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Abstract 

This paper presents a new machine-learning 

Chinese word segmentation (CWS) approach, 

which defines CWS as a break-point classifi-

cation problem; the break point is the bound-

ary of two subsequent words. Further, this 

paper exploits a support vector machine 

(SVM) classifier, which learns the segmenta-

tion rules of the Chinese language from a 

context model of break points in a corpus. 

Additionally, we have designed an effective 

feature set for building the context model, 

and a systematic approach for creating the 

positive and negative samples used for train-

ing the classifier. Unlike the traditional ap-

proach, which requires the assistance of 

large-scale known information sources such 

as dictionaries or linguistic tagging, the pro-

posed approach selects the most frequent 

words in the corpus as the learning sources. 

In this way, CWS is able to execute in any 

novel corpus without proper assistance 

sources. According to our experimental re-

sults, the proposed approach can achieve a 

competitive result compared with the Chinese 

knowledge and information processing 

(CKIP) system from Academia Sinica. 

1 Introduction 

Chinese sentences contain sequences of charac-

ters that are not delimited by white spaces or any 

other symbol used for word identification, so 

Chinese word segmentation (CWS) is one of the 

fundamental issues in Chinese natural language 

processing studies. 

One of the major aspects in existing CWS re-

searches is the resolution of word segment ambi-

guities. The conventional approach of ambiguity 

detection is to use two maximum matching 

methods (MMs), which scan corpora forward 

(Forward Maximum Matching, FMM) and 

backward (Backward Maximum Matching, 

BMM) based on dictionaries (Kit, Pan, & Chen, 

2002). Meanwhile, disambiguation methods can 

be classified into two different categories: rule-

based methods and statistical-based methods. 

(Ma & Chen, 2003b). Problem disambiguity is 

often accompanied by the problem resolution of 

an unknown word or out-of-vocabulary (OOV) 

extraction (K.-J. Chen & Ma, 2002). Besides the 

MMs with dictionaries, which are also known as 

word-based approaches, there are character-

based approaches. The word-based approach 

treats words as the basic unit of a language, and 

the character-based approach labels each charac-

ter as the beginning, middle, or end of a word. 

Character-based approaches are often imple-

mented with a machine-learning classification 

algorithm for handling disambiguation (Wang, 

Zong, & Su, 2012). In addition to dictionaries, 

other linguistic resources such as part-of-speech 

(POS) or semantic information can be integrated 

for further improvement (M.-y. Zhang, Lu, & 

Zou, 2004).  

In addition to the disambiguation strategy, 

many researchers provide the best word sequence 

identification methods for their CWS. The Hid-

den Markov model (HMM) (Lin, 2006; M.-y. 

Zhang et al., 2004), maximum entropy (ME), 

mutual information (MI) and boundary depend-

ency (Peng & Schuurmans, 2001) are often used. 

Theoretically, to get the best CWS result is to 

obtain the optimized word sequence. 

As described above, existing CWS research 

takes either words or characters as the core unit 

of their methodologies. Instead of identifying 

word ambiguity, finding word sequence or join-

ing characters into words, we redefine the CWS 

problem as the identification of “break points” 

among the “joint points” in Chinese character 

sequences. In this paper, we define a “joint 
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point” as a point between adjacent characters, 

and a “break point” as the boundary of two sub-

sequent words; further, the characters between 

two break points will consist of words.  

The identification of break points among joint 

points is a binary classification problem. In this 

study, we use a support vector machine (SVM) 

machine-learning algorithm with contextual sta-

tistical measures to construct the feature vector 

model of the joint points. Based on our assump-

tion that the Chinese word segmentation rule can 

be learned from non-linguistic contextual infor-

mation, all features selected for the joint point 

model are purely statistical measures without any 

linguistic tagging information. Moreover, a sys-

tematic approach for creating effective positive 

and negative samples is provided for training the 

SVM classifier. 

Furthermore, in order to meet the need of a 

CWS approach for a novel corpus, which has no 

appropriate dictionaries or linguistic tagging, in 

this study, we select a small set of assistant 

known source from the experimental corpus as 

the learning samples, which can be reduced to 

only 3 words: the most frequent bi-gram, tri-

gram, and four-gram words. The experimental 

results show that by using the joint point model 

within long contextual information, a small set of 

learning samples can lead to competitive CWS 

results compared with the Chinese knowledge 

and information processing (CKIP) system, 

which is supported by a large-scale term data-

base that contains approximately 5 million Chi-

nese terms, from Academia Sinica. 

