature) f¥(of) 717 (increase) 2k (or) I{Z% (change) pH {E(value) -

Table 8: An example of improving under-translation and over-translation by using Sy for reranking.

incorrectly aligned in the training set. The rea-
son why function words are more likely to be in-
correctly aligned to each other is that they usually
have high frequencies and do not have clear corre-
spondences between different languages.

In Ty, “hypophysectomized (hypop hy sec to
mized)” is incorrectly translated into “{f(low)
fi%(cheese) £& H(protein) 7] Fk(remove)”. How-
ever, from Table 9, we can see that the
forced decoding algorithm learns it as un-
likely translation (hy—1ff(low)), over-translation
(null—f(cheese), null—Z%& H(protein)) and
under-translation (hypop—null, sec—null),
because there is no translation rule between “hy-
pop” “sec” and “fi(cheese)” “£& H (protein)”. Be-
cause content words are unlikely to be deleted or
inserted during translation, they have low forced
decoding scores. So using the forced decoding
score for reranking NMT outputs can naturally
improve over-translation or under-translation as
shown in Table 8. As we can see, without using
Sy for reranking, NMT under-translated “temper-
ature” and over-translated “ph” twice, which will
be assigned low scores by forced decoding. By
using Sy for reranking, the correct translation was
selected.

We did human evaluation on 100 sentences ran-
domly selected from the English-to-Chinese test
set to test the effectiveness of our forced decoding
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method. We compared the outputs of two systems:
o NMT+lex+rerank(F,,+WP)
o NMT+lex+rerank(FP,,+S3+WP)

For each source sentence, we compared the two
system outputs. Table 10 shows the numbers
of sentences that our forced decoding feature
helped to reduce completely unrelated transla-
tion, over-translation and under-translation. The
last line of Table 10 means that for 73 source
sentences, our forced decoding feature neither
reduced nor caused more unrelated/over/under
translation. That is our forced decoding feature
never caused more unrelated/over/under transla-
tion for the sampled 100 sentences, which shows
that our method is very robust for improving unre-
lated/over/under translation.

both under- and over- translation 2

under-translation 11
Reduce .

over-translation 10

unrelated translation 4
No difference 73

Table 10: Human evaluation results.

Reranking PBMT Outputs with NMT We
also did experiments that use the NMT score as
an additional feature to rerank PBMT outputs
(unique 1,000-best list). The results are shown



in Table 11. We also copy results of baseline
PBMT and NMT from Table 4 for direct com-
parison. As we can see, using NMT to rerank
PBMT outputs achieved improvements over the
baseline PBMT system. However, when the base-
line NMT system is significantly better than the
baseline PBMT system (en-zh, en-ja), even using
NMT to rerank PBMT outputs still achieved lower
translation quality compared to the baseline NMT
system.

en-zh en-ja en-de en-fr
PBMT+rerank 3277 37.68 1423 28.86
PBMT dev 30.73 35.67 1237 2596
NMT 34.60 41.67 1252 23.63
PBMT+rerank 30.04 35.14 15.89 29.77
PBMT test 27.72 3346 1395 27.50
NMT 32.71 39.00 14.05 23.99

Table 11: Results of using NMT for reranking
PBMT outputs.

6 Related Work

Wuebker et al. (2010, 2012) applied forced decod-
ing on the training set to improve the training pro-
cess of phrase-based SMT and prune the phrase-
based rule table. They also used word insertions
and deletions for forced decoding, but they used a
high penalty for all insertions and deletions. In
contrast, our soft forced decoding algorithm for
NMT outputs uses a small penalty for function
words and a high penalty for content words, be-
cause function words are usually translated very
flexibly and more likely to be inserted or deleted
compared to content words. For example, the
under-translation of a content word can hurt the
adequacy of the translation heavily. But function
words may naturally disappear during translation
(e.g. the English word “the” disappears in Chi-
nese). By assigning a high penalty to words that
should not be deleted or inserted during transla-
tion, our soft forced decoding method aims to im-
prove the adequacy of NMT, which is very differ-
ent from previous forced decoding methods that
are used to improve general SMT training (Yu
et al., 2013; Xiao et al., 2016).

A major difference of traditional SMT and
NMT is that the alignment model in traditional
SMT provides exact word or phrase level align-
ments between the source and target sentences
while the attention model in NMT only computes
an alignment probability distribution for each tar-
get word over all source words, which is the main
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reason why NMT is more likely to produce com-
pletely unrelated translations, over-translation or
under-translation compared to traditional SMT. To
relieve NMT of these problems, there are meth-
ods that modify the NMT neural network structure
(Tuetal., 2016; Meng et al., 2016; Alkhouli et al.,
2016) while we rerank NMT outputs by exploiting
knowledge from traditional SMT.

