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Abstract

Sequence to Sequence Neural Machine
Translation has achieved significant per-
formance in recent years. Yet, there are
some existing issues that Neural Machine
Translation still does not solve completely.
Two of them are translation of long sen-
tences and “over-translation”. To address
these two problems, we propose an ap-
proach that utilize more grammatical in-
formation such as syntactic dependencies,
so that the output can be generated based
on more abundant information. In addi-
tion, the output of the model is presented
not as a simple sequence of tokens but as a
linearized tree construction. Experiments
on the Europarl-v7 dataset of French-to-
English translation demonstrate that our
proposed method improves BLEU scores
by 1.57 and 2.40 on datasets consisting of
sentences with up to 50 and 80 tokens,
respectively. Furthermore, the proposed
method also solved the two existing prob-
lems, ineffective translation of long sen-
tences and over-translation in Neural Ma-
chine Translation.

1 Introduction

Our task is to construct a model which learns in-
put in sequence form and decodes output as a lin-
earized dependency tree. In this work, we propose
an approach in which dependency labels are in-
corporated into the model to represent more gram-
matical information in the output sequence. As
we know, the Sequence to Sequence (Seq2Seq)
Learning model (Sutskever et al., 2014; Aha-
roni et al., 2016) is extremely effective on a va-
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riety of tasks that require a mapping between a se-
quence to sequence. Therefore, it is used to solve
many tasks in natural language processing. The
Seq2Seq model consists of an encoder-decoder
neural network which encodes a variable-length
input sequence into a vector and decodes it into
a variable-length output. Since the model uses
the information of the source representation and
the previously generated words to produce the
next-word token, this distributed representation al-
lows the Seq2Seq model to generate appropri-
ate mapping between the input and the output (Li
et al., 2016). For specific tasks, Neural Machine
Translation (NMT) model, which is based on the
Seq2Seq learning, has achieved excellent transla-
tion performance in recent years (Sutskever et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015;
Firat et al., 2016). In particular, the NMT model
which is built upon an encoder-decoder frame-
work with attention mechanism (Bahdanau et al.,
2015) can also pay attention and its decoder knows
which part of the input is relevant for the word
that is currently being translated. Therefore, it
has shown competitive results and outperformed
conventional statistical methods (Bentivogli et al.,
2016). Despite of these advantages, NMT model
still has a couple particular issues to be solved
such as dealing with fixed vocabulary, not appli-
cable to small-data, additional phrases, wrong lex-
ical choice errors, long sentence translation, over
and under translation, etc. In this paper, we touch
upon the following two major problems:

• Translation of long sentences

• Over-translation

Since the decoder of the Seq2Seq model pro-
duces the target language word by word simply
based on the previous target words and the source-
side representation vector until it reaches the spe-
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cial end token, it is incapable in capturing long-
distance dependencies in history, so ineffective for
long sentences translation (Zhang et al., 2016;
Toral and Sánchez-Cartagena, 2017). Even with
an attention mechanism, the Seq2Seq model just
pays attention to the current alignment informa-
tion between the inputs and the output at the cur-
rent position but ignores past alignments informa-
tion. Therefore, it cannot keep track of the atten-
tion history when it updates information at each
current time step, leading to the over-production
(Tu et al., 2016a,c; Mi et al., 2016; Tu et al.,
2016b).

In order to address the above two issues, it is
worth considering that using syntactic dependency
information and representing the output as a tree
structure would be effective. This approach al-
lows the next tokens to be output based on not
only the previous tokens but also the syntactic de-
pendencies so far, thereby conditioning them on
more abundant information so it has the ability to
make smarter predictions. Basically, in this paper,
we train the model with an encoder-decoder neu-
ral network and using dependencies in which the
input of the source language is in sequence form
and the output of the target language will be gen-
erated in a linearized dependency-based tree struc-
ture. That is, instead of predicting only words at
each time step, the model trains the network to
predict both words and their grammatical depen-
dencies as a dependency tree at each time step.
Therefore, it is hoped that the accuracy of output
will be improved.

