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Abstract

The problem of text summarization for
a collection of documents is defined as
the problem of selecting a small subset of
sentences so that the contents and mean-
ing of the original document set are pre-
served in the best possible way. In this
paper we present a linear model for the
problem of text summarization1, where a
summary preserves the information cover-
age as much as possible in comparison to
the original document set. We reduce the
problem of finding the best summary to
the problem of finding the point on a con-
vex polytope closest to the given hyper-
plane, and solve it efficiently with the help
of fractional (polynomial-time) linear pro-
gramming. The experimental results show
the superiority of our approach over most
of the systems participating in the generic
multi-document summarization task (Mul-
tiLing) of the TAC 2011 competition.

1 Introduction

Automated text summarization is an active field
of research in various communities like Informa-
tion Retrieval (IR), Natural Language Processing
(NLP), and Text Mining (TM).

Some authors reduce summarization to the
maximum coverage problem (Takamura and Oku-
mura, 2009; Gillick and Favre, 2009) that, de-
spite a great performance, is known as NP-
hard (Khuller et al., 1999). Linear Program-
ming helps to find an accurate approximated so-
lution to this problem and became very popular
in summarization field in the last years (Gillick
and Favre, 2009; Woodsend and Lapata, 2010; Hi-
toshi Nishikawa and Kikui, 2010; Makino et al.,

1This work was partially funded by U.S. Department of
Navy, Office of Naval Research.

2011). However, most mentioned works use ex-
ponential number of constrains or Integer Linear
Programming which is an NP-hard problem.

Trying to solve a trade-off between summary
quality and time complexity, we propose a novel
summarization model solving the approximated
maximum coverage problem by linear program-
ming in polynomial time. We measure informa-
tion coverage by terms2 and strive to obtain a sum-
mary that preserves the optimal value of the cho-
sen objective function as much as possible in com-
parison to the original document. Various objec-
tive functions combining different parameters like
term’s position and its frequency are introduced
and evaluated.

Our method ranks and extracts significant sen-
tences into a summary and it can be generalized
for both single-document and multi-document
summarization. Also, it can be easily adapted to
cross-lingual/multilingual summarization.

Formally speaking, in this paper we introduce
(1) a novel text representation model expanding a
classic Vector Space Model (Salton et al., 1975)
to Hyperplane and Half-spaces, (2) re-formulated
extractive summarization problem as an optimiza-
tion task and (3) its solution using linear or
quadratic programming. The main challenge of
this paper is a new text representation model mak-
ing possible to represent an exponential number
of extracts without computing them explicitly, and
finding the optimal one by simple minimizing a
distance function in polynomial time.

2 Our Method

2.1 Definitions

We are given a set of sentences S1, ...,Sn derived
from a document or a cluster of related documents.
Meaningful words in these sentences are entirely
described by terms T1, ...,Tm. Our goal is to find a

2normalized meaningful words
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subset Si1 , ...,Sik consisting of sentences such that
(1) there are at most N terms in these sentences,
(2) term frequency is preserved as much as possi-
ble w.r.t. the original sentence set, (3) redundant
information among k selected sentences is mini-
mized.

We use the standard sentence-term matrix, A =
(ai j) of size m× n, for initial data representation,
where ai j = k if term Ti appears in the sentence
S j precisely k times. Here, columns of A de-
scribe sentences and rows describe terms. Since
we are not interested in redundant sentences, in the
case of multi-document summarization, we can
initially select meaningful sentences by clustering
all the columns as vectors in Rn and choose a sin-
gle representative from each cluster. In this case
columns of A describe representatives of sentence
clusters. The total number of words (term appear-
ances) in the document, denoted by S, can be com-
puted from the matrix A as

S = ∑
i

∑
j

ai j (1)

Example 1. Given the following text of n = 3 sen-
tences and m = 5 (normalized) terms:

S1 = A fat cat is a cat that eats fat meat.
S2 = My cat eats fish but he is a fat cat.
S3 = All fat cats eat fish and meat.

Matrix A corresponding to the text above has
the following shape:

S1 S2 S3
T1 = “fat”
T2 = “cat”
T3 = “eat”
T4 = “fish”
T5 = “meat”


a11 = 2 a12 = 1 a13 = 1
a21 = 2 a22 = 2 a23 = 1
a31 = 1 a32 = 1 a33 = 1
a41 = 0 a42 = 1 a43 = 1
a51 = 1 a52 = 0 a53 = 1


where ai j are term counts. The total count of terms
in this matrix is

S =
5

∑
i=1

3

∑
j=1

ai j = 16

Our goal is to find subset i1, ..., ik of A’s columns
so that the chosen submatrix represents the best
possible summary under some constraints. Since
it is hard to determine what is the best summary
mathematically (this task is usually left to human
experts), we wish to express summary quality as a
linear function of the underlying matrix. We strive
to find a summary that gives an optimal value once
the function in question has been determined.

