
The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 1–4,
Nagoya, Japan, 14-18 October 2013.

A Web-based Annotation Framework for Large-scale Text Correction
Ossama Obeid1 Wajdi Zaghouani1 Behrang Mohit1

Nizar Habash2 Kemal Oflazer1 Nadi Tomeh2

1Carnegie Mellon University in Qatar
{oobeid@,wajdiz@,behrang@,ko@cs.}cmu.edu

2Center for Computational Learning Systems, Columbia University
{habash,nadi}@ccls.columbia.edu

Abstract

We demonstrate a web-based, language-
independent annotation framework used
for manual correction of a large Arabic
corpus. Our framework provides intuitive
interfaces for annotating text and manag-
ing the annotation process. We describe
the details of both the annotation and the
administration interfaces as well as the
back-end engine. We also show how this
framework is able to speed up the annota-
tion process by employing automated an-
notators to fix basic Arabic spelling errors.

1 Introduction

Errors in natural language text, such as incorrect
spelling, word choice, or grammar, are problem-
atic for natural language processing (NLP) sys-
tems: they contribute to data sparseness and limit
the effectiveness of NLP models. Automatic cor-
rection of these errors have been studied for dif-
ferent languages (Kukich, 1992). QALB (Qatar
Arabic Language Bank)1 is a project on automatic
correction of errors in Arabic text. Our approach
has two components: (a) large scale manual anno-
tation (correction) of Arabic errors, and (b) statis-
tical modeling of the text correction.

In this paper we focus on the first task and
describe the design and implementation of our
language-independent, web-based annotation sys-
tem. Our framework provides intuitive interfaces
for both managing the annotation process and per-
forming the annotations. Additionally, we show
how our framework employs automatic annotators
to correct basic Arabic spelling mistakes to speed
up the annotation process.

Our framework consists of two major inter-
faces: (a) an Admin interface, which enables the
lead annotator to create, assign, monitor, evaluate
and export annotation tasks in large scale; and (b)

1http://nlp.qatar.cmu.edu/qalb

an Annotation interface, which enables annotators
to conduct and review annotation tasks for differ-
ent types of text. The interface is flexible for han-
dling monolingual annotation (e.g. Arabic text)
and also bilingual annotation (e.g. post-editing
of MT output). The interface provides the re-
quired annotation functionality for moving, merg-
ing, replacing and editing words within a para-
graph along with the undo and redo actions.

In addition to the Admin tools, the framework
provides the lead annotator with components for
automatic correction of basic errors and also qual-
ity control. The annotation framework is currently
deployed and is expected to be used by up to
twenty users, annotating an aggregated corpus of
two million words.

2 Related Work

Traditionally, manual text correction is performed
under the context of post-editing machine transla-
tion (MT) output. The goal of post-editing is to
evaluate MT systems rather than building corpora
of edits.

Tools like PET (Aziz et al., 2012) and BLAST
(Stymne, 2011) provide annotators a text-editor-
like interface to identify, record, and correct er-
rors. Text-editor-like interfaces are very flexible
and allow all forms of corrections to be performed,
but, they are not capable of accurately tracking to-
ken alignment, if at all.

Frameworks such as EXMARaLDA (Schmidt,
2010) and GATE (Cunningham et al., 2011) facil-
itate multi-layer and multi-round annotations. An
example of such approach is the work of Dickin-
son and Ledbetter (2012) who annotated errors in
Hungarian students essays using multiple annota-
tion layers from phonology to syntax in different
stages.

TCTool (Llitjós and Carbonell, 2004) provides
a token-based correction interface. It allows for
tokens to be moved around, deleted, or added, but,
does not allow for tokens to be merged or split.

1



This is because it assumes all input text to be out-
puts of MT systems, which do not produce merged
or split words. Since our source text contains a
majority of manually written text, this assumption
does not hold. Furthermore, TCTool is designed
to deal with short sentences while we aim to an-
notate larger documents in order to benefit from
wider context.

Above all, these tools are not designed for large-
scale, distributed annotation projects. They do not
provide facilities for managing thousands of docu-
ments, distributing tasks to tens of annotators and
evaluating inter-annotator agreement (IAA). Our
system draws on the advantages of the above tools
while adding the required facilities to manage a
large annotation project. In this aspect, our system
is similar to the COLABA project annotation tool,
a web application for dialectal Arabic text annota-
tion (Benajiba and Diab, 2010; Diab et al., 2010).

