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Abstract

Deciding whether a word serves a dis-
course function in context is a prerequi-
site for discourse processing, and the per-
formance of this subtask bounds perfor-
mance on subsequent tasks. Pitler and
Nenkova (2009) report 96.29% accuracy
(F1 94.19%) relying on features extracted
from gold-standard parse trees. This fig-
ure is an average over several connectives,
some of which are extremely hard to clas-
sify. More importantly, performance drops
considerably in the absence of an ora-
cle providing gold-standard features. We
show that a very simple model using only
lexical and predicted part-of-speech fea-
tures actually performs slightly better than
Pitler and Nenkova (2009) and not sig-
nificantly different from a state-of-the-art
model, which combines lexical, part-of-
speech, and parse features.

1 Introduction

Discourse relations structure text by linking seg-
ments together in functional relationships. For in-
stance, someone might say ”Saber-toothed tigers
are harmless because they’re extinct”, making the
second part of the sentence serve as an explana-
tion for the first part. In the example the discourse
connective because functions as a lexical anchor
for the discourse relation. Whenever an anchor is
present we say that the discourse connective is ex-
plicit.

Complicating the matter, phrases used as dis-
course connectives sometimes appear in a non-
discourse function. For instance, ”and” may be
either a simple conjunction, as in ”sugar and salt”,
or a discourse relation suggesting a temporal re-
lationship between events, for instance ”he struck
the match and went away”. The Penn Discourse
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Figure 1: A picture of the problem. 10% of con-
nectives account for roughly 75% of occurrences

Treebank (PDTB) (Prasad et al., 2008) distinguish
100 types of explicit connectives—a subset of
these are listed in Table 2. The type of relation-
ship is selected from a hierachial structure where
the four top-level categories are Comparison, Con-
tingency, Temporal, and Expansion.

Discourse relations are important for many ap-
plications and, since the PDTB was released,
much effort has gone into developing tools for
recreating the annotations of the resource automat-
ically. Recently two ambitious end-to-end parsers
have appeared which transform plain text to full
PDTB-style annotations (Lin et al., 2010; Ghosh,
2012). Both systems share a pipelined architecture
in which the output of one component becomes the
input to the next. A crucial first step in their pro-
cessing is correctly identifying explicit discourse
connectives; when unsuccessful subsequent steps
fail.

An accuracy in the high ninetees seems to sug-
gest that the problem is almost solved. For the task
of discourse connective disambiguation this unfor-
tunately does not hold true, because, as we argue
here, the task benefits from being seen and eval-
uated as a number of smaller tasks, one for each
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connective type. Figure 1 shows why: the distribu-
tion of connectives follows a power law such that
the majority of occurrences comes from relatively
few but highly frequent connective types. If we
do not take into account the uneven sizes of the
categories, our performance figure ends up saying
very little about how well we are doing on most of
the connectives, because it is being dominated by
the performance on a few high-frequency items.

In this paper we look in more detail on the eval-
uation of the discourse connective disambiguation
task, in particular how two commonly used feature
models perform on individual discourse connec-
tives. The models are Pitler and Nenkova (2009)
(P&N), and its extension by Lin et al. (2010) (Lin).
Motivated by our findings we advocate the use
of macro-averaging as a necessary supplement to
micro-averaging. Additionally, we perform our
experiments in a more realistic setting where acc-
cess to oracle gold-standard annotations is not as-
sumed. The observed performance drop from or-
acle to predicted parses leads us to propose a new
model, which approximates the syntactical infor-
mation of the parse trees with part-of-speech tags.
Although these features are less powerful in the-
ory, the model has comparable macro-average per-
formance in realistic evaluation.

The rest of the paper is structured as follows.
In the next section we give reasons why low-
frequency connectives should not be overlooked.
Section 3 describes our experiments, and Section 4
reports on the results. The discussion is in Section
5, followed by a review of related work in Section
6. Section 7 concludes the paper.

2 The importance of the long tail

Are there any compelling reasons to pay attention
to the lower-frequency connectives when high-
frequency connectives overwhelmingly dominate?
As noted in the caption to Figure 1, the top 10 ac-
count for above 75% of the occurrences and top 20
for above 90%. So why should we care?

It turns out that the low-frequency connectives
are quite evenly distributed among texts. In the
Wall Street Journal part of the Penn Treebank,
70% of articles that contain explicit markers con-
tain at least one marker not in the top 10. Not
counting very short texts (having only two or
fewer explicit connectives of any type), the num-
ber rises to 87%. While low performance on less
frequent connectives does not hurt a token-level

macro-average much, it still means that you are
likely to introduce errors in something like 70%
of all WSJ articles. These errors percolate leading
to erroneous text-level discourse processing.

