
The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 37–40,
Nagoya, Japan, 14-18 October 2013.

SmartNews: Towards content-sensitive ranking of comments

Marina Litvak
Sami Shamoon College of Engineering

Beer Sheva, Israel
marinal@sce.ac.il

Leon Matz
Sami Shamoon College of Engineering

Beer Sheva, Israel
leonm@sce.ac.il

Abstract

Various news sites exist today where in-
ternet users can read the most recent news
and people’s opinions about. However,
usually these sites do not organize com-
ments well and do not filter irrelevant con-
tent. Due to this limitation, readers who
wonder about people’s opinion regarding
some specific topic, have to manually fol-
low relevant comments, reading and fil-
tering a lot of irrelevant text. In this
work1, we introduce a publicly available
software implementing our approach, pre-
viously introduced in (Litvak and Matz,
2013), for retrieving and ranking the rel-
evant comments for a given paragraph
of news article and vice versa. We
use Topic-Sensitive PageRank for ranking
comments/paragraphs relevant for a user-
specified paragraph/comment.

1 Introduction

Almost all modern news sites allow people to
share their opinions by commenting a read arti-
cle. However, usually comments are not organized
well and appear under one long thread in chrono-
logical order. Some commenting systems include
a rating component, but it is usually based on ex-
plicit feedback of users and does not relate to any
specific content. In such conditions, the only way
a reader can follow people’s opinion about some
specific aspect mentioned in the article is to scan
manually a huge amount of comments.

Ranking comments on the web is a one of the
central directions of IR in recent years (Dalal et al.,
2012; Hsu et al., 2009). However, none of the
works focused on the topic-sensitive ranking of
comments. Since in many web domains like news

1This work was partially funded by the U.S. Department
of Navy, Office of Naval Research.

different comments may refer to different aspects
of the same article, resolving this problem is very
important for structuring and better retrieval of
user-contributed content.

In this paper we introduce an application for
ranking comments in news websites relative to a
given content2. The application provides ranked
comments to the user-specified paragraph of a
news item and, vice versa, ranked paragraphs
that are relevant to a given comment. Our ap-
proach, that was previously introduced in (Litvak
and Matz, 2013), is unsupervised and does not re-
quire training on an annotated data. It reduces the
problem of topic-sensitive ranking of comments to
the calculating of eigenvector centrality by adapt-
ing Topic Sensitive PageRank algorithm. The in-
troduced application is implemented as a Chrome
Extension to Yahoo! News site and is publicly
available at author’s homepage3.

2 SmartNews

2.1 Problem Setting

We are given a set of comments C1, ...,Cm refer-
ring to an article describing some event and speak-
ing on several related subjects. An article consists
of a set of paragraphs P1, ...,Pn speaking on differ-
ent related subjects. Our goal is, given paragraph
Pi, to find a subset Ci1 , ...,Cir of comments such
that4 (1) These are the most relevant to Pi com-
ments that refer to topics described in Pi itself or
comments about it; (2) The comments are ordered
by the “relevancy” rank; (3) There are at most M
comments.
Our method is based on eigenvector centrality

2Here and further we refer to a paragraph as an indepen-
dent text unit describing one of the article’s aspects

3http://www.cs.bgu.ac.il/˜litvakm/research/
4Here and further, we focus on comments ranking prob-

lem, while, generally, our method can be applied to the in-
verse problem – ranking paragraphs given a comment. Our
plugin implements both directions.

37



principle (PageRank, as its variant), that already
has been successfully applied for ranking and ex-
tracting (Mihalcea and Tarau, 2004; Erkan and
Radev, 2004) text units. Our approach consists of
two main stages: (1) graph constructing and (2)
computing the eigenvector centrality. Since this
paper is focused on the application and not ap-
proach, the next two subsections briefly summa-
rize both stages. The details can be found in (Lit-
vak and Matz, 2013).

2.2 Graph Representation Model
In order to represent our textual data as a graph,
we relay on the known factors influencing PageR-
ank described in (Sobek, 2003). They are also
enumerated and discussed in details in (Litvak and
Matz, 2013). We organize comments as nodes in
a graph (denoted by a comments graph), linked
by edges weighted with text similarity score calcu-
lated between nodes. Formally speaking, we build
a graph G(E,V ), where Ni ∈ V stands for a com-
ment Ci, and ek ∈ E between two nodes Ci and C j

stands for similarity relationship between texts of
the two comments.5 Each edge ek is labeled by
a weight wk equal to the similarity score (we use
cosine similarity (Salton et al., 1975)) between the
linked text units. Edges with a weight lower then
a pre-defined threshold are removed. By weighing
links we diminish the influence of links between
thematically unrelated text units and, conversely,
increase the influence of links between strongly
related ones. An example of resulted comments
graph is demonstrated in Figure 1(a).