2.2 Text Preprocessing
In order to build the matrix and then the poly-
tope model, one needs to perform the basic text
preprocessing including sentence splitting and to-
kenization. Also, additional steps like stopwords
removal, stemming, synonym resolution, etc. may
be performed for resource-rich languages. Since
the main purpose of these methods is to reduce the
matrix dimensionality, the resulted model will be
more efficient.

2.3 Polytope as a document representation
We represent every sentence by a hyperplane, and
all sentences derived from a document form a hy-
perplane intersections (polytope). Then, all pos-
sible extracts can be represented by subplanes of
our hyperplane intersections and as such that are
not located far from the boundary of the polytope.
Intuitively, the boundary of the resulting polytope
is a good approximation for extracts that can be
generated from the given document. We view ev-
ery column of the sentence-term matrix as a linear
constraint representing a hyperplane in Rmn. An
occurrence of term ti in sentence S j is represented
by variable xi j. The maximality constraint on the
number of terms in the summary can be easily ex-
pressed as a constraint on the sum of these vari-
ables.

Example 2. This example demonstrates variables
corresponding to the 5×3 matrix A of Example 1.

S1 S2 S3
T1
T2
T3
T4
T5


x11 x12 x13
x21 x22 x23
x31 x32 x33
x41 x42 x43
x51 x52 x53


Every sentence in our document is a hyperlane

in Rmn, defined with columns of A and variables
representing terms in sentences:

A[][ j] = [a1 j, . . . ,am j]
x j = [x1 j, . . . ,xm j] for all 1≤ j ≤ n

We define a system of linear inequalities

A[][ j] ·xT
j = ∑

m
i=1 ai jxi j ≤

≤ A[][ j] ·1T = ∑
m
i=1 ai j

(2)

Every inequality of this form defines a hyperplane
Hi and it lower half-space specified by equation
(2):

A[][ j] ·xT
j = A[][ j] ·1T
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H3=All fat cats eat… 

H1 ∩ H2 

H1=A fat cat is a cat… 
H2=My cat eats fish… 

H2∩H3 
H1∩ H3 

Figure 1: Two-dimensional projection of hyperplane inter-
section.

and with normal vector n = (nxy)

nxy =

{
axy 1≤ x≤ m∧ y = j
0 otherwise.

(3)

To say that every term is either present or ab-
sent from the chosen extract, we add constraints
0 ≤ xi j ≤ 1. Intuitively, entire hyperplane Hi and
therefore every point p ∈ Hi represents sentence
Si. Then a subset of r sentences is represented by
intersection of r hyperplanes.
Example 3. Sentence-term matrix A of Example 1
defines the following hyperplane equations.

H1 : 2x11 +2x21 + x31 + x51 = 2+2+1+1 = 6
H2 : x12 +2x22 + x32 + x42 = 5
H3 : x13 + x23 + x33 + x43 + x53 = 5

Here, a summary consisting of the first and the
second sentence is expressed by the intersection
of hyperplanes H1 and H2. Figure 1 shows
how a two-dimensional projection of hyperplanes
H1,H2,H3 and their intersections look like.

2.4 Summary constraints
We express summarization constraints in the form
of linear inequalities in Rmn, using the columns of
the sentence-term matrix A as linear constraints.
Maximality constraint on the number of terms in
the summary can be easily expressed as a con-
straint on the sum of term variables xi j.

m

∑
i=1

n

∑
j=1

xi j ≤ Tmax (4)

Example 4. Equation (4) for Example 1, Tmax =
11 has the form

0≤ xi j ≤ 1,∀i, j
∑

5
i=1 ∑

3
j=1 xi j ≤ 11

Additionally, we may have constraints on the
maximal Wmax number of words in the summary.
We take into account only words that remain in the
text after stop-word removal and stemming. The
difference between the number terms and the num-
ber of words in a summary is that a single term can
appear more than once in a sentence. Therefore,
the total number of words in the text is expressed
by summing up the elements of its term-count ma-
trix. Therefore, maximality constraints for words
are expressed by the following linear inequality.

m

∑
i=1

n

∑
j=1

ai jxi j ≤Wmax (5)

Example 5. Equation (5) for the sentence-term
matrix of Example 1 for Wmax = 11 has the form

2x11 +2x21 + x31 + x51+
+x12 + x22 +2x32 + x42+
+x13 + x23 + x33 + x43 + x53 ≤ 11

2.5 The polytope model
Having defined linear inequalities that describe
each sentence in a document separately and the
total number of terms in sentence subset, we can
now look at them together as a system:

∑
m
i=1 ai1xi1 ≤ ∑

m
i=1 ai1

. . .

