
International Joint Conference on Natural Language Processing, pages 747–752,
Nagoya, Japan, 14-18 October 2013.

Detecting Bot-Answerable Questions in Ubuntu Chat

David C. Uthus
NRC/NRL Postdoctoral Fellow

Washington, DC 20375
duthus@google.com

David W. Aha
Navy Center for Applied Research in AI
Naval Research Laboratory (Code 5514)

Washington, DC 20375
david.aha@nrl.navy.mil

Abstract

Ubuntu’s Internet Relay Chat technical
support channel has bots that output
specific messages in response to com-
mand words from other channel users.
These messages can be used to answer
frequently-asked questions instead of re-
quiring an expert to (repeatedly) type a
lengthy reply. We describe an approach to
automatically distinguish bot-answerable
questions, which would mitigate this prob-
lem. To the best of our knowledge, this is
the first work on investigating question an-
swering in a multiparticipant chat domain.
Our results indicate that for some types of
questions, supervised learning algorithms
perform well on this task and, in addition,
that character n-grams are a better repre-
sentation than traditional bag-of-words for
this task and domain.

1 Introduction

Ubuntu (a Linux-based operating system) main-
tains multiple Internet Relay Chat (IRC) chan-
nels for technical support. Some of these chan-
nels contain bots, which are automated agents
pre-programmed to perform certain tasks. One
of the bots can output pre-written messages,
called factoids, in response to command words.
For example, if a user types “!flash”, then
the bot would output “To install Flash see
https://help.ubuntu....mats/Flash - See also !Re-
stricted and !Gnash”. These factoids are used to
answer common questions, enforce channel guide-
lines, direct non-English speakers (in their na-
tive tongue) to Ubuntu’s foreign language support
channels, and query Ubuntu’s repository of pack-
ages. While useful, this bot must be manually
invoked. Automating the bot to self-detect and
answer questions that it can answer could reduce

the workload for knowledgeable experts trying to
help other users. This is applicable to not only
Ubuntu’s technical support channels, but to other
IRC channels providing technical support (e.g.,
Debian’s support channels) and to channels that
use similar bots (e.g., Eggdrop and Infobot) for
other purposes.

We describe initial steps on a self-invoking bot.
We begin by investigating the multi-classification
task of which questions are bot-answerable ques-
tions (BAQ) and which are human-answerable
questions (HAQ), which requires a human to an-
swer due to the question’s complexity. We imple-
mented a baseline non-learning approach and su-
pervised support vector machines (SVM) and k-
nearest neighbor (k-NN) algorithms. Our results
show that a bot can answer with confidence some
types of questions, especially those directing users
to more appropriate channels for help on certain
topics.

Our contributions are as follows:

• Problem: We identified a real-world problem
that has not been investigated, despite bots
having been around for years on IRC chan-
nels.

• Data: We created an annotated multipartici-
pant chat corpus that is publicly available.

• Empirical study: We report on our investi-
gation of applying supervised learning algo-
rithms and leveraging different feature rep-
resentations, whose results will be used as a
foundation for a larger case-based reasoning
approach.

• Discussion: We describe how some types
of automatically-answerable questions can be
easy or difficult to classify.

747

2 Related Work

Chat is a difficult medium to analyze: its charac-
teristics make it difficult to apply traditional nat-
ural language processing techniques. It has un-
common features such as frequent use of abbrevia-
tions, acronyms, missing subject pronouns, emoti-
cons, abbreviated nicknames, words stripped of
vowels to reduce number of keystrokes, and entan-
gled conversation threads (Uthus and Aha, 2013a).

In the multiparticipant chat domain, there has
been some work in creating a bot that can answer
questions with Cobot (Isbell et al., 2006). This bot
was limited in capability – it could only respond
to questions directed at it. Another recent work
resulted in a bot which could respond to utter-
ances through word matching and used templates
for output (Shaikh et al., 2010).

