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Abstract
In this paper we propose an approach to
dynamically compute a confusion score
for dependency arc labels, in typed depen-
dency parsing framework. This score ac-
companies the parsed output and aims to
administer an informed account of parse
correctness, detailed down to each edge of
the parse. The methodology explores the
confusion encountered by the oracle of a
data driven parser, in predicting an arc la-
bel. We support our hypothesis by empiri-
cally illustrating, for 20 languages, that the
labels with a high confusion score are no-
tably the predominant parsing errors.

1 Introduction

Recently, a major research drive has been to-
wards building data driven dependency parsers for
various languages. Shared tasks like CoNLL-X
and CoNLL 2007 have acted as development and
testing grounds for various efforts in the field.
The majority of the emerged systems follow ei-
ther graph based paradigm (McDonald et al.,
2005; McDonald and Pereira, 2006) eg. MST
Parser (McDonald et al., 2005) or transition based
paradigm (Yamada and Matsumoto, 2003; Nivre
and Scholz, 2004) eg. MaltParser(Nivre et al.,
2007).

A time complexity relatively lower than their
earlier counterparts makes the above parsers apt
for use by real time NLP applications like Ma-
chine Translation (Galley and Manning, 2009).
However, Popel et al.(2011) in the context of MT
pointed out that an incorrect parse can hurt the ac-
curacy of output. Thus, correctness of individual
parses becomes a key factor in such a setup.

This calls for measures which can indicate up-
front the quality of each individual output. A rele-
vant work in this direction is by Mejer and Cram-
mer (2012). They proposed methods to estimate

confidence of correctness of predicted parse in a
graph based parsing scenario using MSTParser.
Graph-based and transition-based parsers exhibit
two very distinctive approaches towards parsing,
each having its own strengths and limitations (Mc-
Donald and Nivre, 2007; Zhang and Clark, 2008).
The diversity in the two techniques motivated us to
explore and formulate a similar measure in tran-
sition based paradigm. We choose MaltParser1

(Nivre et al., 2007), which produces a parse tree
using a shift-reduce based transition algorithm, to
work with. It uses SVM to train an oracle to pre-
dict parsing action. The measures proposed by
Mejer and Crammer (2012) can not be straight off
applied in transition based parsers, as unlike the
graph based approach they commit local opera-
tions and thus can not directly produce globally
optimum k-best parses.

We propose computing an entropy based label
confusion score, dynamically computed and as-
signed while parsing (the computational details
are presented in section 2 of this paper). Since en-
tropy measures the uncertainty in a random vari-
able, we prefer to call the measure, in our ap-
proach, confusion score. This measure aims to
give a more informed picture of the parsed output.

We integrated our approach on top of the current
functionality of MaltParser, adjusting it to accredit
a confusion score with each arc label predicted in
the output. Figure 1 depicts a typical parse from
our proposed system where each arc label has been
designated a confusion score.

The measure can also be utilized to flag poten-
tial incorrectly parsed edges which later, can ei-
ther be manually corrected or altogether discarded
(to fall back on lower level but more accurate fea-
tures). We empirically illustrate in section 4, that
such a score can be effectively used for automatic
error detection in parsed outputs and guide manual

1MaltParser version 1.7 from http://www.maltparser.org
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Figure 1: A dependency parse tree with edge con-
fusion score. ’#’ represents incorrect arc label.

correction.

2 Dynamic Confusion Score

MaltParser outputs a single best parse by greedily
choosing parsing actions advocated by an oracle
trained on the training data. In a typed dependency
framework, the parser performs two distinct kinds
of actions; attachment of vertices and assigning
arc labels to edges. MaltParser provides a choice2

to train separate oracles for these two kinds or a
single oracle that jointly predicts attachment and
arc label.

