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Abstract

We address the task of bootstrapping a se-
mantic lexicon from a list of seed terms
and a large corpus. By restricting to a
small subset of semantically strong pat-
terns, i.e., coordinations, we improve re-
sults significantly. We show that the re-
striction to coordinations has several ad-
ditional benefits, such as improved ex-
traction of multiword expressions, and the
possibility to scale up previous efforts.

1 Introduction

High-quality semantic lexicons are needed for
many natural language processing (NLP) tasks
like information extraction and discourse process-
ing (Riloff and Shepherd, 1997). Building such
lexicons manually is costly and time-consuming.
Automatic lexicon construction is therefore an im-
portant task and much prior work has addressed it.

This paper adoptsBasilisk (Thelen and Riloff,
2002) as its basic approach, a system that uses
lexico-syntactic patterns for bootstrapping. We
have adapted Basilisk to our setting in several
ways. Whereas the original Basilisk covers a wide
variety of lexico-syntactic patterns, we restrict
ourselves to a specific type of patterns, i.e., coordi-
nations. Coordinations have been exploited in lex-
ical acquisition before (e.g., Roark and Charniak
(1998); Caraballo (1999); Goyal et al. (2010)).
Most of this previous work uses a pairwise per-
spective (i.e., a focus on whether two words co-
occur in a coordination). However, we use coor-
dinations in a Basilisk approach, for which pat-
terns contain several terms in general. We there-
fore do not split up coordinations in pairs but keep
the complete coordination intact. Coordinations in
technical domains frequently contain more than 2
elements.

We argue that bootstrapping methods, known to
be particularly sensitive to the ambiguity of terms

and contexts and prone to semantic drift, bene-
fit from the strong semantic coherence found in
coordinations. The elements of a coordination
often have a common hypernym; i.e., they are
co-hyponyms or members of a common semantic
class.

Furthermore, the high arity of coordinations,
the fact that coordinations have two or more ar-
guments (e.g., “platinum, nickel, palladium, cop-
per, silver, or gold”) further constrains the seman-
tics. For example, if two out of three elements in a
coordination have already been identified as sub-
stances, this makes it likely that the third is also a
substance. General or lexico-syntactic patterns in
lexical bootstrapping have arity 1, i.e., they have
a single argument. These patterns are too often
not restrictive enough to prevent false terms in-
fecting the semantic lexicon, which can lead to
semantic drift. For example, given a corpus in
which the semantic classDISEASE is not predomi-
nant, after some iterations the weak pattern “treat-
ment of <X>” is selected, which also provides
many off-class candidates (e.g., treatment ofpris-
oners). In coordinations, the semantic coherence
among terms leads to more selective patterns. For
example, the coordination “congenital heart de-
fect, atherosclerosis,<X>, scleroderma or tuber-
ous sclerosis” can only hold a slot for diseases.

We will show that the restriction to coordina-
tion patterns has several additional benefits. The
focus on simple coordination patterns circumvents
the need for identifying various syntactic relations
(e.g., subject), that are part of the extraction pat-
terns of the original Basilisk. Therefore, it circum-
vents the need for parsing. Syntax in the patent
domain, we address in this paper, is complex and
characterized by long clauses (cf. average number
of tokens per sentence: BNC: 19.7; Brown: 21.3;
WSJ: 22.4; Wikipedia: 24.3; EPO: 32.4). The
shallow parser used by Thelen and Riloff (2002)
would need several months to parse our corpus.
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Furthermore, the restriction to a subset of very
strong bootstrapping patterns limits the overpro-
duction of patterns radically. We can therefore ap-
ply our method to the largest domain-specific cor-
pus that has been used for semantic bootstrapping
so far.

Lastly, we benefit from the increased preci-
sion in extracting multiword expressions (MWEs)
when using coordination patterns. In contrast to
original Basilisk and most prior work, we learn
terms of any length, because, as we will see
later, in the technical domain under consideration
MWEs are predominant (e.g., “alkyl trimethyl am-
monium methosulfate”).

