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Abstract

We present a pointwise mutual informa-
tion (PMI) based approach for formaliz-
ing paraphrasability and propose a variant
of PMI, called mutual information based
paraphrase acquisition (MIPA), for para-
phrase acquisition. Our paraphrase acqui-
sition method first acquires lexical para-
phrase pairs by bilingual pivoting and then
reranks them by PMI and distributional
similarity. The complementary nature of
information from bilingual corpora and
from monolingual corpora renders the pro-
posed method robust. Experimental re-
sults show that the proposed method sub-
stantially outperforms bilingual pivoting
and distributional similarity themselves in
terms of metrics such as mean reciprocal
rank, mean average precision, coverage,
and Spearman’s correlation.

1 Introduction

Paraphrases are useful for flexible language
understanding in many NLP applications. For
example, the usefulness of the paraphrase
database PPDB (Ganitkevitch et al., 2013;
Pavlick et al., 2015), a publicly available large-
scale resource for lexical paraphrasing, has
been reported for tasks such as learning word
embeddings (Yu and Dredze, 2014) and semantic
textual similarity (Sultan et al., 2015). In PPDB,
paraphrase pairs are acquired via word alignment
on a bilingual corpus by a process called bilingual
pivoting (Bannard and Callison-Burch, 2005).
Figure 1 shows an example of English language
paraphrase acquisition using the German language
as a pivot.

Although bilingual pivoting is widely used for
paraphrase acquisition, it always includes noise

Figure 1: Paraphrase acquisition via bilingual piv-
oting (Ganitkevitch et al., 2013).

due to unrelated word pairs caused by word align-
ment errors on the bilingual corpus. Distribu-
tional similarity, another well-known method for
paraphrase acquisition, is free of alignment er-
rors, but includes noise due to antonym pairs that
share the same contexts on the monolingual cor-
pus (Mohammad et al., 2013).

In this study, we formalize the paraphrasability
of paraphrase pairs acquired via bilingual pivoting
using pointwise mutual information (PMI) and re-
duce the noise by reranking the pairs using dis-
tributional similarity. The proposed method ex-
tends Local PMI (Evert, 2005), which is a vari-
ant of weighted PMI that aims to avoid low-
frequency bias in PMI, for paraphrase acquisi-
tion. Since bilingual pivoting and distributional
similarity have different advantages and disad-
vantages, we combine them to construct a com-
plementary paraphrase acquisition method, called
mutual information based paraphrase acquisition
(MIPA). Experimental results show that MIPA
outperforms bilingual pivoting and distributional
similarity themselves in terms of metrics such as
mean reciprocal rank (MRR), mean average pre-
cision (MAP), coverage, and Spearman’s correla-
tion.

The contributions of our study are as follows.
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• Bilingual pivoting-based lexical paraphrase
acquisition is generalized using PMI.

• Lexical paraphrases are acquired robustly us-
ing both bilingual and monolingual corpora.

• We release our lexical paraphrase pairs1.

2 Bilingual Pivoting

Bilingual pivoting (Bannard and Callison-Burch,
2005) is a method used to acquire large-scale lex-
ical paraphrases by two-level word alignment on
a bilingual corpus. Bilingual pivoting employs a
conditional paraphrase probability p(e2 |e1) as a
paraphrasability measure, when word alignments
exist between an English phrase e1 and a foreign
language phrase f , and between the foreign lan-
guage phrase f and another English phrase e2 on a
bilingual corpus. It calculates the probability from
an English phrase e1 to another English phrase e2

using word alignment probabilities p(f |e1) and
p(e2 |f); here, the foreign language phrase f is
used as the pivot.

p(e2 |e1) =
∑

f p(e2 |f, e1) p(f |e1)

≈
∑

f p(e2 |f) p(f |e1)
(1)

It assumes conditional independence of e1 and e2

given f , so that the equation above can be es-
timated easily using phrase-based statistical ma-
chine translation models. One of its advantages is
that it requires only two translation models to ac-
quire paraphrases on a large scale. However, since
the conditional probability is asymmetric, it may
introduce irrelevant paraphrases that do not hold
the same meaning as the original one. In addi-
tion, owing to the data sparseness problem in the
bilingual corpus, paraphrase probabilities may be
overestimated for low-frequency word pairs.