We treat a paragraph as a query that must to in-
fluent the resulted ranks of comments. We add
an additonal node (denoted by a query node)
for the paragraph with respect to which the com-
ments should be ranked. The query node is also
linked to the comments nodes by similarity rela-
tions, with weighted edges directed from a query
node to comment nodes. Adding weighed inbound
links from the query node to thematically related
comment nodes must increase their PageRank rel-
ative to other nodes. Here and further, we call
the resulted graph extended graph. This stage is
demonstrated in Figure 1(b).

The situation, where extended graph has groups
of strongly connected nodes, mostly thematically
irrelevant to a query node, is created when we

5For the inverse problem, we represent a document as a
graph of paragraphs (aka paragraphs graph) linked by a
similarity relationship (Salton et al., 1997).

have comments “talking” to each other and de-
viate from the main (query) topic. It is enough
that only one node from a group will be linked to
a query node for “grabbing” a query’s rank to a
group and, at each iteration, enlarging the PageR-
ank of strongly connected nodes. In order to avoid
(1) PageRank increasing in unrelated nodes linked
with related ones in a closed system and (2) “leak-
age” of PageRank in a query node, we add out-
bound links from comment nodes to a query node.
For uniform impact on all comment nodes, we
give all edges the same weights of 1. Comment
nodes that are strongly related to a query, will
gain their PageRank back in each iteration due
to a high weight assigned to inbound links from
a query node, while irrelevant nodes will “loose”
their PageRank irretrievably. The described up-
date applied to a graph from Figure 1(b) will result
in a new structure depicted in Figure 1(c).

In order to obtain similarity scores between
nodes standing for text units, we calculate cosine
similarity between vectors representing related
texts, according to the Vector Space Model (Salton
et al., 1975). Formally speaking, each text unit–
paragraph or comment–is represented by a real
vector V of size n, where V [i] stands for tf-
idf (Salton et al., 1975) of term i and n is a vo-
cabulary size. Since we treat each text unit as a
document, we adapt tf-idf to tf-ipf (term frequency
inverse paragraph frequency) and tf-icf (term fre-
quency inverse comment frequency) when applied
on a paragraph or comment, respectively. The de-
tails and exact formulas can be retrieved from (Lit-
vak and Matz, 2013).

2.3 Computing the eigenvector centrality

For ranking and retrieving comments, we compute
their eigenvector centrality by applying PageRank
algorithm (Brin and Page, 1998) to an extended
graph.

In order to influence node’s rank by a query
node for topic-sensitive retrieval, we relay on the
known factors influenting PageRank score which
are enumerated and described in (Litvak and Matz,
2013).

First, we give a high starting value to a query
node before the iterative computation of PageR-
ank begins. Adding outbound links from comment
nodes to a query node (described in 2.2) helps to
keep high PageRank in the query node through
successive iterations. The final graph structure

38



C8 

C1 

C7 

C6 

C5 

C3 

C4 

C2 

(a) Comments graph

C8 

C1 

C7 

C6 

C5 

C3 

C4 

C2 

P1 

(b) Extended graph

C8 

C1 

C7 

C6 

C5 

C3 

C4 

C2 

P1 

(c) Final graph

C8 

C1 

C7 

C6 

C5 

C3 

C4 

C2 

P1 
[1]

[1] 

[1] 

[1] 

[1] 

[1] 

[1] 

[1] 

[10] 

(d) Final graph with starting values

Figure 1: Graph representation: four steps.

including initial starting values is shown in Fig-
ure 1(d).

Second, in order to implement a theme-based
retrieval, we adapt the idea of Topic Sensitive
PageRank6, where the thematically relevant com-
ments get higher damping factor d. The final for-
mula for ranking comments looks as follows.

PR(a) = E(a)d +(1−d) ∑
x∈ad j(a)

PR(x)w(a,x)
∑y∈ad j(x) w(y,x)

,

where E(a) = w(a,q)
∑i∈V w(i,q) , q is a query node, w(x,y)

is a similarity score between nodes x and y.
We treat a PageRank score as a final rank of

items. In a greedy manner, we extract and present
at most M most ranked comments ordered by their
rank to the end user. In our settings, M = 5.

3 Implementation Details

We implemented the introduced approach as a
Chrome Extension (plugin) for the Yahoo! News7

6Topic-Sensitive PageRank is a very intuitive choice in
our setting, since we retrieve comments with respect to a
given paragraph representing a topic an actual user is inter-
ested in.

7http://news.yahoo.com/

website. The plugin contains two sides: (1) client
responsible for a data collecting and the results
representation, and (2) server calculating ranks in
a background.

