
International Joint Conference on Natural Language Processing, pages 1112–1116,
Nagoya, Japan, 14-18 October 2013.

A Generalized LCS Algorithm and Its Application to Corpus Alignment

Jin-Dong Kim
Database Center for Life Science (DBCLS), ROIS, Japan

jdkim@dbcls.rois.ac.jp

Abstract

The paper addresses the problem of text
variation which often hinders interopera-
ble use or reuse of corpora and annota-
tions. A systematic solution is presented
based on a variation of Longest Common
Sequence algorithm. An empirical exper-
iment with 20 full text articles shows it
works well with a real world application.

1 Introduction

Corpus with annotation is regarded indispensable
for the development of natural language process-
ing (NLP) technology. As so, many corpora with
annotation have been developed, and many groups
are working with new annotation projects.

As various annotated corpora accumulate in the
field, reusability and interoperability is becoming
an important issue (Cohen et al., 2005; Johnson et
al., 2007; Campos et al., 2012). Among others,
Wang et al. (2010) reports that there are a number
of corpora that claim to have annotations for pro-
tein or gene names, e.g, Genia (Kim et al., 2003),
Aimed (Bunescu et al., 2004), and Yapex (Franzén
et al., 2002), and that, however, the protein anno-
tations in those corpora are substantially different
to each other, which calls for an interoperable in-
terpretation of the annotations for integrative reuse
of them. Rebholz-Schuhmann et al. (2011) inves-
tigates aggregation of variable named entity anno-
tations in large scale, which also show the impor-
tance of interoperable use of corpus annotation.

There also have been efforts for the interop-
erability of corpora and annotations from a per-
spective of encoding and representation, e.g., Lin-
guistic Annotation Framework (LAF) (Ide and Ro-
mary, 2004) and Open Linguistics1. Without a
doubt, those efforts contribute to improving the in-
teroperability of corpora and annotation.

1http://linguistics.okfn.org/

A.

T G F - b e t a a c t s
· · ·

0 1 2 3 4 5 6 7 8 9 10 11 12
(0, 8), Protein

B.

T G F - & b e t a ; a c t s
· · ·

0 1 2 3 4 5 6 7 8 9 10 11 12
(0, 10), Signalingmolecule

C.

T G F - β a c t s
· · ·

0 1 2 3 4 5 6 7 8 9
(0, 5), Protein, Signalingmolecule

Figure 1: Text variations and annotation to them

This paper addresses another type of problem,
text variation, which often hinders interoperable
use or reuse of corpora and annotations in real
world applications. As far as the author knows,
it is the first attempt to develop a definite and sys-
tematic solution to the problem.

The problem of text variant is explained in de-
tail in Section 2, while the solutions are presented
in Section 3 and 4 After discussions on its real
world application in Section 5, the paper is con-
cluded in Section 6.

2 Task definition

Figure 1 illustrates a simple example of the prob-
lem to be addressed: A, B and C are text vari-
ants from the same document; The position index
of the equivalent text spans, “TGF-beta”, “ TGF-
β”, and “TGF-β”, are different to each other;
And, the annotations made to the spans are not
directly interoperable, although they are made to
conceptually the same span of the same document.

Note that the example is extremely simplified
for the ease if understanding. In reality, the prob-
lem is much more complex: a text, as the tar-

1112

get of annotation, is often as long as hundreds, or
thousands of characters, or even much longer, and
a single local variant affects the entire remaining
portion of the text, in a cumulative way.

Nowadays, the widespread use of Unicode is
one of the reasons of text variant, particularly
when it comes to text processing, because many
NLP tools, e.g., syntactic parsers, cannot han-
dle Unicode characters properly. Thus, during
many annotation projects, Unicode characters,
e.g., Greek letters, are spelled out into ASCII al-
phabets, likebetain Figure 1 A. Sometimes, extra
symbols, e.g., ‘&’ and ‘;’, are inserted to delimit
Unicode-origin sequences, like in B.