The paper is structured as follows. In Section 2,
we describe our data set, the task we address and
our evaluation methodology. Section 3 describes
Basilisk and our adaptations, in particular, the con-
text patterns we use. Experimental setup and re-
sults are presented in Section 4. In Section 5, we
discuss and analyze these results. The last two
sections describe related work and conclusions, re-
spectively.

2 Data, task description and evaluation
methodology

Data. We use the patent data distributed by the
European Patent Office1 (EPO) as our corpus. We
extract the description (the main part of a patent)
from 561,676 English patents filed between 1998
and 2008 and perform sentence splitting and to-
kenization using Treetagger (Schmid, 1994) and
lemmatization and part-of-speech (POS) tagging
usingMATE (Bohnet, 2010). Sentences up to a size
of 100 tokens extracted from a sample of 25,000
patents are parsed by MATE. The resulting EPO
corpus consists of roughly 4.6 billion tokens.

Task description. The task we address is se-
mantic tagging of patents. The research reported
here was conducted as part of a project on com-
putational linguistics analysis of patent text. We
want to be able to support functionalities like
color-coding entities of a particular semantic class
for quick perusal; or searching for entities in a par-
ticular semantic class. Our longterm goal is to sup-
port semantic tagging for a large variety of seman-
tic classes. In this paper, we focus on the semantic
classesSUBSTANCEandDISEASE. A substance is
a particular kind of physical matter with uniform
properties. Substances are of obvious relevance

1www.epo.org

for the patent domain and a large proportion of
patents contain substances. A disease is an abnor-
mal condition that affects the body of an organism.
We selected disease as a clearly nontechnical cate-
gory to be able to investigate potential differences
of lexical bootstrapping algorithms for categories
with very different properties.

Gazetteers are crucial for good performance in
machine-learning-based semantic tagging (Rati-
nov and Roth, 2009), e.g., the best performing sys-
tems for recognition of person, location and orga-
nization named entities all use gazetteer features
(e.g., Florian et al. (2003)). It is in this context
that we address the task of bootstrapping lexicons
from corpora: for most semantic classes of interest
in the patent domain high-coverage lexicons are
not available.

Evaluation methodology. Since our primary
task is semantic tagging, we evaluate the quality
of the bootstrapped lexicon directly on this task,
i.e., on the task of tagging members of the seman-
tic class in text – rather than evaluating the lexicon
in a type-based evaluation as a set of terms with-
out context as most previous work has done. A
tagging-based evaluation directly measures what
we need for our application, e.g., frequent terms
have a higher impact on tagging accuracy than rare
terms, and ambiguous terms with a rare class sense
depress tagging accuracy.

Terminology. From now on, we use the term
MWE for a noun phrase that we identify as a can-
didate class instance; we include one-word noun
phrases in the definition of MWE in this paper. We
call an MWE in a particular context in our gold
standard agold-standard MWE if it was annotated
as a member of the semantic class in question. We
call an MWE alexicon MWE if our bootstrapping
algorithm has added it to the induced lexicon as a
class instance.

Gold standard creation. Asking human
annotators to mark all instances ofSUB-
STANCE/DISEASE in a randomly selected set
of patents is very inefficient because this would
result in annotators spending a lot of time reading
patent text that contains (almost) no class instance.
Moreover, annotation quality is higher in patents
that contain at least a moderate number of class
instances since annotators will remain alert as
they go through the document.

To address this problem, for the two classes we
stratify the EPO corpus into three strata according
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to densityρ: high, medium and low.ρ is com-
puted as the proportion of class instances per to-
ken. Since the low-density stratum contains vir-
tually no class instances, we exclude it from our
experiments.

We randomly select 1000 patents from each of
the medium-density and high-density strata and
then one sentence from each patent. One anno-
tator labeled 200 sentences using the GATE2 an-
notation tool. Then problematic annotation exam-
ples were discussed. Afterwards, the annotator la-
beled the remaining 1800 sentences. For assessing
the quality of the gold standard, a second trained
annotator labeled 200 sentences of our evaluation
set. Inter-annotator agreement for both classes
wasκ = .712 (macro kappa) andκ = .818 (micro
kappa) (Cohen, 1960), which indicates substantial
to excellent agreement (Landis and Koch, 1977).