In Webber and Joshi (2012) the prime example
of a discourse application is automatic text simpli-
fication. Here, ignoring the long tail of discourse
connectives would be out of the question, because
it is precisely those less familiar expressions —
which people encounter rarely and have weaker
intuitions about — that would benefit the most
from a rewrite. Two other examples, also cited
in Webber and Joshi (2012), are automatic assess-
ment of student essays (Burstein and Chodorow,
2010), and summarization (Thione et al., 2004).
In student essays we encourage clear argumenta-
tive structure and rich vocabulary; failing to recog-
nize that in an automatic system would not qual-
ify as fair evaluation. And summarization is of-
ten performed over news wire, which, as shown in
the PDTB, has a high per-article incidence of con-
nectives not in top 10. Additionally, some low-
frequency connectives like ”ultimately” and ”in
particular” are strong cues for text selection.

Another reason to suspect that low-frequency
connectives are important comes from an obser-
vation about the distribution of connectives in
biomedical text. Ramesh and Yu (2010) report
an overlap of only 44% between the connectives
found in the The Biomedical Discourse Relation
Bank (Prasad et al., 2011), a 24 article subset of
the GENIA corpus (Kim et al., 2003), and the
PDTB. The intersection contains high-frequency
connectives, such as ”and”, ”however,” ”also,”
and ”so”. Connectives specific to the biomedi-
cal domain include ”followed by,” ”due to,” and
”in order to”, and the authors speculate that the
unique connectives encode important domain spe-
cific knowledge.

3 Experiments

Our experiments are designed to shed light on
three aspects of discourse connective disambigua-
tion: 1) error distribution wrt. connective type;
uneven performance builds a strong case for aver-
aging over connective types instead of averaging
over data points; 2) performance loss in the ab-
sence of an oracle; and 3) performance of simple
model based on cheaper and more reliable annota-
tions.

We experiment with three different feature sets,
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all of which model syntactical aspects of the dis-
course connective.

The P&N and Lin feature sets are chosen to rep-
resent state-of-the-art. The high accuracy of P&N
at 96.29% is frequently cited as an encouraging re-
sult, see Huang and Chen (2011; Alsaif and Mark-
ert (2011; Tonelli and Cabrio (2012; Zhou et al.
(2010). Besides discourse parsing P&N has been
used for tasks as diverse as measuring text co-
herence (Lin et al., 2011) and improving machine
translation (Meyer and Popescu-Belis, 2012). The
POS+LEX feature set is proposed as an alternative
model. The baseline always predicts the majority
class.

P&N This feature set derives from parse trees
and replicates the features of Pitler and Nenkova
(2009). Starting from the potential discourse con-
nective, the features include the highest category
in the tree subsuming only the connective called
the self-category, the parent of that category, the
left sibling of the self-category, and the right sib-
ling of the self-category. A feature fires when the
right sibling contains a VP, and another if there
is a trace node below the right sibling. Note that
the trace feature will never fire outside of the gold
parse setting since state-of-the-art parsers do not
predict trace nodes.

Importantly, there is a feature for the identity
of the connective and interaction features between
the connective and the syntactical features in ef-
fect allowing the model to fit parameters specific
to each connective. Furthermore, combinations of
the syntactical features are allowed, but they can-
not be connective-specific.

Lin The feature set augments P&N with part-of-
speech and string features for the tokens adjacent
to the connective, as well as the part-of-speech of
the connective itself. The part-of-speech features
for the adjacent tokens interact with the part-of-
speech of the connective, and the string features
interact with the indicator feature for the connec-
tive. It also adds a syntax feature: the path to the
root of the parse tree.

POS+LEX The simple feature set builds on
part-of-speech tags and tokens. Part-of-speech
tags are captured using a window of two tokens
around the marker, and the lexical features are the
same as Lin. Like P&N there is a feature for the
identity of the connective as well as interaction

Model Micro Macro

Oracle Pred. Oracle Pred.

Baseline 72.7 72.7 53.9 53.9
P&N 93.0 90.7 85.3 80.7
Lin 95.2 92.9 86.7 83.6
POS+LEX 89.7 89.7 82.5 83.5

Table 1: Comparing F1 score on oracle and pre-
dicted features using macro and micro averag-
ing. A Wilcoxon signed rank test shows that the
macro-averaged difference between POS+LEX
and Lin10 using predicted features is not signfi-
cant at p < 0.01.

features between the identity feature and other fea-
tures.

In keeping with Pitler and Nenkova (2009) our
learner is a maximum entropy classifier trained
on sections 2-22 of the WSJ using ten-fold cross-
validation.

3.1 Parsing Wall Street Journal
To obtain a version of the WSJ corpus containing
fully predicted parses we use the Stanford Parser1

training a separate model for each section. To
parse a specific section we train on everything but
that section (e.g. for parsing section 5 the train-
ing set is section 0-4 and 6-24). Average F1 on all
sections is 85.87%. Although the very best state-
of-the-art parsers2 report F1 of above 90%, our
parsing score greatly exceeds typical performance
on real-life data, which is almost always out-of-
domain with respect to 1980s WSJ. Thus this set-
ting still compares favourably to performance in
the wild.