The major contributions of this work are as fol-
lows:

1. To utilize the information of both “head”
words and syntactic dependencies between
them to produce better output.

2. To settle the problems in the NMT task.
In this paper, we desire to solve two tasks.
First is the ineffective translation for long
sentences. Second is the over-translation in
NMT task.

Empirically, to assess the performance of the
proposed method, we used Conditional Gated Re-
current Unit with Attention mechanism model of
Bahdanau (2015) on the French-English portions
of the Europarl-v7 dataset. As a result, the BLEU
score is improved by 1.57 and 2.40 points for sen-
tences of length up to 50 and 80 tokens, respec-

tively. Also, we compare and analyze the results
of attention-based Seq2Seq model and the pro-
posed approach.

2 Related Work

In fact, the effectiveness of using dependency in-
formation of words has been reported in some
previous NLP tasks, for example, in dependency-
based word embeddings, relation classification
and sentence classification tasks (Liu et al., 2015;
Socher et al., 2014; Levy and Goldberg, 2014;
Komnios, 2016; Ono and Hatano, 2014). It has
been shown that the combination of words and
their dependency information can boost perfor-
mance. Besides, in the work of Vinyals et al.
(Vinyals et al., 2014), they also represent output as
a linearized tree structure, but their work showed
that generic sequence-to-sequence approaches can
achieve excellent results on syntactic constituency
parsing. At a glance, our proposed method is a
little similar to the works of Dyer et al., Aharoni
et al., Eriguchi et al., Wu et al. (Dyer et al.,
2016; Aharoni and Goldberg, 2017; Eriguchi et al.,
2017; Wu et al., 2017) in use of parse tree and
generation. However, Dyer et al. and Aharoni
et al.’s works concern predicting constituent trees.
Eriguchi et al.’s model employs syntactic depen-
dency parsing but their model is hybridized the de-
coder of NMT and the Recurrent Neural Network
Grammars, and the target sentences are parsed in
transition-based parsing. Wu et al.’s model also
employs dependency parsing but their model sep-
arately predicts the target translation sequence and
parsing action sequence which maps to translation.
On the other hand, our proposed model’s decoder
directly predicts the linearized dependency tree it-
self in a single neural network in Depth-first pre-
order order so that the next-word token is gener-
ated based on syntactic relations and tree construc-
tion itself. In other words, our model is able to
learn and produce a tree of words and their depen-
dency relations by itself.

3 Sequence-to-Dependency Model

In our proposed approach, the neural network
model is trained to map the target-side output in a
linearized dependency tree construction from the
source-side input in a sequence. Thus, we call
this model Sequence-to-Dependency (Seq2Dep)
model. The problem is defined as follows: Given a
source sequence X = (x1, x2, . . . , xN ) of length
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N, we want the model to encode the input se-
quence X and decode it to a tree structure with
both words and dependency information condi-
tioned on the encoded vector. Therefore, the out-
put will be represented in the form (LY ) =
(ly1, ly2, . . . , lyM ). The conditional probability
p(ly|x) is decomposed as:

p(ly|x) =
∞∏
i=1

p(lyi|ly<i, x), (1)

in which (ly1, ly2, ..., lyM ) are words or depen-
dency labels.

Therefore, the hidden state sj at time step j is
computed as follows:

sj = cGRUatt
(
sj−1, lyj−1, Cj

)
, (2)

and the next token lyj , which may be a word or
dependency label, will be generated as follows:

lyj = f
(
sj , lyj−1, Cj

)
, (3)

In this paper, dependencies are defined as the
dependency labels which are achieved from the
Stanford Dependency Parser (Chen and Manning,
2014). The decoder will decode the next output
based on relations between governors and depen-
dents in a linearized tree structure. In regards to
the order of generating the dependency labels and
the words, the decoder will produce these symbols
in a manner called Depth-first pre-order traversal.
In this section, we will describe the model step-
by-step as follows:

3.1 Processing Data
Since there is no parallel corpus in which the
source-side is represented in sequence and target-
side is represented in linearized dependency tree,
we have to prepare data for training by doing de-
pendency parsing for the target-side language.