Suppose that two independent annotation
projects took the text of C into their corpora,
and their preprocessors spelled out Greek let-
ters differently like in A and B. The projects
may produce different annotations according to
their interest and perspectives. While those an-
notations may serve their goals individually, fur-
ther benefit, e.g., reuse, comparison, or aggre-
gation, can be gained from interoperable use
of them. In the example, we want the an-
notations, (0, 8, Protein)2 from A and
(0,10, Signaling_molecule) from B, to
be transferable to C, or to each other. However,
the variation of text poses a challenge: we need to
compute the mapping between variations of text.

For standoff annotation, a text defines a
one-dimensional Cartesian coordinate system,
whereon any position on the text is specified. We
thus cast the problem to the task of finding a map-
ping function from a one-dimensional Cartesian
coordinate system to another, when they are filled
with comparable values (characters). In Figure 2,
δA→C is a mapping function from A to B, which
enables transferring the annotation to the source
text. δC→A is the mapping for the opposite direc-
tion. Once those functions are obtained, any anno-
tation produced by the project A can be transferred
to the original text, and vice versa.

3 LCS for text mapping

For most cases, text mapping can be computed
using Longest Common Sequences (LCS) algo-
rithms (Bergroth et al., 2000). LCS is a well

2Throughout the paper, we make the span specification in
the style of BioNLP shared task (Kim et al., 2009), where the
beginning of a span is specified by the number of characters
preceding the span, and the end by the number of characters
up to the end of the span.

δA→C

0 1 2 3 4 5 6 7 8 9 10 11 · · ·

0 1 2 3 4 4 4 4 5 6 7 8

δC→A

0 1 2 3 4 5 6 7 8 9 · · ·
0 1 2 3 4 8 9 10 11 12

Figure 2: Mapping between text variations

T G F - b e t a a c t s
0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 0 1 1 1 1 1 1 1 1 1 1 1 1 1
G 0 1 2 2 2 2 2 2 2 2 2 2 2 2
F 0 1 2 3 3 3 3 3 3 3 3 3 3 3
- 0 1 2 3 4 4 4 4 4 4 4 4 4 4
β 0 1 2 3 4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 4 4 4 4 5 5 5 5 5
a 0 1 2 3 4 4 4 4 4 5 6 6 6 6
c 0 1 2 3 4 4 4 4 4 5 6 7 7 7
t 0 1 2 3 4 4 4 4 4 5 6 7 8 8
s 0 1 2 3 4 4 4 4 4 5 6 7 8 9

Figure 3: The LCS table for “TGF-β acts” and
“TGF-beta acts”. The place of text variation is in-
dicated in gray

known problem, based on which the UNIX com-
mand,diff, is implemented. Algorithm 1 is a dy-
namic algorithm to compute the length of LCS of
any two strings. Figure 3 shows the resulted LCS
table for example strings. From the LCS table, the
diff between the two strings - see Figure 43 - can
be read out by Algorithm 2.

Algorithm 1 LCS computation
1: function LCS(X[1..m], Y [1..n])
2: C = ARRAY(0..m, 0..n)
3: for i := 0..m do
4: C[i, 0] := 0
5: end for
6: for j := 0..n do
7: C[0, j] := 0
8: end for
9: for i := 1..m do

10: for j := 1..n do
11: if X[i] = Y [j] then
12: C[i, j] := C[i − 1, j − 1] + 1
13: else
14: C[i, j] := MAX (C[i, j − 1], C[i − 1, j])
15: end if
16: end for
17: end for
18: end function

Algorithm 1 has time and space complexities
of O(mn), wherem andn are the length of the
strings. For many real world applications, Hunt-

3In the first column, the minus (‘-’) and plus (‘+’) signs
indicatedeletionandinsertionoperations, respectively.