4 Results

A summary of the results is found in Table 1. For
a subset of frequent and less frequent connectives,
Table 2 lists individual F1 scores. In all of the
feature sets we see a marked drop moving from
micro-average (average over instances) to macro-
average (average over connective types)—P&N,
for instance, goes from 93.0% to 85.3%. This
shows that the scores of less frequent connectives
are somewhat lower than frequent ones. When

1http://nlp.stanford.edu/software/
lex-parser.shtml, 2012-11-12 release with the
’goodPCFG’ standard settings

2http://aclweb.org/aclwiki/index.php\
?title=Parsing_(State_of_the_art)
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Oracle Pred. Disc.

Lin P+L Lin P+L

but 98.6 96.1 97.6 96.1 78.9
and 94.9 77.0 89.0 77.0 14.7
also 97.0 97.3 97.5 97.2 93.5
if 93.4 93.1 92.3 93.0 82.6
when 89.9 88.5 89.3 88.4 65.5
because 99.5 99.4 99.4 99.5 63.4
while 97.6 97.7 97.5 97.4 91.9
as 89.8 63.1 78.1 63.0 13.0
after 93.7 74.0 87.9 72.9 42.4
however 98.7 98.4 98.5 98.4 95.7
· · ·
ultimately 43.2 30.3 36.4 29.4 37.5
rather 84.8 83.9 80.0 83.9 8.2
in other words 97.1 94.4 91.4 94.4 89.5
as if 84.8 84.8 71.0 88.2 66.7
earlier 76.9 66.7 74.1 69.6 2.1
meantime 80.0 76.5 82.4 80.0 71.4
in particular 89.7 85.7 85.7 80.0 48.4
in contrast 100.0 100.0 100.0 100.0 50.0
thereby 95.7 95.7 100.0 95.7 100.0
· · ·

Table 2: F1 score per connective. The table is
sorted by the number of actual discourse connec-
tives in the PDTB. After the break the table con-
tinues from position 50. The last column gives the
percentage of discourse connectives.

features are derived from predicted parses perfor-
mance also fall, from 93.0% to 90.7% with micro-
average, and even more dramatically with macro-
average, where it goes from 85.3% to 80.8%.
Given that we are interested in real life perfor-
mance this last figure is the most interesting.

5 Discussion

In NLP applications we cannot assume the exis-
tence of oracles providing us with gold-standard
features. Often switching to predicted features
introduces greater uncertainty. If the parser of-
ten confuses two non-terminals that are important
for connective disambiguation we loose predictive
power. Thus, on the P&N model, the average con-
ditional entropy per feature given the class (how
surprising the feature is when we know the an-
swer) increases by 8.8% when the oracle is un-
available. In contrast there is almost no difference
between the conditional entropy of the POS model
with oracle features and without, indicating that
the errors made by the tagger are not confusing in
the disambiguation task.

Predicted parse features are associated with un-
certainty even when used in combination with
words and part of speech. Comparing the number

of times the Lin model changes an incorrect pre-
diction of POS+LEX to a correct one and the num-
ber of times it introduces a new error by changing
a correct prediction to an incorrect one, we ob-
serve that corrections almost always come with a
substantial number of new errors. In fact, 58 con-
nectives have at least as many new errors as cor-
rections.

Predicted parse features also contribute to fea-
ture sparsity, because of the greater variability of
automatic parses. On the other hand, they are more
expressive than part of speech, and in the example
below, where only Lin correctly identifies ’and’ as
a discourse connective, part of speech simply does
not contain enough information.

“A whole day goes by and no one even knows
they’re alive.

6 Related work

Atterer and Schütze (2007) present similar exper-
iments for prepositional phrase attachment show-
ing that approaches assuming gold-standard fea-
tures suffer a great deal when they are evaluated
on predicted features. Spitkovsky et al. (2011) also
caution against the use of gold-standard features,
arguing that for unsupervised dependency parsing
using induced parts of speech is superior to relying
on gold-standard part-of-speech tags.

This work also relates to Manning (2011) who
point out that even though part-of-speech tagging
accuracy is above 97% the remaining errors are
not randomly distributed but in fact occur in just
the cases we care most about.

7 Conclusion

Discourse connective disambiguation is an impor-
tant subtask of discourse parsing. We show that
when realistic evaluation is adopted — averag-
ing over connective types and not relying on ora-
cle features — performance drops markedly. This
suggests that more work on the task is needed.
Moreover, we show that in realistic evaluation
a simple feature model using part-of-speech tags
and words performs just as well as a much more
complex state-of-the-art model.
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