3.1.1 Dependency Parsing
In this paper, we do experiments on a French-
English language pair so we use the Stanford
Dependency Parser to obtain dependency parsing
results for English. The Stanford Dependency
Parser produces results in the form of a tree struc-
ture in which each word of the sentence is the de-
pendent of exactly one token, either another word
in the sentence or the distinguished “ROOT-0” to-
ken. The parsing result is represented in the for-
mat “abbreviated relation name(governor, depen-

dent)” in which a governor is a head word and de-
pendency is a syntactic relation between a gover-
nor and a dependent. The governor and the depen-
dent are words in the sentence. This dependency
parsing result will be transformed in another step
for traversing the tree, which will be described in
the next section to create a dependency tree. The
dependency tree represents the target language as
an ordered tree structure which is necessary for
training. The reason we chose the Stanford Depen-
dency Parser for the parsing portion of this method
is because it can represent the order of words in
sentence. This information of the order is useful
to traverse tree in the following step.

3.1.2 Transformation and Tree Traversal
In this section, we describe the Tree Transform
and Tree Traversal process in which output in a
linearized dependency tree form is created from
the Stanford Dependency Parsing tree. For ex-
ample, given a sentence “She ate an apple today
.”, after obtaining dependency parsing tree from
the above dependency parsing phase, we move
the rooted “ate” and “apple” headwords to the
same layers of their dependents which are directly
connected to the headwords. We also concur-
rently make consideration to their positions in or-
der while shifting headwords. The headwords are
shifted in such a manner that the word order of
sentence can be preserved, so we can evaluate the
translated output afterwards. Next, the tree struc-
ture obtained in the fist step will be transformed
into another tree structure for the next tree traver-
sal step. Then we traverse this tree in a Depth-
first pre-order traversal, which is the search tree
in which tree is traversed from its left subtree
to right subtree recursively until current node is
empty, to create output with a linearized tree struc-
ture to train the model. That is, for each rooted
subtree, governors and dependency labels of the
sentence are predicted first, and their information
will be used to predict the next dependent words.
In other words, the model can capture the depen-
dency information between label-word and word-
word pairs to predict the next tokens. This means
that the model is capable of modeling grammat-
ical dependencies in the output symbols. Also,
in Seq2Dep model, we define the Nonterminal
“{DEPENDENCY LABEL”, and Node-closing “}”
tokens. Nonterminal indicates subtree (Dong and
Lapata, 2016), which means open subtree to visit
its children nodes. Node-closing indicates end-of-
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Algorithm 1 Tree Transform
1: procedure TRANSFORM TREE

2: Transform(T,Labels):
3: for label in Labels do
4: if label.children.size! = 0 then
5: Recur Transform(T,Labels)
6: else
7: Compare the order of current
8: label’s parent & children
9: if (label’s children order is larger

than label’s parent order) then
10: INSERT label’s parent first
11: else
12: INSERT label’s children

subtree, that means finishing subtree traversal and
returning to the upper layer to continue the next
subtree traversal. And these defined tokens do not
appear in original source and target datasets. Al-
gorithms 1 and 2 show the definition of transfor-
mation and tree traversal in more detail respec-
tively. The purpose of using Depth-first pre-order
traversal is as follows:

1. To keep the words of the target language
sequence in order when they are generated.
With this generating order, the word order
of the sentence is preserved, thus, we do not
have to do any post-processing subsequently.

2. To utilize both information of the words and
the dependency labels generated in the previ-
ous rooted subtree to predict the tokens of the
next rooted subtree.