Also related in this domain are a few military
research efforts that have focused on classifying
chat messages. One examined profile-driven in-
formation extraction from chat using regular ex-
pressions and entity classes (Berube et al., 2007).
Another examined identifying uncertainty and ur-
gency within a chat message using rule-based ap-
proaches and statistical analysis (Budlong et al.,
2009). A third, whose work is most similar to ours,
compared several supervised algorithms for classi-
fying chat utterances (Dela Rosa and Ellen, 2009).
Using an artificial chat log, they classified mes-
sages as either non-important filler messages or as
messages containing Navy ship updates. Their re-
sults showed k-NN and SVM performed best for
this task. Our task differs from these previous
investigations in that we are applying supervised
learning algorithms to a multi-labeled corpus com-
posed of real chat messages.

This problem is also related to the larger field
of question answering, such as pertaining to dis-
cussion boards (Hong and Davison, 2009; Kim et
al., 2007), frequently asked question files (Burke
et al., 1997), and community-based question an-
swering (Zhou et al., 2012). An important differ-
ence between this body of related work and what
we are investigating is the medium. Multipartici-
pant chat is more difficult to work with compared
to other mediums due to entangled conversation
threads – a researcher cannot easily automatically
analyze the messages of a single conversation. In
prior work, researchers could usually isolate indi-
vidual conversations automatically, making it pos-
sible to identify (to some extent) the question and

0

4

8

12

16

Apr Jul Oct

M
es

sa
ge

s
(i

n
10

00
s)

2

4

6

06:00 12:00 18:00

A
vg

M
es

sa
ge

s

Figure 1: The volume of messages in the IRC
channel #ubuntu during 2011.

the answer. Another important difference is the
temporal scale – chat is in real-time, and a chat
user expects to receive an answer quickly. A chat
user can only see messages while they are logged
in (in the case where there is no archive being
stored offline). Both of these differences results
in new challenges not seen in other mediums for
question answering.

3 Ubuntu’s IRC Channels

The IRC channel #ubuntu is Ubuntu’s primary
technical support channel. It provides support
for those who have problems using Ubuntu; it
is not used for socializing or for receiving help
with other Linux distributions (e.g., Debian, Linux
Mint, Fedora) or software.

The channel’s traffic level varies throughout the
year and day (see Figure 1). During the year, it
experiences heavy traffic during Ubuntu’s semian-
nual new releases in April and October and gen-
erally experiences heavy traffic during the North
American and European evening hours. Heavy
traffic creates difficulties for users trying to get an-
swers to their questions.
ubottu1 is the bot that can access 1234 fac-

toids, corresponding to 2324 commands (some
factoids are mapped to multiple commands). It
can also provide information about any software
package found in Ubuntu’s software repository.
A channel user (oftentimes an expert) can task
ubottu to answer another user’s question (see

1http://ubottu.com/

748

[13:19] <p5yx> is the netbook
remix not available anymore?
[13:20] <histo> !unr | p5yx
[13:20] <ubottu> p5yx: Starting
with Ubuntu 11.04, the Ubuntu
Netbook Edition is no longer
being offered as a separate
install as Unity is now standard
for all Ubuntu desktop installs.

Figure 2: Example of ubottu being invoked with
a command word (in this case “!unr”) to answer a
question.

Figure 2). Automating ubottu would allow ex-
perts to focus their valuable time on responding to
more challenging requests.

4 Corpus

We created an annotated corpus by pulling ques-
tions from the Ubuntu Chat Corpus, specifically
from the #ubuntu channel logs (Uthus and Aha,
2013b). This corpus has 4577 messages, including
2002 HAQs and 2575 BAQs from 68 factoid cate-
gories. These messages were taken from chat logs
from 28 April 2011 (the day Ubuntu 11.04 was re-
leased) to 13 October 2011 (the day before Ubuntu
11.10 was released).

We looked for messages in which a question is
answered with a factoid, or a question required
a human to answer. To judge between these two
types, we relied on the expertise of users and how
they answered the questions. To reduce noise, we
limited HAQs to conversations in which the first
reply came from a user who invoked ubottu fre-
quently (i.e., experts). These ubottu invokers
are considered a better judge of what is a BAQ
or HAQ compared to someone who rarely invokes
ubottu to answer questions. For the BAQs, we
restricted questions to those with at least ten ex-
amples mapped to a factoid. Figure 3 shows the
distribution of BAQs to factoids in our corpus.