2 Related Works  

Conventionally, ambiguity and OOV are two 

major problems in the field of CWS research 

(K.-J. Chen & Ma, 2002). From the methodolog-

ical perspective, there are rule-based, statistical-

based, and machine-learning approaches (Kit et 

al., 2002; Peng & Schuurmans, 2001; Wang et al., 

2012). Moreover, on the basis of the basic lan-

guage unit used, existing research can be catego-

rized into either word-based or character-based 

methods (Y. Zhang & Clark, 2007; Zhao, Huang, 

Li, & Lu, 2010). Most CWS research has re-

solved problems using labeled corpora while a 

few have managed CWS using pure text corpora 

(Dai, Loh, & Khoo, 1999; Jin Kiat Low, 2005). 

In labeled corpora, the tagging of dictionary 

matches, parts-of-speech, semantics, and charac-

ter positions inside a word, are all popular meth-

ods for incorporating known information (Kit et 

al., 2002). 

2.1 Ambiguity and the unknown word 

There are two types of ambiguities in CWS: 

overlapping and combinational ambiguities. 

They can be defined as follows: given a diction-

ary D and a string “abc,” if the set of sub-strings

｛ab, bc｝⊂ D, “abc” involves an overlapping 

ambiguity; given a dictionary D and a string 

“ab,” if the set of sub-strings｛a, b, ab｝⊂ D, 

“ab” involves a combinational ambiguity. 

Conventional dictionary-based FMM and 

BMM are straightforward strategies for detecting 

ambiguities (Kit et al., 2002) and certainly pro-

vide an applicable foundation for disambiguation 

methods. However, dictionaries can never con-

tain all words. Every corpus will have, on aver-

age, 3% to 5% OOV words (K.-J. Chen & Ma, 

2002); hence, the identification of unknown 

words has become an important branch of CWS 

studies (K.-J. Chen & Ma, 2002; Ma & Chen, 

2003a). Besides MMs, there are other corpus-

based learning approaches to detect ambiguities 

for CWS (K.-J. Chen & Bai, 1998). 

2.2 Word-based and character-based ap-

proaches 

Another way to catalogue CWS is dependent on 

the basic information unit used; there are both 

word-based and character-based CWS methods. 

Word-based approaches treat the word as the 

basic unit, and POS and other word-based lin-

guistic resources are often integrated into such 

approaches in order to improve the CWS results. 

From this point of view dictionary-based ap-

proaches can be treated as word-based approach-

es. Character-based approaches disregard the 

linguistic information and directly calculate the 

character-to-character statistical features. One 

popular way is to label each character as the be-

ginning, middle, or the end of a word, and gener-

ate sequence words in sentences on the basis of 

the position labels of the characters (Goh, 2005; 

Peng & Schuurmans, 2001; Zhao et al., 2010). 

There are few character-based CWS approaches 

that use pure text corpora without additional la-

bel information (Dai et al., 1999; Jin Kiat Low, 

2005). 

2.3 Rule-based, statistical-based, and ma-

chine-learning methods 

From the methods perspective, the earlier CWS 

used heuristic rules to resolve ambiguities (Ma & 
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Chen, 2003b) accompanied by the development 

of unknown word extraction or identification 

technologies (Ma & Chen, 2003a). Besides rule-

based approaches, statistic-based approaches in-

volved the concept of language models trained 

on large-scale corpora, and many such algo-

rithms have been used and improved over time, 

such as Maximum Entropy (ME), Mutual Infor-

mation (MI), and boundary dependency (Jin Kiat 

Low, 2005; Peng & Schuurmans, 2001). Some 

statistic-based approaches do not focus on re-

solving ambiguities, but provide strategies for 

word sequence identification in sentences. In 

general, statistical-based approaches tend to pro-

vide a generative or discriminative (Wang et al., 

2012) probability formula for Chinese words. In 

contrast, machine-learning approaches pay more 

attention to the selection of effective features for 

Chinese word representations. The HMM (Lin, 

2006; M.-y. Zhang et al., 2004) and SVM (Li, 

Huang, Gao, & Fan, 2005) are popular in CWS 

studies. Currently, a combination of a character-

based approach and statistical or machine-

learning algorithms is a common strategy for 

CWS (Goh, 2005; Wang et al., 2012; Zhao et al., 

2010).  