Figures 1, 2 and 3 show the Stanford dependency
parsing tree, tree structure after the positions of
“head” words are shifted and Depth-first pre-order
Tree Traversal.

3.2 Sequence-to-Dependency Model
The proposed (Seq2Dep) model consists of an en-
coder which is a bidirectional GRU layer as in
Bahdanau’s model (2015)1. The input embed-
dings of the source sentences are shared by the
forward and backward GRU, and the hidden states
of the corresponding forward and backward GRU
are added to obtain the hidden representation for
that time step. The decoder of the model will
decode the output as words and dependency la-
bels in a linearized dependency tree structure in

1https://github.com/nyu-dl/dl4mt-tutorial

Algorithm 2 Tree Depth-first pre-order traversal
Input: Sentence
Output: Linearized Dependency Tree

1: Stanford Dependency Parsing
2: Make Tree from Dependency Parsing Result
3: Tree transform
4: procedure TRAVERSE TREE

5: Traverse(T,N):
6: N as discovered
7: for all Node not in N do
8: if Node.children.size! = 0 then
9: Recursively call Traverse(T,N)

10: in pre-order traverse
11: else
12: if Node is Nonterminal then
13: OUTPUT Node-opening
14: VISIT children
15: OUTPUT Node-closing
16: else
17: OUTPUT Node

a Depth-first pre-order traversal. Figure 4 shows
the decoder which generates both dependency la-
bels and words in the Seq2Dep model. In Figure
4, the previous token and context vector feeding
are omitted for simplicity.

4 Experiments

4.1 Dataset
In our experiment, the proposed model was trained
on the French-English parallel corpus of the
Europarl-v7 dataset. We used newstest2011 and
newstest2012 of WMT16 as development and test
data respectively. To confirm translation for long
sentences, the whole test set was used without re-
moving any sentences with a maximum length of
50 or 80. We performed experiment on the follow-
ing two datasets:

• Europarl-v7 dataset consisting of sentences
with a maximum length of 50.

• Europarl-v7 dataset consisting of sentences
with a maximum length of 80.

For preprocessing data, we filtered out sentences
which were longer than the above maximum
lengths and cleaned the special symbols or char-
acters which were not strings. We also omitted
sentences which had multiple sentences in one
line. The reason is that the parsing results obtained
from the Stanford Dependency Parser in parsing
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Figure 1: Stanford Dependency Parsing Tree

step would contain multi “{ROOT” tokens for sen-
tences which have multiple sentences in one line,
while it is necessary to generate the next child
nodes starting from just one top {ROOT of a tree.
Next, we tokenize and lowercase this dataset and
perform dependency parsing. After that, we tra-
verse the tree in a Depth-first pre-order to create
the parallel corpus for the training model in which
the source language, French is in sequence form,
and the target language, English is in a linearized
dependency tree structure form. The longer sen-
tences are(particularly sentences with a maximum
length of 80 tokens), the more CPU’s memory and
time cost for this processing data step.

In addition, we built a dictionary of the target
language (English) that consists of both words and
dependency labels. In this dictionary, we define
74 dependency labels based on the current repre-
sentation of grammatical relations of the Stanford
Dependency Parser.

4.2 Settings

In order to evaluate the performance of the pro-
posed method, we set the same hyperparameters
as the attention-based cGRU model in DL4MT-
Tutorial and compare the obtained results of both
Seq2Seq and Seq2Dep models.

The recurrent transformation weights for gates

and hidden state proposal matrices were initial-
ized as random orthogonal matrices. Weights were
optimized using the Adadelta algorithm and were
updated with a mini-batch size of 32 sentences.
The vocabulary sizes of both source and target lan-
guages were set at 30k words, the beam size was
set to 5, dropout was not applied and the gradients
were clipped at 1.0. Morever, because the gen-
erated tokens are not only words but also depen-
dency labels in Seq2Dep model, the maxlen pa-
rameter was set up so that dependency labels are
not counted, therefore long sentences will not be
removed in training.