3 Bootstrapping algorithms

1: lexicon← seed
2: for int i = 0; i < m; i++ do
3: patterns←patternsOf(lexicon)
4: score(patterns)
5: patterns← return-top-k(patterns,20 + i)
6: terms← termsOf(patterns)− lexicon
7: score(terms)
8: lexicon← lexicon∪ return-top-k(terms,5)
9: end for

10: return lexicon

Figure 1: Basilisk algorithm. The original version
of Basilisk defines terms as head nouns.

The basic bootstrapping algorithm we use is
Basilisk as shown in Figure 1 (Thelen and Riloff,
2002). Basilisk first initializes the lexicon as the
seed set (line 1). The basic idea of the algorithm
is to identify context patterns that reliably identify
lexicon terms (lines 3–4), e.g.,made of <X>.
Line 5 selects a subset of patterns3 based on the
scoring function RlogF:

RlogF(patterni) = Fi/Ni log2(Fi)
whereFi is the number of learned lexicon terms
that occur in patterni andNi is the total number of
terms occurring in patterni. Lines 6–7 select the
terms associated with the patterns selected on line
5 and score them. Terms are scored using AvgLog,
the average log frequency, (line 7):

2gate.ac.uk
3We discard patterns that only occur with already learned

terms, guaranteeing that each of the selected20 + i patterns
on line 5 can potentially contribute new terms

AvgLog(termi) = 1/Pi

∑Pi

j=1
log2(Fj + 1)

wherePi is the number of patterns in which termi

occurs andFj is the number of learned lexicon
terms that occur in patternj . The5 highest scor-
ing terms are then added to the lexicon (line 8).

3.1 Basilisk-G

To process the large-scale patent corpus effi-
ciently, we implemented a simple chunker that
identifies noun phrases (NPs) using regular ex-
pressions (REs) on POS tags. We refer to
this RE/POS-based algorithm asBasilisk-G –
for “Basilisk General Patterns”. Basilisk-G is
an instantiation of the basic Basilisk algorithm
in Figure 1 that uses a more general definition
of patterns that only requires POS tagging and
no parsing. We use all patterns of the form
w
−i . . . w−1<np>w1 . . . wj where0 ≤ i, j ≤ 3

and i + j ≥ 2; i.e., context extends up to three
tokens out to the left and right from<np> and
must consist of at least two tokens. We discard
patterns whose context does not contain a verb
or a noun. The standard version of Basilisk uses
pattern templates like<subj> verb andnoun
prep <np>. Our more general definition covers
most instantiations of these templates, but it ex-
tends the patterns considered to a much larger va-
riety of lexical contexts. For example, fragments
of a coordination like, silver, <np> or
platinum are also instantiations of the general
Basilisk-G pattern template. As we will see later,
these types of patterns (which original Basilisk
does not use) turn out to be very effective.

Similar to patterns, we define MWEs in
Basilisk-G (Figure 1, line 6) as part of an NP ex-
tracted using REs: an MWE is a (possibly zero-
length) sequence of prehead modifiers (adjectives
and nouns) terminated by the head.

3.2 Basilisk-C

In this section we introduceBasilisk-C – for
“Basilisk Coordination Patterns” , a Basilisk in-
stantiation that uses only coordinations.

We allow two different types of coordinations:
and/or coordinations and punctuation coordina-
tions.

An and/or coordination is a list of NPs consist-
ing of two parts. In the first part of the list, NPs are
separated by commas or semicolons. In the second
part, NPs are separated by “and”, “or” or “and/or”.
The second part has minimum length 2:

((NP, )*|(NP; )*) NP ((and(/or)?|or) NP)+
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A punctuation coordination is defined as a list
of at least three NPs separated by commas or semi-
colons: ((NP, )+ NP, NP)| ((NP; )+ NP; NP)4

Because we detect the coordinations and the
NPs based on POS REs without performing a
full syntactic analysis and because the assump-
tion of co-hyponymy is incorrect in certain cases,
there are several incorrect matches. We automat-
ically removed border elements of a coordination
if they indicate an extraneousness to the coordi-
nation. One indicator of extraneousness was the
unique presence of a determiner for example “this
description” in “as concrete examples of [this de-
scription, methyl alcohol and benzyl alcohol] may
be cited”, where [. . . ] matches the coordination
pattern. Moreover, we removed conjuncts that in-
dicate a hypernym relation such as “other prod-
ucts” in “copolymers, polyisobutene and other
products”.