Client performs the following: (1) collects the
necessary textual and meta data and transfers it to
the server, (2) visualizes the output (ranked com-
ments and paragraphs, etc.) to the end user. The
initial filtering of textual data is performed be-
fore transferring it to the server. The comments
containing no words (considering synonyms) in
common with the article are discarded. We used
the following technologies for client’s implemen-
tation: Javascript and jQuery Folder for scanning
the article and collecting the relevant data, and
JSON object as a data structure.

Server performs the following: (1) gets the tex-
tual data, (2) applies standard preprocessing in-
cluding: HTML parsing, paragraph and sentence
splitting, tokenization, stopwords removal, stem-
ming, and synonyms resolving8 for handling texts
expressing the same issues with different vocab-

8with Synonym Map http://lucene.apache.org/
core/old_versioned_docs/versions/2_9_1/api/all/
org/apache/lucene/index/memory/SynonymMap.html

39



ulary, (3) builds VSM representation, then (4)
builds graph representation, (5) calculates ranks of
comments given a specified paragraph as a query
or vice versa, (6) converts the processed data into
Json object, and (7) transfers it to the client. We
used the following technologies for server’s imple-
mentation: Java EE, Tomcat server, Spring Envi-
ronment.

In order to apply a Topic-Sensitive PageRank
for a specific paragraph9 we identify the actual
paragraph a user is interested in by sending the po-
sition of the user’s mouse to the server.

Figure 2 demonstrates the infrastructure of the
plugin including interconnection between client
(front end) and server (back end) sides.

Plugin 

Back end

Plugin

Front end

Browser Yahoo! News

request

response

JSON:

article

comments

JSON:

scores

Figure 2: Application infrastructure.

The computational complexity of our approach
depends on graph construction time, that is
quadratic in number of comments/paragraphs in a
given article. In practice, it takes about two sec-
onds to perform precomputation–graph construc-
tion and ranks calculation on all article-related
data–when user opens an article page, and then the
results for any user-specified paragraph/comment
are provided immediately.

4 Conclusions

The examples of article texts and the most ranked
comments, per paragraph, can be seen in http:
//goo.gl/7idNw. It can be seen that the com-
ments are very related to the paragraphs content
and, moreover, they relates the subject of a para-
graph as well as a discussion and opinions it
arises, beyond the text overlapping. Such perfor-

9The original idea of a Topic-Sensitive PageRank was to
calculate PageRank for several topics simultaneously, but we
don’t need to do that until a user is interested in all paragraphs
of a given article.

mance is provided by a recursive nature of PageR-
ank, where the relationships between comments
are iteratively elaborated. Unlike this approach,
ranking comments by a (text) similarity to a given
paragraph would not retrieve related comments
with a different vocabulary.

The plugin implementing our approach is pub-
licly available from http://goo.gl/To4Rd.10 In
future, we intend to evaluate our system by com-
paring it to the other state-of-the-art ranking tech-
niques.

Acknowledgments

Authors thank project students: M. Magaziner, A.
Shpilgerman and S. Pinsky for implementing the
introduced approach, and I. Vinokur for a techni-
cal support of the software. Especial thanks to Dr.
Amin Mantrach from Yahoo! Labs, Barcelona, for
very constructive and helpful comments.

REFERENCES
Brin, S. and Page, L. (1998). The anatomy of a large-scale

hypertextual web search engine. Computer networks
and ISDN systems, 30(1-7):107–117.

Dalal, O., Sengemedu, S. H., and Sanyal, S. (2012). Multi-
objective ranking of comments on web. In Proceed-
ings of the 21st international conference on World Wide
Web, pages 419–428.

Erkan, G. and Radev, D. R. (2004). Lexrank: Graph-based
lexical centrality as salience in text summarization.
Journal of Artificial Intelligence Research, 22:457–
479.

Hsu, C.-F., Khabiri, E., and Caverlee, J. (2009). Ranking
comments on the social web. In Proceedings of the
2009 International Conference on Computational Sci-
ence and Engineering - Volume 04, pages 90–97.

Litvak, M. and Matz, L. (2013). Smartnews: Bringing order
into comments chaos. In Proceedings of the Interna-
tional Conference on Knowledge Discovery and Infor-
mation Retrieval, KDIR ’13.

Mihalcea, R. and Tarau, P. (2004). Textrank – bringing order
into texts. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Salton, G., Singhal, A., Mitra, M., and Buckley, C. (1997).
Automatic text structuring and summarization. Infor-
mation Processing and Management, 33(2):193–207.

Salton, G., Yang, C., and Wong, A. (1975). A vector-space
model for information retrieval. Communications of the
ACM, 18.

Sobek, M. (2003). A Survey of Google’s PageRank. http:
//pr.efactory.de/.

10Unzip the archive, press ”Load unpacked extension” in
”Developer mode” of chrome ”Extensions” tool, and choose
the unzipped plugin folder.

40