In case of separate oracles for attachment and
label prediction, the parser queries the attachment
oracle until a Left Arc or Right Arc action is pre-
dicted. The label oracle is then queried for an arc
label in the given context. There is further a provi-
sion for having a separate oracle for Left Arc and
Right Arc label prediction. Nevertheless, an ora-
cle is always queried for a parsing action against a
given context.

2.1 Uncertainty in Label Prediction
The problem of predicting arc label correctness
can mathematically be posed as follows: For ran-
dom variables X and Y representing context and
parsing-actions respectively; an oracle φ is defined
such that φ : X −→ Y . Here, Y is always a closed
set, comprising permissible parser actions. The
uncertainty in predicting Y to one of its possible
values y1, ..., yn can be attributed as the confusion,
the oracle has in prediction. It is known that en-
tropy is a measure of the uncertainty in a random
variable (Ihara, 1993). Thus, this uncertainty can
be quantitatively determined by entropy(H) calcu-
lated by the following formula

H(Y/X) = −
n∑
i=1

p(yi/X) log p(yi/X) (1)

2http://www.maltparser.org/userguide.html#predstrate

were p(yi/X) is the posterior probability of yi be-
ing predicted as the parsing action in the given
context X . The higher the entropy, the more un-
certain the oracle is about the prediction.

However, there is no readily available provision
indicating the magnitude of confusion the oracle
encounters during prediction. The rest of this sec-
tion presents a sequential account of our approach.

2.2 SVM based Oracle

The oracle discussed earlier, is a multiclass classi-
fier which predicts a transition action based on the
context. MaltParser employs Support Vector Ma-
chine (Cortes and Vapnik, 1995) for classification
and provides an option between LIBSVM (Chang
and Lin, 2011) and LIBLINEAR (Fan et al., 2008)
to build the classifier(s). Both implement “one-vs-
one multi-class classification” method which in-
corporates nC2 binary models (n denotes number
of classes), one for each distinct pair of classes.
Prediction is done by voting among these binary
classifiers and the class with maximum votes is
emitted as decision class. This method does not
exert any sort of probabilities and in our sce-
nario we seek posterior probability estimates of
the classes.

2.3 Posterior Probabilities

Platt et al. (1999) showed that posterior probabil-
ities can be estimated in SVM by training the pa-
rameters of an additional sigmoid function to map
the SVM output into probabilities. Later, Wu et al.
(2004) extended the idea for multiclass probabil-
ity estimates by combining pairwise class proba-
bilities. In our work, we utilize the second method
(proposed in Wu et al. (2004)), which suggests the
following optimization formula:-

min
p

k∑
i=1

∑
j:j 6=i

(rjipi − rijpj)2

subject to
k∑
i=1

pi = 1, pi ≥ 0,∀i

where,

k = total classes,

rij = probability of i in binary classifier with classes i & j,

pi = probability of i in multiclass estimation

The solution to above optimization, furnishes
multiclass estimation of probability for each class.
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2.4 Entropy as Confusion Measure

Now, with the available class posterior probabili-
ties, entropy based confusion measure is computed
using equation 1. The base of the log is the num-
ber of label classes which ensures the entropy to
be in the range of 0 to 1. Confusion score for arc
label would require querying the arc label oracle,
and thus MaltParser must be configured to deliver
separate oracles for attachment and arc label in the
training phase.

3 Extendibility of the Confusion Score

This section presents the possible extensions and
constraints of the proposed score.

3.1 Extension to Full Parse Confusion

The confusion score in the proposed approach is
calculated separately for each arc label. Calcula-
tion of a confusion score for a full parse can be
done by taking an average over the edges in the
parse. Other measures like average of worst k la-
bels, score of worst label itself, etc. can also be
adopted. This enables visualization of the confu-
sion for the complete parse tree. This can be apt
in the scenario of a large collection of parse trees,
such as treebanks and also for applications like
Active Learning (Tang et al., 2002; Hwa, 2004).