1113

Algorithm 2 Reading outdiff from LCS table
1: D = STACK
2: i := m
3: j := n
4: while i 6= 0 or j 6= 0 do
5: if i > 0 and j > 0 and X[i] = Y [j] then
6: PUSH(D, [‘=’, X[i], Y [j]])
7: i := i − 1
8: j := j − 1
9: else ifj > 0 and (i = 0 or C[i, j-1] > C[i-1, j]) then

10: PUSH(D, [‘+’, nil, Y [j]])
11: j := j − 1
12: else
13: PUSH(D, [‘−’, X[i], nil])
14: i := i − 1
15: end if
16: end while

Mcllroy algorithm (Hunt and McIlroy, 1976) is
frequently used, which regularly beats the com-
plexities of the dynamic algorithm with typical in-
puts. Once thediff in Figure 4 is obtained, getting
the mappingδC→A is straightforward.

= 0 T 0 T
= 1 G 1 G
= 2 F 2 F
= 3 - 3 -
- 4 β
+ 4 b
+ 5 e
+ 6 t
+ 7 a
= 5 8
= 6 a 9 a
= 7 c 10 c
= 8 t 11 t
= 9 s 12 s

Figure 4: diff(C, A)

The LCS algorithm works fine when text varia-
tions occur only in isolation individually as in Fig-
ure 4. Sometimes, however, text variations occur
successively, causing what we call thesuccessive
variationproblem. It is illustrated in thediff result
in Figure 5, where two Unicode characters, ‘β’
and ‘–’4 appear successively. The source position,
5, needs to be precisely mapped to the target po-
sition, 8, which however the LCS-diff algorithms
cannot find: while the mapping,δ(4) → 4, is ob-
vious, there is no clue as to which position, among
5, 6, 7 and 8, the next one,δ(5) to be mapped to.

4 Generalized LCS algorithm

To address the problem ofsuccessive variations,
we need to inform the algorithm of equivalent se-
quences, e.g.,β andbeta. We call a collection of

4long hyphen in Unicode

= 0 T 0 T
= 1 G 1 G
= 2 F 2 F
= 3 - 3 -
- 4 β
- 5 –
+ 4 b
+ 5 e
+ 6 t
+ 7 a
+ 8 -
= 6 i 9 i
= 7 n 10 n
= 8 d 11 d
= 9 u 12 u
= 10 c 13 c
= 11 e 14 e
= 12 d 15 d

Figure 5: The result of LCS-Diff for “TGF-β–
induced” and “TGF-beta-induced”

equivalent sequences adictionary, and modify Al-
gorithm 1 as follows:
1: function GLCS(X[1..m], Y[1..n], D)

...
11-1: a, b := S(X[1..i], Y[1..j], D)
11-2: if a > 0 then
12: C[i,j] := C[i-a, j-b] + 1

As indicated in line 1, it is invoked with a dictio-
nary, D, which is a list of equivalent sequences,
e.g., (α, alpha), (β, beta), and so on. The 11’th
line of Algorithm 1, which performs the compar-
ison of the last characters, is modified to perform
a general suffix comparison. The suffix compari-
son function,S, first performs the last-character-
comparison for trivial cases, and performs a suffix
comparison in variable length when the character
comparison fails. The suffix comparison relies on
the dictionary,D: if the two strings have matching
suffixes in the end according to the dictionary, it
returns the length of the suffixes, which is received
by a andb in the modified algorithm.