∑
m
i=1 ainxin ≤ ∑

m
i=1 ain

∑
m
i=1 ∑

n
j=1 xi j ≤ Tmax

∑
m
i=1 ∑

n
j=1 ai jxi j ≤Wmax

0≤ xi j ≤ 1

(6)

First n inequalities describe sentences S1, . . . ,Sn,
the next two inequalities describes constraints on
the total number of terms and words in a sum-
mary, and the final constraint determines upper
and lower boundaries for all sentence-term vari-
ables. Since every inequality in the system (6) is
linear, the entire system describes a convex poly-
hedron in Rmn, which we denote by P. Faces of
P are determined by intersections of hyperplanes
defined in (6).

2.6 Objectives and summary extraction
We assume here that the surface of the polyhedron
P is a suitable representation of all the possible
sentence subsets (its size, of course, is not polyno-
mial in m and n since the number of vertices of P
can reach O(2n)). Fortunately, we do not need to
scan the whole set of P’s surfaces but rather to find
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Function Formula Description
Maximal Weighted max ∑

m
i=1 witi, Maximizes the information coverage as a weighted term sum.

Term Sum (OBJ1) ti = ∑
n
j=1 x ji We used the following types of term weights wi.

(1) POS EQ, where wi = 1 for all i;
(2) POS F, where wi = 1

app(i) and app(i) is the index of a sentence
in the document where the term Ti first appeared;
(3) POS B, where wi = max{ 1

app(i) ,
1

n−app(i)+1};
(4) TF, where wi = tf(i) and tf(i) is the term frequency of term Ti;
(5) TFISF, where wi = tf(i)∗ isf(i)
and is f (i) is the inverse sentence frequency of Ti

Distance Function min ∑
m
i=1(̂ti− pi)

2, Minimizes the Eucledian distance between terms t = (t1, . . . , tm)
(OBJ2) (1) t̂i = ti = ∑

n
j=1 x ji (a point on the polytope P representing a generated summary)

and ∀i pi = 1, or and the vector p = (p1, . . . , pm) (expressing document properties
(2) t̂i = ti

∑
m
j=1 t j

we wish to preserve and representing the ”ideal” summary).
and pi = tf(i) We used the following options for t and p representation.

(1) MTC, where t is a summary term count vector
and p contains all the terms precisely once, thus
minimizing repetition but increasing terms coverage.
(2) MTF, where t contains term frequency of terms in a summary
and p contains term frequency for terms in documents.

Sentence Overlap min ∑
n
j=1 ∑

n
k= j+1 ovl jk, Minimizes the Jaccard similarity between sentences in a summary

(OBJ3) ovl jk =
|S j∩Sk |
|S j∪Sk | = (denoted by ovl jk for S j and Sk).

= ∑
m
i=1 w(ai j ,aik)(xi j+xik)

∑
m
i=1(ai j+aik)

w(ai j,aik) is 1 if the term Ti is present in both sentences S j and Sk

and is 0 otherwise.
Maximal Bigram max ∑i, j bii j, Maximizes the information coverage as a bigram sum.
Sum (OBJ4) where ∀i, j 0≤ bii j ≤ 1 Variable bii j is defined for every bigram (Ti,Tj) in the text.

Table 1: Objective functions for summarization using polytope model.

the point on P that optimizes the chosen objective
function. Table 1 contains four different objective
functions3 that we used for summarization, along
with descriptions of the changes in the model that
were required for each function.

Since the LP method not only finds the minimal
distance but also presents an evidence to that min-
imality in the form of a point x = (xi j), we use the
point’s data to find what sentences belong to the
chosen summary. We check which equations of
Hi the point x satisfies as equalities. If an equal-
ity holds, x lies on Hi and therefore the sentence Si

is contained in the summary. This test is straight-
forward and takes O(mn) time. In a case of insuf-
ficient summary length, the sentences nearest to
the point x are extracted to a summary in a greedy
manner.

3 Experiments

In order to evaluate the quality of our approach,
we compared our approach to multiple summa-
rizers participated in the generic multi-document
summarization task of the TAC 2011 competi-
tion (Giannakopoulos et al., 2011) and human

3Since our approach is unsupervised, there is no possibil-
ity and meaning to use ROUGE, that needs Gold Standard, as
an objective.

performance as well. Our software was imple-
mented in Java using lpsolve (Berkelaar, 1999)4.
We used the following objective functions, de-
scribed in Table 1.
(1) Maximal weighted term sum OBJweight type

1 ,
where weight type is one of POS EQ, POS F,
POS B, TF, TFISF;
(2) Minimal distance OBJvector type

2 , where
vector type is either MTC (Maximal Term Cov-
erage) or MTF (Maximal Term Frequency);
(3) Minimal sentence overlap OBJ3;
(4) Maximal bigram sum OBJ4.