3 System Requirements and Constraints

The QALB project aims to produce a large corpus
(two million words) of manually corrected Ara-
bic text. Our system must allow for quick anno-
tation of texts without sacrificing annotation cor-
rectness and consistency. This section describes
the requirements and constraints that our annota-
tion system needs to fulfill.

Text Correction The QALB corpus will contain
corrections of errors produced by native speakers
of various dialects, non-native speakers and ma-
chine translation systems in a variety of contexts
including news, Wikipedia articles, forum posts,
and student essays. Therefore, our annotation sys-
tem should not just account for spelling mistakes.
Our annotation interface allows annotators to per-
form different types of actions which correspond
to the following types of corrections: (a) Edit
actions: words that are misspelled or mistyped
should be modified. (b) Move actions: Words that
are not in the right location should be moved to
the right location. (c) Add actions: words that are
missing need to be added. (d) Delete actions: ex-
traneous words should be deleted. (e) Merge ac-
tions: words that have been split by mistake should
be merged. (f) Split actions: words that have been
merged by mistake should be split.

Token Alignment Since we allow a large range
of corrections, we need to be able to track the
alignment of corrected tokens to the original text.
In addition to token alignment, we want to track
the list of actions performed by each annotator in

the hope that we may learn from the human cor-
rection process.

Efficiency Due to the large amount of text that
needs to be corrected, our Annotation interface
should allow annotators to concurrently log into
the system and perform their annotation tasks very
quickly.

Quality Control To ensure the quality of correc-
tions in our corpus we should be able to monitor
the performance of each individual annotator and
the consistency of annotators among each other.
Therefore, our system should allow us to perform
inter-annotator agreement (IAA) evaluation. We
also need to ensure that all source documents are
of reasonable quality. For this we need a mecha-
nism for annotators to flag low quality (e.g. highly
dialectal) text.

4 Annotation Web Interface

In this section we present our framework, the An-
notation Web Interface, which will be used to
carry out the annotation process. Our main contri-
bution is the Annotation interface (Figure 1) which
provides an intuitive drag-and-drop interface to
manipulate tokens in a document. We describe the
design and implementation of each component in
further details.

4.1 Architecture

Our framework has three core components: the
Annotation interface, the Admin interface, and the
application programming interface (API) server.

The Annotation interface is used by annotators
to correct assigned documents. The Admin inter-
face is used by the lead annotator to manage anno-
tators and documents, assign tasks, evaluate IAA,
and monitor the overall progress of the annotation
process. Figure 2 illustrates how these compo-
nents interact with each other.

Both Admin and Annotation interfaces are web
pages that complete their respective tasks by send-
ing HTTP requests to the API server. The API
server handles these requests and performs the
necessary operations using the local file system
and a database.

In addition to the three core components, there
are automated annotators. Automated annotators
are scripts that interface with the API server to per-
form automatic corrections. We discuss how we
use an automated annotator to speed up the anno-
tation process.

2



Figure 1: Sample of corrections of a token: (a) Moving (b) Deleting (c) Editing (d) Splitting (e) Merging

Figure 2: General Architecture Diagram.

4.2 Annotation Interface

Annotators need to be able to view their assigned
tasks, perform corrections, and submit their final
corrections. This is done through the Annotation
Interface. The Annotation Interface first displays a
list of tasks assigned to an annotator. The annota-
tor selects a task and then displays the Annotation
Window, where corrections are performed.

The Annotation Window displays tokens in sep-
arate boxes. Each box can either be dragged or
double-clicked. Tokens can be moved by dragging
and dropping tokens to the desired location. To-
kens can be merged by dragging a token slightly to
the left or to the right to be merged with the previ-
ous or the next token, respectively. Double click-
ing on a token opens a dialog box with a text input
which contains the current value of the clicked to-
ken and can be used to modify the token’s text.
Adding a space between two characters of a token

Figure 3: A single token box.

performs a split. Annotators cannot modify a to-
ken and split it at the same time. This allows us to
track individual changes so that we have a consis-
tent action history.

As illustrated in Figure 3, each box has addi-
tional buttons that can be used to either delete a
token, add a new token before the selected token,
or add a new line after the selected token. Figure
1 shows screen-shots of each action performed in
sequence.

The Annotation Interface also has few other fea-
tures to help with the annotation task. Undo and
Redo buttons are provided to allow annotators to
go back and fix mistakes. The interface also pro-
vides access to both the original Arabic text, and,
if the text was the output of a machine transla-
tion system, the original English text. This addi-
tional information help annotators in determining
how much their corrections alter the meaning of
the original text. If a document has poor quality
of writing or translation, the interface provides the
annotator with a Flag button, which alerts the lead
annotator about the issue.