Some of the corpus’ messages are not in En-
glish. In such cases, users will be directed to
one of Ubuntu’s foreign-language support chan-
nels (though a user can re-ask their question in
English). Some languages present in the corpus
include Spanish, French, Chinese, Russian, Ger-
man, Polish, and Portuguese. Additionally, some
of these messages are written with non-Latin char-
acters, such as Chinese and Russian.

0
50

100
150
200

In
vo

ca
tio

ns

Factoid

Figure 3: Distribution of the sixty-eight factoid in-
vocations in our corpus.

5 Approach

We are using k-NN and SVM algorithms for
classifying messages. This builds on results by
Dela Rosa and Ellen (2009), who had found these
two supervised learning algorithms to work best
on chat messages. Implementation of these algo-
rithms were obtained from Scikit-learn (Pedregosa
et al., 2011).

For preprocessing, text was normalized by low-
ering the case for each term.

We examined different representations for en-
coding the questions. These include bag-of-words,
bigrams, and character n-grams. With the charac-
ter n-grams, we examined n-grams which overlap
words and n-grams which are restricted to within
word boundaries. We used tf − idf to weigh the
features and χ2 for feature selection.

6 Empirical Study

We have two hypothesis we are testing:
H1: Supervised learning algorithms will out-

perform a non-learning baseline approach for clas-
sifying BAQs.

H2: Using character n-grams for this domain
will allow for better precision and recall when
compared to more traditional representations of
bag-of-words and bigrams.

Our intuition for H2 is that we believe that
character n-grams will allow for better represen-
tation of misspelled words commonly seen in chat
messages when compared to bag-of-words and bi-
grams.

6.1 Baseline
Our non-learning baseline algorithm maps ques-
tions to factoids by checking if the question con-
tains the factoid command as a word token. As a
reminder, multiple factoids can map to the same
response. If a question contains multiple factoids,
then the most frequently invoked factoid is applied
(ties are broken by alphabetical ordering). If a

749

Representation χ2 Feature Size Precision Recall F0.5 Score

Non-learning baseline

– – 0.44 0.24 0.37

SVM

Character 3-grams, WB 4000 0.67 0.42 0.60
Character 3-grams 3200 0.67 0.38 0.59
Character 4-grams, WB 3600 0.63 0.40 0.57
Bag-of-words 1600 0.62 0.40 0.56
Character 4-grams 4000 0.58 0.35 0.51
Bigrams 1200 0.51 0.20 0.39

k−NN

Character 4-grams, WB 800 0.55 0.34 0.49
Character 3-grams, WB 800 0.55 0.32 0.48
Character 4-grams 1200 0.57 0.30 0.48
Character 3-grams 800 0.54 0.41 0.47
Bag-of-words 400 0.54 0.31 0.47
Bigrams 400 0.44 0.15 0.32

Table 1: Results for the baseline, SVM and k-NN algorithms. WB means the character n-grams were
bounded within word boundaries.

question contains no factoids, then it is considered
a HAQ.

6.2 Metrics

We used a 10-fold cross evaluation protocol and
precision, recall, and the F0.5 score as our evalu-
ation metrics. For this work, we consider preci-
sion to be more important than recall because a
bot that frequently answers questions incorrectly
could anger chat users and cause them to ignore
the bots. Therefore, F0.5 is more appropriate here
than the standard F score because it places more
emphasis on precision. Additionally, as these are
multi-classification problems, we used the macro
version of these metrics to average over the differ-
ent labels.

When calculating precision, recall, and F0.5, we
omit the HAQ scores when calculating the macro
scores for this multi-classification problem. We
also omitted any questions that are incorrectly la-
beled as HAQ for calculating precision and recall
scores because a HAQ can be answered by a hu-
man expert. Essentially, we do not penalize for
erring on the side of caution.