To mitigate this, PPDB (Ganitkevitch et al.,
2013) defined the symmetric paraphrase score
sbp(e1, e2) using bi-directional bilingual pivoting.

sbp(e1, e2) = −λ1 log p(e2 |e1)− λ2 log p(e1 |e2)
(2)

Unlike Equation (1), sbp enforces mutual para-
phrasability of e1 and e2. As discussed later,
this does not necessarily increase the performance
of paraphrase acquisition, because the symmetric
constraint may be too strict to allow the extrac-
tion of broad-coverage paraphrases. In this study,

1https://github.com/tmu-nlp/pmi-ppdb

without loss of generality, we set2 λ1 = λ2 = −1.

sbp(e1, e2) = log p(e2 |e1) + log p(e1 |e2) (3)

Although these paraphrase acquisition methods
can extract large-scale paraphrase knowledge, the
results may contain many fragments caused by
word alignment error.

3 MIPA: Mutual Information Based
Paraphrase Acquisition

To mitigate overestimation, we acquire lex-
ical paraphrases with the conditional para-
phrase probability by using Kneser-Ney smooth-
ing (Kneser and Ney, 1995) and reranking them
using information theoretic measure from a bilin-
gual corpus and distributional similarity calculated
from a large-scale monolingual corpus.

3.1 Smoothing of Bilingual Pivoting
Since bilingual pivoting adopts the conditional
probability p(e2 |e1) as paraphrasability, we can
mitigate the problem of overestimation by apply-
ing a smoothing method.

In the hierarchical Bayesian model, the condi-
tional probability p(y |x) is expressed using the
Dirichlet distribution with parameter αy and max-
imum likelihood estimation p̂y |x as follows.

p(y |x) =
n(y |x) + αy∑
y(n(y |x) + αy)

≃ n(y |x)
n(x) +

∑
y αy

∵ αy ≪ 1

=
n(x)

n(x) +
∑

y αy
· n(y |x)

n(x)

=
n(x)

n(x) +
∑

y αy
· p̂y |x

(4)

Here, n(x) indicates the frequency of a word x
and n(y |x) indicates the co-occurrence frequency
of word y following x. As

∑
y αy is too large to

be ignored, especially when the frequency n(x) is
small, Equation (4) shows that the maximum like-
lihood estimation p̂y |x estimates the probability to
be excessively large.

Therefore, we propose using Kneser-Ney
smoothing (Kneser and Ney, 1995), which is con-
sidered to be an extension of the Dirichlet smooth-
ing above, to mitigate overestimation of para-
phrase probability in bilingual pivoting.

2PPDB3: λ1 = λ2 = 1
3http://www.cis.upenn.edu/˜ccb/ppdb/
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pKN(e2 |e1) =
n(e2 |e1)− δ

n(e1)
+ γ(e1)pKN(e2)

δ =
N1

N1 + 2N2

γ(e1) =
δ

n(e1)
N(e1) (5)

pKN(e2) =
N(e2)∑
i N(ei)

Here, Nn indicates the number of types of word
pairs of frequency n and N(e1) indicates the num-
ber of types of paraphrase candidates of word e1.

3.2 Generalization of Bilingual Pivoting
using Mutual Information

The bi-directional bilingual pivoting of
PPDB (Ganitkevitch et al., 2013) constrains
paraphrase acquisition to be strictly symmetric.
However, although it is extremely effective for
extracting synonymous expressions, it tends to
give high scores to frequent but irrelevant phrases,
since bilingual pivoting itself contains noisy
phrase pairs because of word alignment errors.

To address the problem of frequent phrases, we
smooth paraphrasability by bilingual pivoting in
Equation (3) using word probabilities p(e1) and
p(e2) from a monolingual corpus that is suffi-
ciently larger than the bilingual corpus.

spmi(e1, e2) = log p(e2 |e1) + log p(e1 |e2)
− log p(e1)− log p(e2)

(6)

Thus, we can interpret the bi-directional bilingual
pivoting as an unsmoothed version of PMI. Since
the difference in the logarithms of the numerator
and denominator is equal to the logarithm of the
quotient, we can transform Equation (6) as

spmi(e1, e2) = log
p(e2 |e1)

p(e2)
+ log

p(e1 |e2)
p(e1)

= 2PMI(e1, e2) (7)

since we can transform PMI into the following
forms using Bayes’ theorem.

PMI(x, y) = log
p(x, y)

p(x)p(y)
(8)

= log
p(y |x)p(x)
p(x)p(y)

= log
p(y |x)
p(y)

= log
p(x |y)p(y)
p(x)p(y)

= log
p(x |y)
p(x)

Plugging Equation (8) into Equation (7), we can
interpret PMI as a geometric mean of two models.