4.3 Model Training

In the experiments, we trained the following 2
models on 1.65M sentences with a maximum
length of 50 and 1.89M sentences with a maxi-
mum length of 80 from the Europarl-v7 French-
English bitext.

Baseline Model
This model is a Seq2Seq model with atten-
tion mechanism as in Firat (2016) that con-
sists of an encoder that encodes the source
language input in sequence form and a de-
coder that decodes target language output in
sequence form.

Seq2Dep Model The proposed method. In this
model, the model architecture is the same as
the attention-based Seq2Seq model but the
input is in sequence form and the output is
in linearized dependency tree structure.

5 Results

In the Seq2Dep model, because the output
consists of both words and dependency labels,
we evaluated the result with post-processing,
which is the process that removes the depen-
dency labels from the translated result. From
this section onwards, we will refer to the
Seq2Seq and Seq2Dep models with sen-
tences of maximum length 50 and 80 tokens
as Seq2Seq-50, Seq2Dep-50, Seq2Seq-80
and Seq2Dep-80. As a result, the BLEU score
of Seq2Dep-50 with post-processing was 20.88,
which is higher than the BLEU score of 19.31
obtained by the attention-based Seq2Seq-50
model with a gain of up to 1.57 points. Simi-
larly, the BLEU score improved by 2.40 points
for datasets with maximum sentence lengths of 80.
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Figure 2: Dependency tree after shifting
the positions of “head” words

Figure 3: Depth-first pre-order Tree Traversal

Figure 4: Encoder and decoder of Seq2Dep model

Table 1 shows BLEU and METEOR scores and
TER error of the attention-based Seq2Seq and
Seq2Depmodels. Figure 5 shows the relation be-
tween BLEU score and the length of sentence.

Moreover, when we made a trial to evaluate
the translation results without post-processing, the
BLEU scores without post-processing were 42.76
and 43.41 for both datasets. From these scores,
it is thought that the model can predict not only
word-based tokens but also dependency labels
well.

6 Additional Experiments

In order to verify the ability of the proposed ap-
proach to solve the repetition problem of NMT,
over-translation, we measured the repetition of
words in the translation results of attention-based
Seq2Seq and Seq2Dep learnings in this section.
The repetition rate is measured by the following
formula:

rep rat =
T (y)∑
i=1

1 + r(ỹi)
1 + r(Y )

, (4)

in which ỹi and Yi are the ith hypothesis sentence
and ith reference sentence respectively, and r is
the number of the repeated words and is computed
by:

r(X) = len(X)− len(set(X)) (5)

in which len(X) is the length of the sentence X
and len(set(X)) is the number of words that are
not repeated in sentence X. For example, given
the sentence X=“The big fish ate the smaller fish”,
in this case, set(X)={The, big, fish, ate, smaller},
len(X)=7, len(set(X))=5. Figure 6 shows the com-
parison of repetition rate in both models in which
the horizontal axis is the length of sentences, ver-
tical axis is the repetition rate respectively. In Fig-
ure 6, the repetition rate in both Seq2Seq and
Seq2Dep learnings decreases as the length of the
sentences increases. From Figure 6, we can see
that the more tokens the model learns, the more
the repetition rate decreases. Also, the repetition
rate is reduced in the Seq2Dep model compared
to the attention-based Seq2Seq model.
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Table 1: Translation quality as measured by different metrics.