6.3 Results

Table 1 summarizes the results of the application
of our baseline and learning algorithms. We ap-

plied all variations of the two learning algorithms,
testing on all combinations of representations and
χ2 feature size limits. For the feature size lim-
its, we tried values between [400:4000] in steps of
400. The results display the best configuration for
each representation.

As shown, the learning algorithms outper-
formed the baseline for all three metrics, support-
ing hypothesis H1. This shows that some ques-
tions cannot be easily distinguished by simply
looking for factoid commands within the ques-
tions.

In regards to the second hypothesis, both learn-
ing algorithms performed best when using char-
acter n-grams, especially when restricted by word
boundaries, thus supporting H2. We believe this
is due to the character n-grams being able to bet-
ter handle noisy nature of chat, especially with the
misspellings and abbreviations.

We next examine what type of questions do
these learning algorithms perform well on, espe-
cially when compared to our baseline. For this,
we focus on the results of applying SVMs. Figure
4 compares the difference of F0.5 scores between
SVM and the baseline. For most factoids, SVMs
performed better or had similar performance to
the baseline. The small number of factoids it
performed worse on were generally factoids both

750

-0.5
-0.25

0
0.25

0.5
0.75

1
D

iff
er

en
ce

Factoid

Figure 4: Comparison of F0.5 scores between
SVM and baseline.

SVM and the baseline performed poorly, finding
low F0.5 scores.

Figure 5 shows the F0.5 scores achieved by
SVM for each individual factoid category. These
are ordered by their distribution in the corpus (see
Figure 3). One fact shown by this figure is that
there is not a strong correlation between the distri-
bution size and the result achieved by the SVM.
While having more examples within a category
does help, there are plenty of factoids where SVM
performed poorly. This shows that it is the dif-
ficulty of the questions themselves, and not the
amount of examples, which causes difficulty for
the SVMs, let alone learning algorithms for this
domain.

One set of questions SVMs performs well on
are questions where users are subsequently di-
rected to another channel. This includes Ubuntu’s
non-English channels and channels that provide
support for other Linux distributions. SVMs did
well on all the non-English factoids, with F0.5

scores ranging between 0.88 (for Chinese) and
0.99 (for Russian). This is probably due to these
questions having uncommon features, such as
non-English words or software that is not sup-
posed to be discussed in #ubuntu.

One similar pair of questions, which are ad-
dressed by two factoids, caused some confusion
for the learners – asking for permission to ask a
question (e.g., “Can I ask a question?”) or asking
if anyone can help without stating their problem
(e.g., “Can anyone help me?”). This commonly
happens with first time visitors to the channel, as
they do not know the channel guidelines and will
then ask for permission to ask a question or if
someone could help them. The channel operators
try to encourage users to just ask their question
– this happens frequently enough that there are
two factoids (labels ask and anyone in the corpus)

0

0.25

0.5

0.75

1

F 0
.5

Factoid

Figure 5: F0.5 scores for each factoid when apply-
ing SVM, ordered by distribution.

to answer these similar questions. Unfortunately,
there is a lack of consistency in invoking these two
factoids, and as such the learning algorithms we
tested had difficulty with these questions.

Some other types of questions that SVMs strug-
gle with are those that cover a wide-range of pos-
sible questions. For example, #ubuntu can be used
either in cases to explain what the channel topic is
(for those asking), or to get users on topic (with
the possible off-topic message types being wide-
ranging); details, which can be used whenever
someone asks a question or for help without pro-
viding enough details for anyone to begin to help;
and wine to help users with problems running any
type of Windows program under Linux. These
types of questions may require a human to aid in
answering, as it would be difficult to learn all pos-
sible types of questions that are covered by these
factoids.

7 Conclusions

We have investigated applying supervised learning
algorithms to classify questions as HAQ or BAQ,
and our results show that these algorithms can out-
perform a non-learning baseline approach. We
also show that character n-grams are a better rep-
resentation than traditional bag-of-words for our
task. More importantly, the learning algorithms
can answer some types of questions well, indicat-
ing that a self-invoking bot can be created that can
answer common questions with confidence.