3.2 Extendibility to Other Algorithms

Since our method executes at the oracle level, it
is independent of the algorithmic choice used in
the parser. Also, pseudo projective transformation
(Nivre and Nilsson, 2005) too is an extrinsic pro-
cess, so non-projectivity does not perturb our ap-
proach.

3.3 Extendibility for Attachments

The approach, at first, may seem extendable to
attachments also since it would require querying
the attachment oracle for attachment confusion.
However it is not extendable to edge correctness
prediction. The restricting factor being the pres-
ence of non-labeling parser action i.e. Shift and
Reduce. Since these transitions are not decom-
posed over the tree edges, the oracle confusion as-
sociated with them can not be delineated to any
edges. For example, at a given point in the parsing
process, assuming the arc-standard system (but the
same holds for other algorithms also), the oracle
will need to decide if it should perform a Left,
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Figure 2: Precision, recall and f-score for various
values of confusion score on ‘Hungarian’ devel-
opment set.

Right or Shift action. This decision will influ-
ence not only the single edges added by the left
or right operation, but also other, future edges. It
should be noticed that the Shift action will not add
any edge, but will have a very complex effect on
the set of edges that could or could not be added in
the future. Thus, the entropy of this particular de-
cision cannot be attached to any specific final edge
and hence the methodology can not be extendend
to arc-attachments.

4 Error Detection in Parser Output

In this section, we empirically illustrate the effi-
cacy of our proposed measure in automatic error
detection and guiding manual error correction.

4.1 Automatic Error Detection
Automatic error detection aims to efficiently de-
termine and flag incorrectly predicted edges. The
edges exhibiting a high confusion score are also
highly probable to be incorrect, as the oracle is un-
certain in its decision. Using this insight, an edge-
label is flagged as potential error if its confusion
score is above a pre-calculated threshold(θ).

In this task we have focused on the arc label
correctness, i.e. we flag the edges which have a
high probability for an incorrect arc label.

4.2 Data and Experimental Setup
We conducted experiments on 20 languages, using
data from CoNLL-X (Buchholz and Marsi, 2006),
CoNLL 2007 (Nilsson et al., 2007) and MTPIL
COLING 2012 (Sharma et al., 2012) shared tasks
on dependency parsing. We carried out exper-
iments on the systems proposed in Nivre et al.
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Language Threshold F-score Precision Recall EDI EDI EDI
(θ) (%) (%) (%) 1% edges(%) 5% edges(%) 10% edges(%)

Arabic# 0.14 50.71 41.39 65.45 4.43 20.98 36.68
Basque# 0.16 51.74 46.62 58.13 2.57 9.58 24.41
Catalan# 0.11 48.67 48.54 48.79 7.63 26.53 44.79
Chinese# 0.09 41.35 41.68 41.04 5.70 20.02 36.00
Czech# 0.08 51.61 47.85 56.02 4.20 18.82 35.92

English# 0.09 47.71 57.78 40.63 8.54 33.89 44.58
Greek# 0.12 54.47 44.76 69.54 4.84 20.28 35.89

Hungarian# 0.36 61.80 69.64 55.54 6.23 31.14 53.49
Italian# 0.15 43.48 39.43 48.45 2.57 19.73 40.37

Turkish# 0.14 53.58 43.38 70.05 3.99 21.90 40.82
Hindi♠ 0.16 49.80 43.57 58.11 4.86 20.48 35.09

Bulgarian¶ 0.12 47.52 40.45 57.60 7.85 34.88 55.63
Danish¶ 0.12 49.77 41.85 61.41 6.26 30.39 50.32
Dutch¶ 0.11 50.29 47.46 53.47 2.63 15.39 34.25

German¶ 0.09 44.44 37.33 54.91 4.37 23.62 45.64
Japanese¶ 0.09 41.43 29.12 71.75 4.90 24.49 57.59