We treat the conjuncts that survive filtering as
an unordered set, i.e., we ignore their order in the
text. The set is discarded and not used by Basilisk-
C if it only contains one element.

4 Experimental setup and results

Experimental setup. We evaluate performance
of the two algorithms Basilisk-G and Basilisk-C
introduced above. We run experiments on EPO
(Section 2) with the goal of learning the classes
SUBSTANCEandDISEASE. Our seed set (Figure 1,
line 1) consists of the 4223 substances distributed
by Ciaramita and Johnson (2003) as part of Su-
perSenseTagger and 239 diseases extracted from
Simple English Wikipedia5.

For Basilisk-C, we extracted 9.7 million unique
coordinations, out of a total of 25 million.

For Basilisk-G, we found 1.6 billion unique
context patterns. In order to be able to run experi-
ments quickly, we introduce frequency thresholds
for MWEs, patterns and MWE-pattern combina-
tions. We only consider MWEs and patterns that
occur at leastθ1 = 10 times and MWE-pattern
combinations that occur at leastθ2 = 3 times
in EPO. These thresholds are unlikely to dimin-
ish lexicon quality since many rare instances of
MWEs are due to OCR errors or failures of our
RE-based recognition of NPs (see also (Qadir and
Riloff, 2012)). Using the thresholdsθ1 and θ2,

4This version of Basilisk uses the same RE to detect NPs
as Basilisk-G.

5simple.wikipedia.org/wiki/Listof diseases

there were 3.2 million unique MWEs, 56 million
unique patterns and 121 million unique MWE-
pattern combinations. This is the raw data we run
Basilisk-G on.

As discussed in Section 2, our evaluation
methodology directly evaluates the semantic lex-
icon on the task of interest: semantic tagging of
patents. The tagging method we use is simple
lexicon lookup. While tagging MWEs we exploit
the compositional structure of entities by merging
adjacent or overlapping token-based labels (e.g.,
fatty acid andacid amide are merged tofatty acid
amide). In our decision to use lexicon lookup for
tagging, we follow Qadir and Riloff (2012), who
argue convincingly that for a specialized class and
domain, ambiguity of terms (which would be the
main reason for using a context-dependent method
like a CRF) is a limited phenomenon and ignoring
it does not greatly affect performance. Even so, it
is important to keep in mind that tagging precision
does not directly reflect lexicon accuracy.

We use the measures precision, recall andF1.
Tagging results are evaluated using the evaluation
module of GATE. The scores give half credits for
partial matches and full credits for exact matches.

Performance of Basilisk-G and Basilisk-C.
Table 1 shows the performance of the baseline and
of Basilisk-G and Basilisk-C for different lexicon
sizes. The baseline uses the seed set (SUBSTANCE:
4223; DISEASE: 239) for tagging. We first run
iterations until the size of the induced lexicon is
5000 and then double the lexicon three times – to
10,000, 20,000 and 40,000 – to investigate the re-
lationship between lexicon size and tagging per-
formance.

Both Basilisk-G and Basilisk-C consistently
beat the baseline in recall andF1 for DISEASEand
in all three measures forSUBSTANCE. We mark
each performance number with a star if it is sig-
nificantly higher than the number above it.6 For
example, Basilisk-G’s and Basilisk-C’sF1 of .549
for 10,000 substances is significantly better than
the baseline (.539).