Future work to extend this is to apply unsuper-
vised methods for finding additional questions to
match with the factoids. This would greatly extend
what we have presented, as we were restricted to
the manually-labeled messages to match questions
with answers. We plan on applying a case-based
reasoning framework (Richter and Weber, 2013)
to achieve such a goal.

751

A final area to investigate is an extension of
ubottu that can learn to update its knowledge.
Currently, only a few users are allowed to edit or
add new factoids to ubottu. It would be advanta-
geous if it could add new commands and factoids
itself by summarizing common answers, or update
outdated factoids should it see a common pattern
of answers conflicting with its knowledge.

Acknowledgments

Thanks to NRL for funding this research. David
Uthus performed this work while an NRC post-
doctoral fellow located at the Naval Research Lab-
oratory. The views and opinions contained in this
paper are those of the authors and should not be in-
terpreted as representing the official views or poli-
cies, either expressed or implied, of NRL or the
DoD.

References
Christopher D. Berube, Janet M. Hitzeman, Roderick J.

Holland, Robert L. Anapol, and Stephen R. Moore.
2007. Supporting chat exploitation in DoD enter-
prises. In Proceedings of the International Com-
mand and Control Research and Technology Sym-
posium. CCRP.

Emily R. Budlong, Sharon M. Walter, and Ozgur Yil-
mazel. 2009. Recognizing connotative meaning in
military chat communications. In Proceedings of
Evolutionary and Bio-Inspired Computation: The-
ory and Applications III. SPIE.

Robin D. Burke, Kristian J. Hammond, Vladimir Ku-
lyukin, Steven L. Lytinen, Noriko Tomuro, and Scott
Schoenberg. 1997. Question answering from fre-
quently asked question files: Experiences with the
FAQ FINDER system. AI Magazine, 18(2).

Kevin Dela Rosa and Jeffrey Ellen. 2009. Text clas-
sification methodologies applied to micro-text in
military chat. In Proceedings of the International
Conference on Machine Learning and Applications,
pages 710–714. IEEE Computer Society.

Liangjie Hong and Brian D. Davison. 2009. A
classification-based approach to question answering
in discussion boards. In Proceedings of the 32nd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
171–178. ACM.

Charles Lee Isbell, Michael Kearns, Satinder Singh,
Christian R. Shelton, Peter Stone, and Dave Kor-
mann. 2006. Cobot in LambdaMOO: An adap-
tive social statistics agent. Autonomous Agents and
Multi-Agent Systems, 13(3):327–354.

Jihie Kim, Erin Shaw, Grace Chern, and Donghui Feng.
2007. An intelligent discussion-bot for guiding stu-
dent interactions in threaded discussions. In Pro-
ceedings of the AAAI Spring Symposium on Interac-
tion Challenges for Intelligent Assistants. AAAI.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Michael M. Richter and Rosina O. Weber. 2013. Case-
Based Reasoning: A Textbook. Springer Berlin.

Samira Shaikh, Tomek Strzalkowski, Aaron Broad-
well, Jennifer Stromer-Galley, Sarah Taylor, and
Nick Webb. 2010. MPC: A multi-party chat cor-
pus for modeling social phenomena in discourse. In
Proceedings of the Seventh conference on Interna-
tional Language Resources and Evaluation, pages
2007–2013. European Language Resources Associ-
ation.

David C. Uthus and David W. Aha. 2013a. Multipar-
ticipant chat analysis: A survey. Artificial Intelli-
gence, 199-200:106–121.

David C. Uthus and David W. Aha. 2013b. The
Ubuntu Chat Corpus for multiparticipant chat anal-
ysis. In Proceedings of the AAAI Spring Symposium
on Analyzing Microtext, pages 99–102. AAAI.

Tom Chao Zhou, Michael R. Lyu, and Irwin King.
2012. A classification-based approach to question
routing in community question answering. In Pro-
ceedings of the 21st International Conference Com-
panion on World Wide Web, pages 783–790. ACM.

752