Portuguese¶ 0.11 48.13 44.61 52.25 10.43 35.23 54.51
Slovene¶ 0.14 54.29 44.84 68.78 5.72 19.38 34.15
Spanish¶ 0.09 40.00 31.10 56.03 7.43 29.21 46.33
Swedish¶ 0.13 48.47 42.36 56.63 5.03 24.04 42.37
Average - 48.96 44.19 57.23 5.51 24.00 42.44

Table 1: Language wise results for automatic error detection task. EDI x% edges= Error detected on
inspecting top x% of total edges. Data Source:- ¶:CoNLL-X, #:CoNLL 2007, ♠:MTPIL COLING 2012

(2006), Hall et al. (2007) and Singla et al. (2012),
which are individually, the best performing Malt-
Parser based systems, in the respective shared
tasks. All the results reported here are on the offi-
cial test sets.

4.3 Identifying Optimum Threshold(θ)

Threshold(θ) is a crucial parameter in the exper-
imental setup. An optimum θ is chosen by mak-
ing use of the development set. We iteratively
increase candidate values for θ, from minimum
to maximum possible value of confusion score,
with an adequate interval. Corresponding to each
of these values, the incorrect edges are flagged
and precision, recall & F -score (Manning et al.,
2008) are calculated. The value asserting the max-
imum F -score is chosen as the final θ. Here for
simplicity, we have used balanced F -score, i.e.
F1-score. However, as per the application and
available resources, a relevant Fβ can be chosen
to maximize the yield on the input effort.

Fβ = (1 + β2)× precision× recall
(β2 × precision) + recall

Figure 2 depicts precision, recall and
F1-score corresponding to each candidate value

of θ for Hungarian development data. The max-
imum F1-score is attained at 0.36 which is thus
taken as the final θ for Hungarian.

Since, CoNLL-X and CoNLL 2007 datasets do
not provide development sets, we hold out ran-
dom 10% sentences of a training set as develop-
ment data. The remaining training data is utilized
to train a parser and identify an optimum threshold
on the development set, as explained earlier. How-
ever, the final training is performed on the entire
training data and evaluated on the test set.

4.4 Results and Discussion

Table 1 exhibits the results obtained for auto-
matic error identification. An average F1-score
of 48.96%, precision of 44.19% and recall of
57.23% is obtained over 20 languages in the task.

To efficiently capture the efficacy of our ap-
proach, another metric is presented (columns 6-8)
which corresponds to the percentage of errors de-
tected by inspecting top 1%, 5% and 10% of total
edges. The metric gives a more precise picture of
the effort required to correct errors.

Our experiments indicate that on average
42.44% errors can be detected by just inspecting
top 10% of total edges. This portrays that the
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effort required here is one fourth as compared to
that in conventional sequential correction. On in-
specting top 5% and 1% of all edges, 24.00% and
5.51% errors can be detected. Best results are ob-
tained for Japanese and Portuguese where 57.59%
of errors are detected by merely inspecting 10%
of total edges for Japanese, while 35.23% and
10.43% errors are detected on inspecting 5% and
1% edges respectively for Portuguese.

A comparison with Mejer and Crammer (2012)
is not possible as they only give confidence scores
for parent-child attachments while our approach
gives confusion scores for parent-child edge’s de-
pendency label. In a typed dependency frame-
work both attachments and labels are significant
and hence our approach is complementing Mejer
and Crammer (2012).

5 Conclusion and Future Work

This paper presents our effort towards computing
a confusion score that can estimate, upfront, the
correctness of the dependency parsed tree. The
confusion score, accredited with each edge of the
output, is targeted to give an informed picture of
the parsed tree quality. We supported our hypoth-
esis by experimentally illustrating that the edges
with a higher confusion score are the predominant
parsing errors.

Not only parsed output, manual treebank valida-
tion too can benefit from such a score. An n-fold
cross validation scheme can be adopted, in this
case, to compute and assign confusion scores and
detect annotation errors. Also, this score has scope
in active learning where unannotated instances ex-
hibiting high confusion can be prioritized for man-
ual annotation.
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