PMI(x, y) =
1
2
PMI(x, y) +

1
2
PMI(x, y) (9)

=
1
2

log
p(y |x)
p(y)

+
1
2

log
p(x |y)
p(x)

= log

[{
p(y |x)
p(y)

} 1
2

·
{

p(x |y)
p(x)

} 1
2

]
Bilingual pivoting in Equation (1) can be re-

garded as a mixture model that considers only the
e1 → e2 direction. However, as shown in Equa-
tion (9), our proposed method can be regarded
as a product model (Hinton, 2002) that considers
both directions. PPDB (Pavlick et al., 2015) also
considers the paraphrase probability in both direc-
tions, but the authors did not regard it as a product
model; instead the paraphrase probability in each
direction is treated as one of the features of super-
vised learning.

3.3 Incorporating Distributional Similarity
In low-frequency word pairs, it is well-known that
PMI becomes unreasonably large because of co-
incidental co-occurrence. In order to avoid this
problem, Evert (2005) proposed Local PMI, which
assigns weights to PMI depending on the co-
occurrence frequency of word pairs.

LocalPMI(x, y) = n(x, y) · PMI(x, y) (10)

In this study, however, it was difficult to directly
calculate the weight corresponding to n(x, y) in
Equation (10) on the bilingual corpus. Further-
more, our aim was to calculate not the strength
of co-occurrence (relation) between words, but the
paraphrasability. Therefore, it is not appropriate to
count the co-occurrence frequency on a monolin-
gual corpus such as Local PMI.

Alternatively, we use as a weight the distri-
butional similarity, which is frequently used for
paraphrase acquisition from a monolingual cor-
pus (Chan et al., 2011; Glavaš and Štajner, 2015).

slpmi(e1, e2) = cos(e1, e2) · spmi(e1, e2)
= cos(e1, e2) · 2PMI(e1, e2)

(11)

Here, cos(e1, e2) indicates cosine similarity be-
tween vector representations of word e1 and word
e2. Equation (11) simultaneously considers para-
phrasability based on the monolingual corpus (dis-
tributional similarity) and on the bilingual corpus
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Figure 2: Effectiveness of smoothing of bilingual
pivoting evaluated by paraphrase ranking in MRR.

Figure 3: Effectiveness of smoothing of bilingual
pivoting evaluated by paraphrase ranking in MAP.

(bilingual pivoting). Distributional similarity, as
opposed to bilingual pivoting, is robust against
noise associated with unrelated word pairs. Bilin-
gual pivoting is robust against noise arising from
antonym pairs, unlike distributional similarity.
Therefore, slpmi(e1, e2) can perform paraphrase
acquisition robustly by compensating the disad-
vantages. Hereinafter, we refer to slpmi(e1, e2)
as MIPA, mutual information based paraphrase ac-
quisition via bilingual pivoting.

4 Experiments

4.1 Settings

We used French-English parallel data4

from Europarl-v7 (Koehn, 2005) and
GIZA++ (Och and Ney, 2003) (IBM model 4) to
calculate the conditional paraphrase probability
p(e2 |e1) and p(e1 |e2). We also used the English
Gigaword 5th Edition5 and KenLM (Heafield,
2011) to calculate the word probability p(e1)
and p(e2). For cos(e1, e2), we used the CBOW
model6 of word2vec (Mikolov et al., 2013a).
Finally, we acquired paraphrase candidates of
170,682,871 word pairs, excepting the paraphrase
of itself (e1 = e2).

We employed the conditional paraphrase prob-
ability of bilingual pivoting given in Equation (1),
the symmetric paraphrase score of PPDB given
by Equation (3), and distributional similarity as
baselines, and compared them with PMI shown in
Equation (7) and the MIPA score given in Equa-
tion (11). Note that distributional similarity im-

4http://www.statmt.org/europarl/
5https://catalog.ldc.upenn.edu/LDC2011T07
6https://code.google.com/archive/p/word2vec/

plies that the paraphrase pairs acquired via bilin-
gual pivoting were reranked by distributional sim-
ilarity rather than by using the top-k distribution-
ally similar words among all the vocabularies.

4.2 Evaluation Datasets and Metrics

For evaluation, we used two datasets included
in Human Paraphrase Judgments7 published
by Pavlick et al. (2015); hereafter, we call these
datasets HPJ-Wikipedia and HPJ-PPDB, respec-
tively.