There are also existing methods that rerank
NMT outputs by using target-bidirectional NMT
models (Liu et al., 2016; Sennrich et al., 2016a).
Their reranking method aims to overcome the is-
sue of unbalanced accuracy in NMT outputs while
our reranking method aims to solve the inade-
quacy problem of NMT.

7 Conclusion

In this paper, we propose to exploit an existing
phrase-based SMT model to compute the phrase-
based decoding cost for NMT outputs and then use
the phrase-based decoding cost to rerank the n-
best NMT outputs, so we can combine the advan-
tages of both PBMT and NMT. Because an NMT
output may not be in the search space of standard
phrase-based SMT, we propose a forced decod-
ing algorithm, which can always successfully find
a decoding path for any NMT output by deleting
source words and inserting target words. Results
show that using the forced decoding cost to rerank
NMT outputs improved translation accuracy on
four different language pairs.

References

Tamer Alkhouli, Gabriel Bretschner, Jan-Thorsten Pe-
ter, Mohammed Hethnawi, Andreas Guta, and Her-
mann Ney. 2016. Alignment-based neural machine
translation. In Proceedings of the First Conference
on Machine Translation, pages 54—65.

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating discrete translation lexicons
into neural machine translation. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1557-1567.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational Linguistics, 19(2):263-311.



Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholamreza
Haffari. 2016. Incorporating structural alignment
biases into an attentional neural translation model.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 876-885.

Isao Goto, Bin Lu, Ka Po Chow, Eiichiro Sumita, and
Benjamin K Tsou. 2011. Overview of the patent ma-
chine translation task at the NTCIR-9 workshop. In
Proc. NTCIR-9, pages 559-578.

Wei He, Zhongjun He, Hua Wu, and Haifeng Wang.
2016. Improved neural machine translation with
SMT features. In Thirtieth AAAI conference on ar-
tificial intelligence.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing, pages 388-395.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177-180.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 28-39.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003.  Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 48-54.

Lemao Liu, Masao Utiyama, Andrew Finch, and
Eiichiro Sumita. 2016.  Agreement on target-
bidirectional neural machine translation. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
411-416.

Fandong Meng, Zhengdong Lu, Hang Li, and Qun
Liu. 2016. Interactive attention for neural ma-
chine translation. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2174-2185.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016. Coverage embedding models for
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 955-960.

161

Graham Neubig, Makoto Morishita, and Satoshi Naka-
mura. 2015. Neural reranking improves subjective
quality of machine translation: NAIST at WAT2015.
In Proceedings of the 2nd Workshop on Asian Trans-
lation (WAT2015).

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19-51.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh neural machine translation sys-
tems for WMT 16. In Proceedings of the First Con-
ference on Machine Translation, pages 371-376.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715—
1725.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1683—1692.

Felix Stahlberg, Adria de Gispert, Eva Hasler, and
Bill Byrne. 2017. Neural machine translation by
minimising the Bayes-risk with respect to syntactic
translation lattices. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 362-368.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill
Byrne. 2016. Syntactically guided neural machine
translation. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 299-305.

Yaohua Tang, Fandong Meng, Zhengdong Lu, Hang L1,
and Philip LH Yu. 2016. Neural machine transla-
tion with external phrase memory. arXiv preprint
arXiv:1606.01792.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 76—85.

Joern Wuebker, Mei-Yuh Hwang, and Chris Quirk.
2012. Leave-one-out phrase model training for
large-scale deployment. In Proceedings of the Sev-

enth Workshop on Statistical Machine Translation,
pages 460—467.

Joern Wuebker, Arne Mauser, and Hermann Ney. 2010.
Training phrase translation models with leaving-
one-out. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 475-484.



Tong Xiao, Derek F Wong, and Jingbo Zhu. 2016. A
loss-augmented approach to training syntactic ma-
chine translation systems. [EEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
24(11):2069-2083.

Heng Yu, Liang Huang, Haitao Mi, and Kai Zhao.
2013. Max-violation perceptron and forced decod-
ing for scalable MT training. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1112-1123.

Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu,
and Maosong Sun. 2017. Prior knowledge inte-
gration for neural machine translation using poste-
rior regularization. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1514—
1523.

Hai Zhao, Chang-Ning Huang, Mu Li, et al. 2006. An
improved chinese word segmentation system with
conditional random field. In Proceedings of the Fifth
SIGHAN Workshop on Chinese Language Process-
ing, pages 162—165.

162