Basilisk-C outperforms Basilisk-G in most
cases. We mark each Basilisk-C performance
number with† if it is significantly higher than the
Basilisk-G number to the left of it. The largest dif-
ferences between Basilisk-C and Basilisk-G can
be found for the smaller semantic class of diseases
and at larger lexicon sizes. This is to be expected

6Approximate randomization test (Yeh, 2000),p < .05
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size SUBSTANCE DISEASE

P R F1 P R F1

B-G B-C B-G B-C B-G B-C B-G B-C B-G B-C B-G B-C
seed .597 .491 .539 .793 . 233 .360
5000 .599* .598 .494* .492* .542* .540* .790 .724 .455* .556*† .578* .629*†

10,000 .605* .604* .502* .504* .549* .549* .476 .643† .645* .602* .548 .622†
20,000 .610* .614* .509* .529*† .555* .568*† .392 .530† .642 .701*† .487 .604†
40,000 .612* .619* .515* .549*† .559* .582*† .300 .473† .642 .720† .409 .571†

Table 1: Tagging performance measured by precision (P), recall (R) andF1 of seed baseline and for
different lexicon sizes of Basilisk-G (B-G) and Basilisk-C(B-C); * indicates significantly higher than
the number above it;† indicates significantly higher than the number to the left ofit.

because we would expect semantic drift to be more
prominent for smaller classes and to grow with
the size of the induced lexicon. Closer inspection
reveals that Basilisk-G indeed drifts to any kind
of technical properties. For substances, Basilisk-
C outperforms Basilisk-G mainly in recall. This
large class is less sensitive to semantic drift but, as
we will discuss in detail in the error analysis, still
benefits from the MWE extraction of Basilisk-C.
These results support the argument we have made
for restricting to coordinations in Basilisk for both
predominant classes such asSUBSTANCEand mi-
nor semantic classes such asDISEASE.

Note that the best performance for the small
class of diseases is found at a lexicon size of 5000:
F1 = .629. It outperforms the seed baseline
(+.269) and Basilisk-G (+.051). Precision drops
rapidly when doubling the lexicon size and in-
troducing more and more semantic drift. For the
large semantic class of substances we find that in-
creasing the lexicon size generally improves per-
formance. The overall best result achieved,F1 =
.582, is achieved by Basilisk-C and the largest lex-
icon size (40,000).

Lexicon size

S
co

re

4223 100K 200K 300K 400K

.4
5

.5
0

.5
5

.6
0

.6
5

Recall
F1
Precison

Figure 2: Performance of Basilisk-C as a function
of lexicon size for substances

Our comparisons between Basilisk-G and
Basilisk-C are limited to a lexicon size of 40,000
because running Basilisk-G for larger lexicons be-

comes infeasible in our current setup. However,
one of the additional advantages of restricting to
coordinations is scalability. Figure 2 shows the
performance of Basilisk-C as a function of lexicon
size for very large substance lexicons. The figure
suggests that there is an upward trend forF1 and
recall up to very large lexicon sizes. The curves
do not increase monotonically, partly due to the
fact that once the lexicon has reached a size of
more than 100,000, only a few additional MWEs
found in the evaluation corpus are responsible for
the changes. Thus, the curves do not directly
reflect actual expected performance. Basilisk-C
achieves the highest performance at the right edge
of the graph at lexicon size 400,000:F1 = .611,
P= .608, R= .615. To our knowledge, Basilisk-
type algorithms have not been run for lexicons of
this size before.

The tagging performance seems low for prac-
tical purposes. However, this reflects the lexi-
con quality (i.e., the bootstrapping performance)
only partially. Since we are using a large domain-
specific patent corpus, we are faced with many
high-specific and infrequent terms. Many false
positives arise because of class instances missed
by the annotators. An optimal gold standard for
this domain would require domain specialists.

Comparison with original Basilisk. We al-
ready explained that running original Basilisk on
the whole EPO corpus is not feasible due to its size
and the length of the sentences. However, for a
comparison of Basilisk-G and Basilisk-C with the
original Basilisk, we parsed sentences up to a size
of 100 tokens from 25,000 sample patents. We de-
fine Basilisk-LS – for “Basilisk Lexico-Syntactic
patterns”and extract all lexico-syntactic patterns
described in (Riloff and Phillips, 2004). We in-
troduce two versions of Basilisk-LS: the origi-
nally head-based Basilisk-LShead and a variant,
Basilisk-LSMWE , that extracts MWEs defined as
basic noun phrases without determiner or post-
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nominal phrases such as PPs or relative clauses.
From all parsed sentences, we extract POS-based
coordinations and all general patterns for our sys-
tems. The tagging results for a substance lexicon
of size 20K is shown in Table 2.