First, Human Paraphrase Judgments includes a
paraphrase list of 100 words or phrases randomly
extracted from Wikipedia and processed using a
five-step manual evaluation for each paraphrase
pair (HPJ-Wikipedia). A correct paraphrase is a
word that gained three or more evaluations in man-
ual evaluation. We used this dataset to evaluate
the acquired paraphrase pairs by MRR and MAP,
following Pavlick et al. (2015). Furthermore, we
evaluated the coverage of the top-k paraphrase
pairs. Function words such as “as” have more
than 50,000 types of paraphrase candidates, be-
cause they are sensitive to word alignment errors
in bilingual pivoting. However, since many of
these paraphrase candidates are word pairs that are
not in fact paraphrases, we evaluated the coverage
in terms of the extent to which they can reduce un-
necessary candidates while preserving the correct
paraphrases.

Second, Human Paraphrase Judgments
also includes a five-step manual evalu-
ation of 26,456 word pairs sampled from
PPDB (Ganitkevitch et al., 2013) (HPJ-PPDB)

7http://www.seas.upenn.edu/˜epavlick/data.html
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Figure 4: Paraphrase ranking in MRR. Figure 5: Paraphrase ranking in MAP.

Figure 6: Coverage of the top-k paraphrase pairs.

together with the paraphrase list of 100 words.
We used this dataset to evaluate the overall para-
phrase ranking based on Spearman’s correlation
coefficient, as in Pavlick et al. (2015).

4.3 Results

Figures 2 and 3 show the effectiveness of adopting
Kneser-Ney smoothing for bilingual pivoting in
terms of MRR and MAP on HPJ-Wikipedia. The
horizontal axis of each graph represents the evalu-
ation of the paraphrase up to the top-k of the para-
phrase score. The results confirm that the ranking
of paraphrases acquired via bilingual pivoting was
improved by applying Kneser-Ney smoothing. In
the rest of this study, we always applied Kneser-
Ney smoothing to conditional paraphrase proba-
bility.

Figures 4 and 5 show the comparison of para-
phrase rankings in MRR and MAP on HPJ-
Wikipedia. The evaluation by MRR, shown in

Figure 4, demonstrates that the ranking perfor-
mance of paraphrase pairs is improved by making
bilingual pivoting symmetric. PMI slightly out-
performs the baselines of bilingual pivoting below
the top five. Furthermore, MIPA shows the highest
performance, because reranking by distributional
similarity greatly improves bilingual pivoting.

The evaluation using MAP, shown in Figure 5,
also reinforced the same result, i.e., reranking by
distribution similarity improved bilingual pivot-
ing, and MIPA showed the highest performance.

Figure 6 shows the coverage of the top-ranked
paraphrases on HPJ-Wikipedia. Despite the fact
that the symmetric paraphrase score is better than
the conditional paraphrase probability in the rank-
ing performance of the top three in MRR and
MAP, it shows a poor performance in terms of cov-
erage. Although there is not a significant differ-
ence between MIPA and the other methods, MIPA
was shown to outperform them.
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Figure 7: ρ : log p(e2 |e1). Figure 8: ρ : MIPA(e1, e2).

p(e2 |e1) log p(e2 |e1) + log p(e1 |e2) 2PMI(e1, e2) cos(e1, e2) cos(e1, e2)2PMI(e1, e2)
1. diverse culturally culturally-based historical socio-cultural
2. harvests culture culturaldevelopment culture culture
3. firstly 151 cultural-social educational multicultural
4. understand charter economic-cultural linguistic intercultural
5. flowering monuments culture- multicultural educational
6. trying art cultural-educational cross-cultural intellectual
7. structure casal kulturkampf diversity culturally
8. january kahn cultural-political technological sociocultural
9. culture 13 multiculture intellectual heritage

10. culturally caning culturally preservation architectural

Table 1: Paraphrase examples of cultural. Italicized words are the correct paraphrases.

Figures 7 and 8 show the scatter plots and
Spearman’s correlation coefficient of each para-
phrase score and manual evaluation (average value
of five evaluators) on HPJ-PPDB. As in the pre-
vious experimental results, MIPA showed a high
correlation. In particular, the noise generated by
false positives at the upper left of the scatter plot
can be reduced by combining PMI and distribu-
tional similarity.