2.4 Contextual information 

Dai and Loh have proposed “The Contextual In-

formation Formula” of Chinese bi-gram words 

(Dai et al., 1999). It is an MI improving formula 

trained on a large-scale corpus. In this formula, 

the frequency of a sample bi-gram, the frequen-

cies of its context characters and document fre-

quencies of its context bi-grams are used. They 

suggest that Chinese words can be defined by a 

non-linguistic formula that depends on context 

character measures. Low and Ng conducted a 

series of studies using context features for their 

CWS research (Jin Kiat Low, 2005). Further, the 

concept of contextual information has often been 

used in information extraction research as well as 

in existing Chinese term extraction research for 

entity identification (Gao, 2005; Lee, 2012). In 

addition, Japanese has no word delimiter like 

Chinese. Sassano and Neubig et al. have defined 

Japanese word segmentation (JWS) as a classifi-

cation task of word boundaries, and also used 

contextual feature sets in their studies (Neubig, 

Nakata, & Mori, 2011; Sassano, 2002). Inspired 

by these ideas of using contextual information, 

our research aims to extract a contextual infor-

mation feature vector of “joint points” and uses 

an SVM algorithm to train a break point classifi-

er. 

2.5 Complete lexical patterns  

Chien has proposed the estimation of complete 

lexical patterns (Figure 1) (Chien, 1999) in a se-

ries of Chinese term extraction papers. There are 

three important measures used in these lexical 

patterns, including association, and left and right 

dependency. These three measures will be inte-

grated into our contextual information feature 

vector. 

 
Figure 1. The estimation of complete 

lexical patterns 

 

(1) Association(AEc) = f(x) / (f(y)+f(z)–f(x)) 

x is the lexical pattern; x = x1, x2, …, xn; y = 

x1, …, xn-1, z = x2, …, xn; f(x) is the frequency of 

x; f(y) is the frequency of y; f(z) is the frequency 

of z 

(2) Left Context Dependency(LCD) = f(max_xl) 

/ f(x) 

f(max_xl) is the maximum frequency of distinct 

characters to the left of x  

(3) Right Context Dependency(RCD) = f(max_xr) 

/ f(x)  

f(max_xl) is the maximum frequency of distinct 

characters to the right of x 

3 Method 

In the proposed approach, the CWS was treated 

as the problem of identifying word break points 

among joint points in a corpus, and we resolved 

it by using a SVM machine-learning classifier. 

The term “joint point” in this paper refers to a 

point between two adjacent Chinese characters. 

Our approach is to classify all joint points into 

either a break point class or non-break point class. 

The function of break points is similar to that of 

white spaces in sentences in English. 

The SVM is a multi-vector classification algo-

rithm (Boser, Guyon, & Vapnik, 1992). It is also 

a two-phase algorithm that employs a model-

training phase and a model-using (predicting) 

phase. The major task of the model-training 

phase is collecting learning samples in different 

classes and extracting sample feature vectors for 

training the SVM model. In the model-using 

phase, the SVM will predict which class an un-
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known sample belongs to. Unknown samples 

need to be formed using the same feature vector 

as the learning samples. In this paper, we set two 

classes, the break point class and the non-break 

point class, and the final predicted break-point 

outputs are the results of our CWS. 

3.1 Positive and negative contextual sample 

generation 

In this paper, we propose an efficient method of 

contextual learning sample generation to build a 

two class SVM classifier with positive learning 

samples for the break point class and negative 

learning samples for the non-break point class. 

Because break points are the boundaries of 

words, we first collect the known words in the 

corpus, and take their boundary points as the 

positive samples. In contrast, the negative sam-

ples are the joint points inside these words. This 

means that every matching of a word will get 

two positive learning samples. It will also get 

one negative (learning sample) for a bi-gram 

match, tow negatives for a tri-gram match and 

three negatives for a four-gram match. 

Take the sentence, “…。我行菩薩道時，…” 

(Figure 2), from the experimental corpus as an 

example, there are nine joint points, p1~p9, in 

this case. In this sentence, “。” is the period and 

“，” is the comma in Chinese, and “我行菩薩道

時 ” means ‘As I practice the way of 

Bohdhisattva.’ In this case, if 菩薩道 ‘the way of 

Bohdhisattva’, is a collected known word, then 

p4 and p7 will be the positive samples and p5 

and p6 will be the negative samples; the other 

joint points will be the unknown samples. 