Following is the modification to Algorithm 2:
5-1: a, b := S(X[a..i], Y[b..j])
5-2: if i > 0 and j > 0 and a > 0 then
6-1: if a = b = 1 and X[i] = Y[i] then
6-2: push(D, [’=’, X[i], Y[j])
6-3: else
6-4: for p := i-a+1..i do
6-5: push(D, [’-’, X[p], nil])
6-6: end for
6-7: for q := j-b+1..j do
6-8: push(D, [’+’, nil, Y[q])
6-9: end for
6-10: end if
7: i := i - a
8: j := j - b

Using it, thediff of the successive variation exam-
ple is obtained as in Figure 6, where the mapping

1114

= 0 T 0 T
= 1 G 1 G
= 2 F 2 F
= 3 - 3 -
- 4 β
+ 4 b
+ 5 e
+ 6 t
+ 7 a
- 5 –
+ 8 -
= 6 i 9 i
= 7 n 10 n
= 8 d 11 d
= 9 u 12 u
= 10 c 13 c
= 11 e 14 e
= 12 d 15 d

Figure 6: The result of GLCS-Diff for “TGF-
beta–induced” and “TGF-beta-induced”

of ‘–’ and ‘-’ is properly represented, solving the
problem of successive variations.

As the modified algorithm generalizes the
last-character-comparison to the variable-length-
suffix-comparison, we call it ageneralized LCS
(GLCS) algorithm. With an empty dictionary,
GLCS works exactly the same as LCS. Using a
suffix treealgorithm, GLCS has the worst case
time complexity,O(mnl), wherel is the length
of the longest entry in the dictionary.

While the performance of GLCS relies on the
dictionary, in fact, it works well even with an in-
complete dictionary. For example, to get the result
in Figure 6, having either (β, beta) or (–, -) in the
dictionary is enough. This feature contributes to
the robustness of GLCS in real world applications.

5 Application and evaluation

The proposed solution is implemented into
PubAnnotation5, a storage system for corpora
and annotations. The system is developed to share
corpora and annotations developed by several an-
notation projects. The system maintains a col-
lection of texts taken from a number of sources,
e.g., PubMed6 and PubMed Central7, and supplies
them to the annotation projects. The annotations
produced by the annotation projects are collected
back toPubAnnotation for sharing.

As the annotation projects are conducted by dif-
ferent groups independently, when the resulted an-
notations are submitted to the storage system, the

5http://pubannotation.org
6http://www.ncbi.nlm.nih.gov/pubmed
7http://www.ncbi.nlm.nih.gov/pmc/

base texts often have been varied from the original,
due to, e.g., Unicode-ASCII conversion, tokeniza-
tion, or accidental insertion or deletion of charac-
ters. PubAnnotation handles all the mapping
and alignment by using the LCS and GLCS algo-
rithms. For performance, LCS is implemented us-
ing Hunt-Mcllroy algorithm, and GLCS is imple-
mented as presented in this paper. While using
LCS as default, GLCS is only invoked when suc-
cessive variations are detected. Because succes-
sive variations seldom occur, the cost for running
GLCS is negligible. Yet, securing a solution for
successive variations is important. When experi-
mented with 10 full papers with 54,938 words and
6,007 annotation instances, the text mapping and
annotation alignment took less than 10 seconds.

The accuracy of mapping and alignment is thor-
oughly verified using 10 full text papers with
58,360 words and 7,315 span annotations. Two
versions of dictionary for GLCS were prepared:
(A) one for all the standard set of Unicode charac-
ters8, and (B) another only for the Unicode charac-
ters for whitespace and punctuation symbols. The
system successfully aligned all the annotations
even with the smaller one, (B). It indicates that
when successive variations occur, in most cases,
whitespace or punctuation symbols are mixed in
it. At least it was the case in our application.

Another 10 full text papers with 54,369 words
and 5,729 annotations were used for further veri-
fication. While keeping using the dictionary (B),
the system is implemented to alert when a unsolv-
able case is detected. During the processing of the
10 papers, the alert was issued only once, which
was caused by the Unicode sequence,∆∆. When
the larger dictionary, (A), was used, the problem
was not observed. So, it is true that the more com-
plete the dictionary is, the higher the accuracy will
be. The empirical results also suggest that, to-
gether with the alerting system, the proposed so-
lution works reasonably well, even with minimal
size of dictionary.