5 Discussion

5.1 Qualitative Analysis

Table 1 shows examples of the top 10 in para-
phrase rankings. In the paraphrase examples of
cultural, conditional paraphrase probability does
not score the correct paraphrase as top-ranked
words. Although the symmetric paraphrase score
ranked the correct paraphrase at the top, words
other than the top words are less reliable, as
shown by the previous experimental results. PMI
is strongly influenced by low-frequency words,
and many of the top-ranked words are singleton
words in the bilingual corpus. MIPA, in contrast,

mitigates the problem of low-frequency bias, and
many of the top-ranked words are correct para-
phrases. Distributional similarity-based methods
include relatively numerous correct paraphrases at
the top, and the other top-ranked words are also
strongly related to cultural. From the viewpoint of
paraphrases, 3 of the top 10 words of the proposed
method are incorrect, but these words may also be
useful for applications such as learning word em-
beddings (Yu and Dredze, 2014) and semantic tex-
tual similarity (Sultan et al., 2015).

Table 2 shows correct examples of the para-
phrase rankings. In the paraphrase examples of
labourers, there were 20 correct paraphrases that
received a rating of 3 or higher in manual evalu-
ation. With respect to the conditional paraphrase
probability and PMI, it is necessary to consider up
to the 400th place to cover all correct paraphrases.
However, distributional similarity-based methods
have correct paraphrases of higher rank. In partic-
ular, MIPA was able to include 10 words of cor-
rect paraphrases in the top 20 words; that is, our
method can obtain paraphrases with high coverage
by using only the highly ranked paraphrases.
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p(e2 |e1) log p(e2 |e1) + log p(e1 |e2) 2PMI(e1, e2) cos(e1, e2) cos(e1, e2)2PMI(e1, e2)
1. workers 9. gardeners 10. workmen 2. workers 2. workers
2. employees 42. harvesters 11. wage-earners 8. people 4. workmen
9. farmers 62. workers 16. earners 10. persons 5. craftsmen

13. labour 71. seafarers 19. workers 11. farmers 6. wage-earners
16. gardeners 73. unions 21. craftsmen 15. craftsmen 9. persons
17. people 99. homeworkers 22. workforces 26. wage-earners 12. employees
28. workmen 283. works 26. employed 27. workmen 13. earners
30. employed 394. workmen 27. employees 29. harvesters 15. farmers
33. craftsmen 395. employees 50. labour 31. seafarers 18. people
59. harvesters 412. wage-earners 55. persons 32. employees 19. workforces
80. work 415. craftsmen 75. farmers 42. gardeners 37. harvesters
88. earners 417. earners 103. homeworkers 47. earners 42. individuals
90. wage-earners 419. labour 105. individuals 55. workforces 53. labour

106. persons 420. employed 112. work 57. individuals 55. seafarers
109. individuals 431. people 135. people 79. unions 65. gardeners
114. seafarers 433. farmers 187. harvesters 103. labour 88. employed
115. unions 446. workforces 273. gardeners 140. homeworkers 100. homeworkers
131. workforces 451. work 317. seafarers 144. work 105. work
166. homeworkers 453. persons 456. unions 170. employed 149. unions
401. works 474. individuals 469. works 222. works 254. works

Table 2: Correct paraphrase examples of labourers.

p(e2 |e1) log p(e2 |e1) + log p(e1 |e2) 2PMI(e1, e2) cos(e1, e2) cos(e1, e2)2PMI(e1, e2)
STS-2012 0.539 0.466 0.383 0.363 0.442
STS-2013 0.489 0.469 0.463 0.483 0.499
STS-2014 0.464 0.460 0.471 0.453 0.475
STS-2015 0.611 0.655 0.660 0.642 0.671
STS-2016 0.444 0.518 0.550 0.518 0.542

ALL 0.536 0.543 0.534 0.523 0.555

Table 3: Evaluation by Pearson’s correlation coefficient in semantic textual similarity task.

5.2 Quantitative Analysis

Next, we applied the acquired paraphrase pairs
to the semantic textual similarity task and eval-
uated the extent to which the acquired para-
phrases improve downstream applications. The
semantic textual similarity task deals with calcu-
lating the semantic similarity between two sen-
tences. In this study, we conducted the eval-
uation by applying Pearson’s correlation coeffi-
cient with a five-step manual evaluation using five
datasets constructed by SemEval (Agirre et al.,
2012, 2013, 2014, 2015, 2016). We applied
the acquired paraphrase pairs to the unsuper-
vised method of DLC@CU (Sultan et al., 2015),
which achieved excellent results using PPDB in
the semantic textual similarity task of SemEval-
2015 (Agirre et al., 2015). DLS@CU performs
word alignment (Sultan et al., 2014) using PPDB,
and calculates sentence similarity according to the
ratio of aligned words:

sts(s1, s2) =
na(s1) + na(s2)
n(s1) + n(s2)

(12)

Here, n(s) indicates the number of words in
sentence s and na(s) indicates the number of
aligned words. Although DLS@CU targets all the
paraphrases of PPDB, we used only the top 10
words of the paraphrase score for each target word
and compared the performance of the paraphrase
scores.