3



4.3 Admin Interface
The lead annotator will be managing a team of
about twenty annotators who can use the system
remotely and concurrently. The Admin Interface
contains: (a) a user management tool for creat-
ing new annotator accounts and viewing annota-
tor progress; (b) a document management tool for
uploading new documents, assigning them for an-
notation, and viewing submitted annotations; and
(c) a monitoring tool for viewing overall annota-
tion progress and evaluating IAA.

4.4 API Server and Automated Annotators

The API server lies at the heart of our frame-
work. It is a Python server that provides a web
API through HTTP requests for retrieving, creat-
ing, and modifying content such as user records,
source documents, and annotation submissions.
All responses by the API server are JSON objects.
This allows us to easily create dynamic web pages
for the Annotation and Admin interfaces as well
as automated annotators. One automated annota-
tor we deployed to automatically correct �

è (Ta
Marbuta) versus è (Ha) errors and Z' (Hamza)
placement errors by running each document
through the MADA system (Habash et al., 2009).
All documents are corrected by our automated an-
notator before being assigned to annotators to cut
down annotation time.

5 Demonstration Script
During the demonstration, we will present the use
of the Admin and Annotator interfaces using sim-
ple and complex examples of various kinds of ed-
its as discussed above. In particular, we will show
how the Annotation tool can be used for correcting
a sample piece of text using the various allowed
operations.

6 Conclusion and Future Work
We presented a detailed overview of our web-
based annotation framework for correcting writing
errors. Deployment for error correction in other
languages is a natural extension of this work since
almost all functionalities of our system are lan-
guage independent. In the future, we plan to in-
clude new functionalities for increasing annota-
tors’ search and lookup power and a web-based
component for training new annotators. We also
plan to make use of the created annotations to
develop automatic error detection and correction
systems.

7 Acknowledgements

We thank anonymous reviewers for their valuable
comments and suggestions. This publication was
made possible by grants NPRP-4-1058-1-168 and
YSREP-1-018-1-004 from the Qatar National Re-
search Fund (a member of the Qatar Foundation).
The statements made herein are solely the respon-
sibility of the authors.

References
Wilker Aziz, Sheila Castilho Monteiro de Sousa, and

Lucia Specia. 2012. PET: a tool for post-editing
and assessing machine translation. In Proceedings
of the LREC’2012.

Yassine Benajiba and Mona Diab. 2010. A web appli-
cation for dialectal Arabic text annotation. Proceed-
ings of the LREC Workshop for Language Resources
(LRs) and Human Language Technologies (HLT) for
Semitic Languages: Status, Updates, and Prospects.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, Niraj Aswani, Ian
Roberts, Genevieve Gorrell, Adam Funk, Angus
Roberts, Danica Damljanovic, Thomas Heitz,
Mark A. Greenwood, Horacio Saggion, Johann
Petrak, Yaoyong Li, and Wim Peters. 2011. Text
Processing with GATE (Version 6). University of
Sheffield.

Mona Diab, Nizar Habash, Owen Rambow, Mohamed
Altantawy, and Yassine Benajiba. 2010. Colaba:
Arabic dialect annotation and processing. LREC
Workshop on Semitic Language Processing, pages
66–74.

Markus Dickinson and Scott Ledbetter. 2012. Anno-
tating errors in a Hungarian learner corpus. In Pro-
ceedings of the LREC’2012.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
MADA+TOKAN: A toolkit for Arabic tokeniza-
tion, diacritization, morphological disambiguation,
pos tagging, stemming and lemmatization. In Pro-
ceedings of the Second International Conference on
Arabic Language Resources and Tools.

Karen Kukich. 1992. Techniques for automatically
correcting words in text. ACM Comput. Surv.,
24(4):377–439, December.

Ariadna Font Llitjós and Jaime G. Carbonell. 2004.
The translation correction tool: English-Spanish
user studies. In Prceedings of the LREC’04.

Thomas Schmidt. 2010. Linguistic tool develop-
ment between community practices and technology
standards. In Proceedings of the LREC Workshop
Language Resource and Language Technology Stan-
dards.

Sara Stymne. 2011. Blast: a tool for error analysis
of machine translation output. In Proceedings of the
ACL’2011: Systems Demonstrations, pages 56–61.

4