 
Figure 2. Sample selection example 

 

Joint points, including positive and negative 

learning samples, and unknown samples, are not 

characters and therefore do not take up space in a 

corpus. For making specific samples of the joint 

points, we always take the same number of char-

acters before and after the joint point to generate 

contextual samples. Take “p4” in Figure 2 as an 

example, depending on how long the context in-

formation we want to integrate, it can be sampled 

as a short-distance bi-gram 行菩 , which takes 

one character on both sides of p4, a four-gram 我

行菩薩, or a longer-distance n-gram contextual 

positive sample. In our experiments, a six-gram 

contextual sample, catching three characters on 

both sides of a learning sample, support a better 

SVM CWS classifier. 

The known words, or learning words, for 

contextual learning sample generation can be 

collected from dictionaries. However, for the 

purpose of reducing the preparation loading of 

CWS for a novel corpus without appropriate 

dictionaries, in this study, we also set the high-

est-frequency bi-gram, tri-gram and four-gram 

words in the corpus for the learning samples 

generation. Hence, the known words can be col-

lected systematically in this way, and the exper-

iment results suggest that the small size of the 

known words leads to a competitive result com-

pared with the big numbers of known words, 

which collected from dictionaries.  

The reason for using the most frequent bi-

gram, tri-gram and four-gram words, but not uni-

gram words is that single-character words do not 

have a negative case, which would cause an im-

balance of positive and negative learning sam-

ples. Further, bi-gram words are found to be the 

majority in Chinese texts, and long words tend to 

be combinations of short words (梁曉虹, 2005). 

Further, based on our observation, the highest-

frequency bi-gram, tri-gram and four-gram in a 

Chinese corpus are almost always words and 

nouns, as well.  

3.2 Feature vector extraction 

The contextual learning sample needs to be mod-

eled as a feature vector for the machine-learning 

algorithm. There are 10 types of features chosen 

for the feature vector extraction of the contextual 

learning sample, including frequency, the num-

ber of distinct characters to the left and right, the 

number of breaking symbols (non-Chinese char-

acters and paragraph marks) to the left and right, 

association, and the usage freedom to the left and 

right of characters in the contextual sample. 

Among these features, association and the usage 

freedom (also called left and right context de-

pendency) refer to “The Estimation of Complete 

Lexical Patterns” as proposed by Chien (Chien, 

1999). Table 1 shows the complete feature set 

used in our experiment. 

For feature vector extraction, we applied the fea-

ture set to every bi-gram plus all uni-gram fre-

quencies within the contextual learning sample. 

In this way, the long-context feature vector was 

modeled by measures of short strings, and it 

could keep particular context information and 

avoid the probability sparsity to features. Take 
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the four-gram learning sample, 我行菩薩, gener-

ated from p4 in Figure 2 as an example, there are 

a total of 34 features in its feature vector, includ-

ing the four uni-gram frequencies of 我, 行, 菩, 

and 薩, and 30 features from three bi-gram fea-

ture sets of 我行, 行菩, and 菩薩. Hence, de-

pending on different extended length of context, 

there will be 56 features for a six-gram sample 

and 78 features for an eight-gram sample. Table 

2 shows the numbers of features in different 

lengths of contextual samples. 

No. Features 

1 Frequency 

2 Association (AEc) measure 

3 Number of distinct characters 

to the left 

side 

4 Maximum frequency of dis-

tinct characters 

5 Number of breaking symbols 

6 Left-context dependency 

(LCD) measure 

7 Number of distinct characters 

to the right 

side 

8 Maximum frequency of dis-

tinct characters 

9 Number of breaking symbols 

10 Right-context dependency 

(RCD) measure 

Table 1. Feature set 

 

Contextual sample length 4 6 8 

-uni-grams 4 6 8 

-bi-grams 3 5 7 

-frequency of each uni-gram 4 6 8 

-feature set of bi-grams 30 50 70 

Total number of features  34 56 78 

Table 2. Number of features in a four-gram 

feature vector 

3.3 SVM algorithm and Libsvm package 

The Support Vector Machine (SVM) algorithm 

constructs a hyper-plane in a high-dimensional 

space for classification and other tasks 

(Cristianini & Shawe-Taylor, 2000). A good sep-

aration is achieved by the hyper-plane farthest 

from the nearest training data point of any class. 