System P R F1

Basilisk-LShead .437 .502 .467
Basilisk-LSMWE .582 .506 .541
Basilisk-G .560 .524 .542
Basilisk-C .620 .567 .592

Table 2: Comparison of B-LS, B-G and B-C

The results for Basilisk-LShead show that preci-
sion is a severe problem in tagging substance head
nouns on patents. When inducing and tagging
MWEs as it has been done by the other systems,
precision is much higher. Both Basilisk-LSMWE

and Basilisk-G only slightly outperform the seed
baseline inF1 (Table 1). Once more Basilisk-C
outperforms all other systems by far.7

Extension on other classes and domains.To
show that Basilisk-C can be applied to other
classes and domains, we ran an additional experi-
ment. We applied Basilisk-C to the classFIXED-
LOCATION as defined by Qadir and Riloff (2012)
and used Wikipedia coordinations. As there was
no annotated data available for this class, we ran
a type-based evaluation. A human judge rates ac-
curacy of 100 samples of the lexicon. As seed set,
we selected five US states, five European countries
and ten national capitals. We induced 5000 fixed
locations with an accuracy of 80%. We conclude
that depending on corpus size lexical bootstrap-
ping based on coordinations is applicable to any
domain for several classes.

5 Analysis and discussion

High arity. In previous sections we explained
that the high arity of the coordination relation con-
strains the semantics of its arguments and reme-
dies problems related to ambiguity that can give
rise to semantic drift. We have seen this in the re-
sults. The relatively small class (for our domain)
of diseases is prone to semantic drift especially

7Recall of Basilisk-C for the subcorpus is even better than
on the full EPO corpus shown in Table 1. The reason for this
is that sentences up to 100 tokens contain shorter coordina-
tions. MWEs in short coordinations tend to be less specific
and thus more frequent in a test set. This explains why recall
of semantic tagging is better when using shorter coordina-
tions.

when larger lexicon sizes are induced. Basilisk-C
is able to remedy this problem and leads to higher
performances than Basilisk-G and the differences
are largest for larger lexicon sizes.

On the other hand, we discussed the phe-
nomenon that MWEs in short coordinations tend
to be less specific. Despite the fact that shorter
coordinations provide a smaller pool of term can-
didates, we expect recall in the semantic tagging
task to be higher when using shorter coordina-
tions because the available term candidates are less
specific and thus have a higher frequency, i.e., a
higher chance to occur in the test set. Table 3
shows the tagging performance of a lexicon with
20,000 substances and one with 10,000 diseases
induced by Basilisk-C applied to different ranges
of coordination lengths. It shows that Basilisk-C
using only coordinations up to a size of 5 terms
(“2 to 5”) outperforms Basilisk-C using all coor-
dinations (“2 to∞”) in recall. In predominant
classes such asSUBSTANCE, shorter coordinations
do not harm precision. However, for classes like
DISEASE, precision decreases when shorter coor-
dinations are used, as illustrated in Table 3.

Coordination length P R F1

20,000 substances
2 to∞ .614 .529 .568
2 to 5 .615 .568 .591

10,000 diseases
2 to∞ .643 .602 .622
2 to 5 .470 .645 .544

Table 3: Comparison of coordination lengths

High-confidence pattern. We argued in sub-
section 3.2 that coordinations impose a stronger
semantic coherence on MWEs than general con-
text patterns or lexico-syntactic patterns do. Ta-
ble 4 shows that coordinations are indeed high-
confidence patterns for learning substances. High-
confidence Basilisk-G patterns after 1000 and
6000 iterations are listed. Each of the top 20 pat-
terns after 1000 iterations is a coordination. Ap-
parently, the patterns that are selected in the be-
ginning of learning as the ones best suited for
identifying substances are all fragments of coor-
dinations. Thus, performance of Basilisk-G and
Basilisk-C for a lexicon of 10,000 MWEs (cf. Ta-
ble 1) is fairly equal.