We conducted the experiments on the MultiL-
ing 2011 (Giannakopoulos et al., 2011) English
dataset. MultiLing dataset consists of 10 docu-
ment sets, 10 documents each one, in seven lan-
guages. The original news articles in English were
taken from WikiNews5, organized into 10 sets,
and then summarized. According to the MultiL-
ing summarization task, all systems must generate
summaries in size of 250 words at most. Eight sys-
tems (ID1-ID8) participated in the pilot and com-
pared to the global baseline (ID9) and the global
topline (ID10) systems. Systems A,B and C de-

4The software is available upon request.
5http://en.wikinews.org/wiki/
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note summaries manually created by human ex-
perts. The choice of this dataset is argumented by
future plans to adapt and evaluate the introduced
system to multiple languages.

The automatic summarization evaluation pack-
age, ROUGE (Lin, 2004), is used to evaluate the
effectiveness of our approach vs. 10 summariz-
ers participated in the MultiLing pilot of the TAC
2011 competition. For fair comparison, only first
250 words6 were considered in ROUGE statis-
tics. The recall scores of ROUGE-N for N ∈
{1,2,3,4}, ROUGE-W -1.2, and ROUGE-SU4
which are based on N-gram, Weighted Longest
Common Subsequence (WLCS), and Skip-bigram
plus unigram, with maximum skip-distance of 4,
matching between system summaries and refer-
ence summaries, respectively, are reported in Ta-
ble 2 below.

3.1 Experimental Results
As it can be seen from Table 2, our model using
unweighted term sum (OBJPOS EQ

1 ) as an objective
function outperforms most of the systems – 6 sys-
tems in terms of ROUGE-1, ROUGE-2, ROUGE-
SU4 and ROUGE-W -1.2, and 8 systems in terms
of ROUGE-3 and ROUGE-4. Conversely to our
expectations, adding any type of weights to OBJ1
reduces its performance. Minimizing repetition
while increasing terms coverage (OBJMTC

2 ) shares
the same rank with OBJPOS EQ

1 for most ROUGE
metrics. Minimizing distance to a document term
frequency vector (OBJMT F

2 ) performs worse – it
outperforms 3, 4, 5, 6, 5 and 3 systems in terms
of ROUGE-1, ROUGE-2, ROUGE-3, ROUGE-
4, ROUGE-SU4 and ROUGE-W -1.2, respectively.
Sentence overlap (OBJ3) and maximal bigram sum
(OBJ4) have very close scores, outperforming 3,
5, 5, 6, 5 and 3 systems in terms of ROUGE-1,
ROUGE-2, ROUGE-3, ROUGE-4, ROUGE-SU4
and ROUGE-W -1.2, respectively. Generally, opti-
mizing the most of introduced functions generates
the near-quality summaries. All functions perform
better then the baseline (ID9) system.7

4 Conclusions and Future Work

In this paper we present a linear programming
model for the problem of extractive summariza-

6ROUGE.pl -a -x -2 4 -u -c 95 -e data -r 1000 -n 4 -f A -p
0.5 -t 0 -d -l 250

7We did not perform tests of statistical significance due
to too many comparisons (10 systems vs. 10 objective func-
tions), leaving it as a future work.

tion. We represent the document as a set of inter-
secting hyperplanes. Every possible summary of a
document is represented as an intersection of two
or more hyperlanes. We consider the summary to
be the best if the optimal value of objective func-
tion is preserved during summarization, and trans-
late the summarization problem into a problem of
finding a point on a convex polytope which is the
closest to the hyperplane describing the ”ideal”
summary. We introduce multiple objective func-
tions describing the distance between a summary
(a point on a convex polytope) and the best sum-
mary (the hyperplane).

Since linear programming problem can be
solved in polynomial time (see (Karmarkar, 1984),
(Khachiyan, 1996; Khachiyan and Todd, 1993)),
the time complexity of our approach is polynomial
(quadratic, being more precise).

The results of experiments show that our
method outperforms most of the systems partici-
pated in the MultiLing pilot in terms of various
ROUGE metrics. In future, we intend to (1) im-
prove the system’s performance by introducing
more objective functions and their combinations,
(2) adapt our system to multiple languages, and (3)
extend our model to query-based summarization.
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