6 Conclusions

The solution presented in this paper is freely avail-
able as a open source Ruby library and also as a
free service through thePubAnnotation stor-
age system. We expect it to contribute to reduce
the cost of community for interoperable use of cor-
pora and annotations.

8As implemented in the standardunicodelibrary.

1115

References

L. Bergroth, H. Hakonen, and T. Raita. 2000. A
survey of longest common subsequence algorithms.
In Proceedings of the Seventh International Sym-
posium on String Processing Information Retrieval
(SPIRE’00), SPIRE ’00, pages 39–, Washington,
DC, USA. IEEE Computer Society.

Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Ed-
ward M. Marcotte, Raymond J. Mooney, Arun K.
Ramani, and Yuk Wah Wong. 2004. Comparative
experiments on learning information extractors for
proteins and their interactions.Artificial Intelligence
in Medicine, 33(2):139–155.

David Campos, Srgio Matos, Ian Lewin, Jos Lus
Oliveira, and Dietrich Rebholz-Schuhmann. 2012.
Harmonization of gene/protein annotations: to-
wards a gold standard medline.Bioinformatics,
28(9):1253–1261.

K. Bretonnel Cohen, Philip V Ogren, Lynne Fox, and
Lawrence Hunter. 2005. Empirical data on cor-
pus design and usage in biomedical natural language
processing. InAMIA annual symposium proceed-
ings, pages 156–160.

Kristofer Franźen, Gunnar Eriksson, Fredrik Olsson,
Lars Asker, Per Lid́en, and Joakim C̈oster. 2002.
Protein names and how to find them.International
Journal of Medical Informatics, 67(13):49 – 61.

James W. Hunt and M. Douglas McIlroy. 1976. An
Algorithm for Differential File Comparison. Tech-
nical Report 41, Bell Laboratories Computing Sci-
ence, July.

Nancy Ide and Laurent Romary. 2004. International
standard for a linguistic annotation framework.Nat.
Lang. Eng., 10(3-4):211–225, September.

Helen Johnson, William Baumgartner, Martin
Krallinger, K Bretonnel Cohen, and Lawrence
Hunter. 2007. Corpus refactoring: a feasibility
study. Journal of Biomedical Discovery and
Collaboration, 2(1):4.

Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and
Jun’ichi Tsujii. 2003. GENIA corpus - a seman-
tically annotated corpus for bio-textmining.Bioin-
formatics, 19(suppl. 1):i180–i182.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview
of BioNLP’09 Shared Task on Event Extraction.
In Proceedings of Natural Language Processing
in Biomedicine (BioNLP) NAACL 2009 Workshop,
pages 1–9.

Dietrich Rebholz-Schuhmann, Antonio Yepes, Chen
Li, Senay Kafkas, Ian Lewin, Ning Kang, Pe-
ter Corbett, David Milward, Ekaterina Buyko,
Elena Beisswanger, Kerstin Hornbostel, Alexandre
Kouznetsov, Rene Witte, Jonas Laurila, Christo-
pher Baker, Cheng-Ju Kuo, Simone Clematide,

Fabio Rinaldi, Richard Farkas, Gyorgy Mora, Kazuo
Hara, Laura I Furlong, Michael Rautschka, Mari-
ana Neves, Alberto Pascual-Montano, Qi Wei, Nigel
Collier, Md Chowdhury, Alberto Lavelli, Rafael
Berlanga, Roser Morante, Vincent Van Asch, Wal-
ter Daelemans, Jose Marina, Erik van Mulligen, Jan
Kors, and Udo Hahn. 2011. Assessment of ner
solutions against the first and second calbc silver
standard corpus.Journal of Biomedical Semantics,
2(Suppl 5):S11.

Yue Wang, Jin-Dong Kim, Rune Sætre, Sampo
Pyysalo, Tomoko Ohta, and Jun’ichi Tsujii. 2010.
Improving the inter-corpora compatibility for pro-
tein annotations. Journal of Bioinformatics and
Computational Biology, 8(5):901–916.

1116