In contrast, after 6000 iterations only three of
the highest-confidence patterns still are coordina-
tions (not shown) – the other 17 are other types of
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type of pattern example

i
=

1
0
0
0

NN , <np> , nitrate , <np> ,
, <np> , NN , <np> , magnesium
NN , <np> CC oxide , <np> , and

i
=

6
0
0
0

, <np> , NN , <np> , sodium
NN of <np> ( weight of <np> (
of <np> verb of <np> was added

Table 4: Highest-confidence Basilisk-G patterns
afteri iterations (examples from top 20)

patterns (Table 4,i = 6000). As Basilisk-G’s per-
formance improves more slowly than performance
of Basilisk-C after the initial iterations (cf. Ta-
ble 1, 20,000 to 40,000), we conclude that coor-
dinations are the most effective patterns and the
addition of other pattern types contribute little to
learning new substances.

Scalability. Besides the scalability upgrade in
preprocessing by avoiding parsing, Basilisk-C, in
particular ranking of coordinations and MWEs,
runs quicker as the input of term-pattern com-
binations is about 80% smaller than for original
Basilisk. This means a crucial scalability benefit
for corpora even larger than EPO.

MWE extraction. The results in Table 2 show
that inducing and tagging only head nouns rather
than MWEs leads to poor precision. This result is
to be expected as our set of gold-standard MWEs
comprises 45.4% true MWEs and tagging only the
head nouns thereof leads to partial credits.

By restricting patterns to coordinations,
Basilisk-C avoids MWE recognition problems.
Coordinated noun phrases tend to be less modi-
fied, less complex and the context of an NP within
the coordination makes it easier to determine its
boundaries; the internal boundaries are always
connectors. Table 5 shows some MWEs induced
by Basilisk-G and the subparts thereof induced by
Basilisk-C.

high-molecular weight vinylidene fluoride resin
above metal chelate compound

unsaturated fatty acid ester
heat-fusible polymer fine particle

Table 5: Examples of MWEs in B-G; underlined
tokens match MWEs induced by B-C

Coordination abundance. Basilisk-C works
best for a text type in which large coordinations
are abundant since this is the only context pat-
tern it considers. In an analysis of the prevalence

of coordinations in different corpora, we observed
that long coordinations (those with at least three
conjuncts) are more prevalent in patents than in
other genres (average length of 4.6 in EPO vs 3.6
in other corpora). Thus, coordinations seem to
be a particularly promising resource for lexical
bootstrapping in technical domains like patents.
However, as exemplified by our experiments with
Wikipedia, Basilisk-C shows similar performance
on other domains, given that the members of the
semantic class appear often in coordinations.

6 Related work

We have chosen a semisupervised approach to lex-
ical bootstrapping here since it is reasonable to ex-
pect that in the type of application scenario we
have in mind resources are available to create a
seed set. There are also completely unsupervised
approaches to lexical bootstrapping (e.g., Lin and
Pantel (2002); Davidov et al. (2007); Van Durme
and Paşca (2008); Dalvi et al. (2012)), but they
usually cannot match the quality of approaches
like ours that use human input such as a seed set.

The bootstrapping approach we have adopted
here starts with a seed set and then iteratively ex-
tends the lexicon by adding the highest-confidence
MWEs in each iteration. Basilisk (Thelen and
Riloff, 2002) is perhaps the best known boot-
strapping method of this type, but there exists
a large literature on similar methods, some of
which exploit lexical co-occurrence statistics (e.g.,
Riloff and Shepherd (1997)) and some of which
use syntactic analysis (e.g., Roark and Charniak
(1998); Riloff and Jones (1999); Phillips and
Riloff (2002)). Our approach does not make use
of syntactic analysis but relies on POS patterns.

Some recent work attempts to improve
Basilisk’s accuracy. Igo and Riloff (2009) en-
hance precision by checking candidate terms
using web queries. Qadir and Riloff (2012)
combine Basilisk in an ensemble with an SVM
tagger and a coreference resolution system. Our
focus is learning technical terminology from very
large corpora using coordinations, but any work
that improves the accuracy of basic Basilisk could
also be beneficial in our setting.