Model Post-processing
BLEU METEOR TER

Seq2Seq-50 19.31 26.3 66.1
Seq2Dep-50 20.88 27.0 62.5
Seq2Seq-80 16.97 25.5 78.5
Seq2Dep-80 19.37 25.6 65.6

Figure 5: Comparison of BLEU score with respect to the length of sentences

7 Analysis and Discussion

In figure 5, except the span in which the sentence
length is between 41 and 51 words, the BLEU
score of the Seq2Dep model goes up gradually
and almost overcomes that of the attention-based
Seq2Seq model. The BLEU score falls from
19.31 to 16.97 with a 2.34 points difference for the
attention-based Seq2Seq model while the point
difference is 1.51 in the Seq2Dep model. From
the experiments, we confirm that by using the
syntactic dependency information, the Seq2Dep
model can learn well and reduce the drop in BLEU
score compared to the baseline model even if the
sentence is very long. Besides, we can see the
BLEU score is low for short sentences which have
a length of 10 words or less. This is because of the
brevity penalty on short sentences in BLEU (Pap-
ineni et al., 2002).

With regards to the BLEU score without
post-processing, we see that the score of the
Seq2Dep-80 model is higher than that of the
Seq2Dep-50 model. The reason could be: The
longer the sentences are, the more syntactic de-

pendencies the models require for generating bet-
ter outputs.

Also, in terms of the over-translation problem,
Figure 6 shows that the repetition rates of the
two models decrease gradually with respect to the
length of the sentences and the Seq2Dep model
has a lower repetition rate. When we checked the
translation results, we saw that Node-closing to-
ken “}” was almost generated after each subtree.
Moreover, we saw that there were some very long
sentences which the over-generation of “UNK”s
occurred in the translation result of Seq2Seq
model while that did not occur in translation re-
sults of Seq2Deq model. Our assumption is that
after generating subtree, the Seq2Dep model can
learn that it should generate the Node-closing to-
ken “}” next, instead of a chain of words. In
other words, as mentioned in Kuncoro et al.’s
work (Kuncoro et al., 2016) in which modeling of
composition can achieve better performance, the
Seq2Dep model which learns about the syntac-
tic dependencies and tree structure performance is
probably able to learn the blocks of the form “Non-
terminal word }” like a phrase-structure in sen-
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Figure 6: Comparison of the repetition rate of the baseline and Seq2Dep models

tences, so it is unlikely to generate the same word
repeatedly. Therefore, it is possible to prevent the
long repeated words in long sentences. Usually,
because the block of the form “Nonterminal word
}” is seen as a phrase in sentence or a subtree in
tree structure, and it is rare for a phrase to occur
repeatedly in sentence or for a subtree to repeat in
a tree structure, so it is assumed that repetition of
the blocks of form “Nonterminal word }” are also
rare.

8 Conclusion

In this work, we proposed a method in which the
Seq2Dep NMT model is trained by utilizing syn-
tactic dependencies to provide the model more
abundant information. In other words, Seq2Dep
model learns the potential internal relative con-
nections among tokens and their long term syn-
tactic dependencies to predict the next-word to-
kens. Furthermore, the Seq2Dep model can also
generate output as a linearized dependency tree
structure in a Depth-first pre-order tree traver-
sal over words and dependencies. The purpose
of this work is to alleviate issues of translat-
ing long sentences and repetitive translation. We
conduct experiments on the French-English par-
allel corpus of the Europarl-v7 dataset to com-
pare the performance of the proposed method with
the attention-based Seq2Seq model. The results
demonstrated that the proposed model achieved a
1.57 and 2.40 points BLEU score improvement for
sentences of length at most 50 and 80 tokens re-

spectively. Moreover, experiments verify that the
proposed model also reduces the over-translation,
particularly long sentences with over-generation
of “UNK”s.

9 Future work

• Confirm how accurate the Seq2Dep model
generates the dependency labels and the
whole tree structure as well.

• In this paper, to compare performance of
the proposed method with the baseline
model, we set the same hyperparameters as
the attention-based cGRU model in dl4mt-
tutorial and trained the Seq2Dep model on
only Europarl-v7 dataset. Since experiments
were done on small vocabulary size and
dataset, we plan to train the model on larger
vocabulary and datasets with subword units
segmentation.

• For future work, we plan to train models on
datasets which consist of only long sentences
with more than 50 or 80 tokens to compare
the performance of long-sentences transla-
tion of the approach and baseline model.
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