Table 3 shows the experimental results of the
semantic textual similarity task. “ALL” is the
weighted mean value of the Pearson’s correlation
coefficient over the five datasets. MIPA achieved
the highest performance on three out of the five
datasets. In other words, the proposed method ex-
tracted paraphrase pairs useful for calculating sen-
tence similarity at the top-rank.

5.3 Reranking PPDB 2.0

Finally, we reranked paraphrase pairs from
a publicly available state-of-the-art paraphrase
database.8 PPDB 2.0 (Pavlick et al., 2015) scores
paraphrase pairs using supervised learning with

8http://paraphrase.org/
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Figure 9: Reranking PPDB 2.0 in MRR. Figure 10: Reranking PPDB 2.0 in MAP.

26,455 labeled data and 209 features. We sorted
the paraphrase pairs from PPDB 2.0 using the
MIPA instead of the PPDB 2.0 score and used
the same evaluation means as described in Sec-
tion 4. Surprisingly, our unsupervised approach
outperformed the paraphrase ranking performance
of PPDB 2.0’s supervised approach in terms of
MRR (Figure 9) and MAP (Figure 10).

6 Related Work

Levy and Goldberg (2014) explained a well-
known representation learning method for word
embeddings, the skip-gram with negative-
sampling (SGNS) (Mikolov et al., 2013a,b),
as a matrix factorization of a word-context
co-occurrence matrix with shifted positive
PMI. In this paper, we explained a well-known
method for paraphrase acquisition, bilingual
pivoting (Bannard and Callison-Burch, 2005;
Ganitkevitch et al., 2013), as a (weighted) PMI.

Chan et al. (2011) reranked paraphrase pairs ac-
quired via bilingual pivoting using distributional
similarity. The main idea of reranking paraphrase
pairs using information from a monolingual cor-
pus is similar to ours, but Chan et al.’s method
failed to acquire semantically similar paraphrases.
We succeeded in acquiring semantically similar
paraphrases because we effectively combined in-
formation from a bilingual corpus and a monolin-
gual corpus by using weighted PMI.

In addition to English, paraphrase databases
are constructed in many languages using bilingual
pivoting (Bannard and Callison-Burch, 2005).
Ganitkevitch and Callison-Burch (2014) con-
structed paraphrase databases8 in 23 languages,
including European languages and Chinese.

Furthermore, Mizukami et al. (2014) constructed
the Japanese version9. In this study, we improved
bilingual pivoting using a monolingual corpus.
Since large-scale monolingual corpora are easily
available for many languages, our proposed
method may improve paraphrase databases in
each of these languages.

PPDB (Ganitkevitch et al., 2013) constructed
by bilingual pivoting is used in many NLP
applications, such as learning word embed-
dings (Yu and Dredze, 2014), semantic textual
similarity (Sultan et al., 2015), machine trans-
lation (Mehdizadeh Seraj et al., 2015), sentence
compression (Napoles et al., 2016), question an-
swering (Sultan et al., 2016), and text simplifica-
tion (Xu et al., 2016). Our proposed method may
improve the performance of many of these NLP
applications supported by PPDB.

7 Conclusion

We proposed a new approach for formalizing lex-
ical paraphrasability based on weighted PMI and
acquired paraphrase pairs using information from
both a bilingual corpus and a monolingual corpus.
Our proposed method, MIPA, uses bilingual pivot-
ing weighted by distributional similarity to acquire
paraphrase pairs robustly, as each of the methods
complements the other. Experimental results us-
ing manually annotated datasets for lexical para-
phrase showed that the proposed method outper-
formed bilingual pivoting and distributional simi-
larity in terms of metrics such as MRR, MAP, cov-
erage, and Spearman’s correlation. We also con-
firmed the effectiveness of the proposed method

9http://ahclab.naist.jp/resource/jppdb/
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by conducting an extrinsic evaluation on a seman-
tic textual similarity task. In addition to the se-
mantic textual similarity task, we hope to improve
the performance of many NLP applications based
on the results of this study.
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