Gazetteers are crucial for good performance in
named entity recognition (NER). Work on auto-
matic extraction of gazetteers for NER includes
(Toral and Muñoz, 2006; Kazama and Torisawa,
2007). Most of this work is complementary to
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our approach because it uses knowledge bases
like Wikipedia or is only applicable to traditional
named entities (NEs). Traditional NEs like person
are capitalized. Substances are not. Our work also
differs in its focus on coordinations and technical
text.

Coordinations have been frequently used in
work on lexical acquisition. Caraballo (1999)
builds a hierarchy of coordinated nouns and their
hypernyms. Cederberg and Widdows (2003) use
coordinations to estimate the semantic relatedness
of nouns. Widdows and Dorow (2002) and Qiu et
al. (2011) cluster nouns and evaluate the semantic
homogeneity of the clusters. Etzioni et al. (2005)
use Hearst patterns to bootstrap lexicons. They
also consider coordinations when selecting candi-
dates. This previous work on coordinations is un-
supervised and not focused on learning a particular
semantic class that is defined by a seed set.

Roark and Charniak (1998) use a variety of syn-
tactic constructions, including coordinations, for
bootstrapping. Our approach is different in that we
do not require parsing and that we cover MWEs in
general, not just heads or compounds with a com-
mon head. However, some of the other syntac-
tic constructions presented by Roark and Charniak
(1998) could also be amenable to reliable detec-
tion by REs. We plan to investigate this in future
work. Goyal et al. (2010) create a plot unit rep-
resentation creator. Therefore, they induce a lex-
icon of patient polarity verbs (i.e., verbs that im-
part positive or negative states on their patients)
based on Basilisk, that learns from coordinated
verbs. This work is focused on verbs with the
same patient polarity in binary coordinations ex-
tracted from a web corpus. Our approach is based
on coordinations of any size from a large patent
corpus and focuses on semantic lexicon induction.

One distinguishing characteristic of our work is
the patent domain. Other work on technical or
scientific domains includes press releases of phar-
maceutical companies (Phillips and Riloff, 2002),
medline abstracts (McIntosh and Curran, 2009),
message board posts from the Veterinary Informa-
tion Network (Huang and Riloff, 2010) and texts
from ProMed and PubMed (Igo and Riloff, 2009;
Qadir and Riloff, 2012).

Patents can be argued to be particularly diffi-
cult technical text due to long sentences, legalese
and complex NP syntax. To the best of our knowl-
edge, our experiments are also the largest seman-

tic bootstrapping experiments on technical text to
date. While there has been much work on experi-
ments on large web corpora and other general text
(e.g., Kozareva et al. (2008); Carlson et al. (2009);
Bakalov et al. (2011)), the corpora in other lexi-
cal bootstrapping work on technical domains have
been an order of magnitude smaller than ours.

We showed that using only coordinations reme-
dies the problem of semantic drift. Other work
on semantic drift includes Yangarber et al. (2002);
Curran et al. (2007); McIntosh and Curran (2008);
McIntosh and Curran (2009).

7 Conclusion

In this paper, we presented Basilisk-C. The
method is inspired by original Basilisk but adapts
it to large corpora of technical text by restricting it
to one type of patterns: coordinations.

This restriction to coordinations, a relation that
is known to impose strong semantic coherence
upon its members and as such a possible remedy
for semantic drift, leads to significant improve-
ments for the task of semantic tagging, compared
to an unrestricted version of Basilisk.

We further extended original Basilisk to include
MWEs, as these are predominant in technical text
and showed that coordination patterns yield higher
precision in MWE extraction.

The proposed method avoids the need for pars-
ing, which is cumbersome for large corpora with
long sentences, typical for the technical domain.
In general, we upgrade scalibility because the co-
ordination patterns represent a fraction of the pat-
terns original Basilisk utilized.

Apart from using linguistics patterns such as co-
ordinations, we plan to use structured data, such as
table columns and rows to extract co-hyponyms in
future work.

We will make our gold-standard and the in-
duced lexicons publicly available8.
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