 

Figure 3. Support Vector Machine (SVM) 

In Figure 3, W is the good separation (the classi-

fication hyper-plane) of the two classes—white 

spots and black spots—and H1 and H2 are the 

support hyper-planes. 
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In our study, Libsvm tools (Chang & Lin, 2011) 

were used for executing the SVM algorithm. The 

SVM algorithm includes two phases: model 

training and model using, called break-point-

predicting phases. In the model-training phase, 

the input data for the Libsvm package is the fea-

ture vector data set of all the learning samples, 

both positives and negatives, and the output data 

is a classification model file. Meanwhile, all joint 

points are considered to be unknown samples. 

The unknown samples should be converted to the 

feature vector data set in the exactly same way as 

the learning samples are. In the break-point-

predicting phase, the input data is the feature 

vector data set of the unknown samples and the 

classification model file output from the earlier 

phase, and the output data contents of the joint 

points, which are predicted to be break points. 

The predicted output data are the CWS results. 

4 Experiment 

4.1 Corpus 

The collection of Saddharma Puṇḍarīka (Lotus of 

the True Dharma), which is part of a Chinese text 

archive from the Middle Ages provided by the 

Chinese Buddhist Electronic Text Association 

(CBETA), was selected as the experimental cor-

pus. It consists of 16 sutras labeled T0262 to 

T0277 of the Taisho Revised Tripitaka. This cor-

pus contains 514,722 Chinese characters without 

punctuation, and there are a total of 514,721 joint 

points available for the experiment. 

Generally speaking, CWS in ancient Chinese 

corpora is usually difficult than in modern Chi-

nese collections, as the modern dictionaries are 

not very suitable for ancient Chinese collections, 

plus ancient Chinese collections lack punctua-

tions and stop-words. Since the proposed method 

was designed to solve the CWS without the use 

of a dictionary, this collection is a good corpus to 
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demonstrate the powerfulness of the proposed 

method. 

4.2 Performance evaluation method 

In this study, we selected paragraphs, evaluation 

texts, from the experimental corpus, and com-

pared the results of the evaluation texts from a 

subject matter expert’s answers and the SVM 

CWS predicted answers as a means of evaluating 

the system’s performance. 

Sàtánfēntuólìjīng, a sutra (T0265) from the 

collection of Saddharma Puṇḍarīka was chosen 

as the evaluation text. In Sàtánfēntuólìjīng, there 

are 1,588 joint points; the ratio size of the eval-

uation text is 0.3% of the entire corpus. The 

evaluation text was not included in the training 

data, and experts provided 616 break points, true 

answers, and 972 non-break points, false answers 

for it. Precision, recall, and f-measure were used 

for evaluating the effectiveness of the CWS re-

sults. The evaluation definitions were as follows: 

RecallPrecision

RecallPrecision2
F-measure

ative False Negtive  True Posi

iveTrue Posit
Recall

itive False Postive  True Posi

iveTrue Posit
Precision












 

4.3 Experiments 

In order to reveal the effectiveness of the training 

data size, we prepared three training sets; each 

had different numbers of training data. The first 

set consisted of learning samples collected from 

the highest-frequency bi-gram, tri-gram and four-

gram, for a total of three Chinese words in the 

corpus. The second set consisted of learning 

samples from the top-10 high-frequency words 

of each bi-gram, tri-gram, and four-gram in the 

corpus, and the third set consisted of learning 

samples from 7,309 words, which were collected 

from the book index of the corpus (大藏經學術

用語研究會, 198-?). Table 3 shows the number 

of learning samples for each training size. 

At the end of the experiment, we compared the 

overall performance with that of CKIP, which is 

a Chinese word segmentation system supported 

by 4,892,324 Chinese-word database (Sinica, 

2013).  

In Table 3, the three highest-frequency words in 

the first training set are 菩薩 ‘bodhisattva’ (the 

bi-gram), which had a frequency of 3133; 摩訶

薩 ‘mahasattva’ (the tri-gram), which had a fre-

quency of 382; and 文殊師利  ‘manjushri’, a 

name of the bodhisattvas (the four-gram), which 

had a frequency of 514. This is a total of 4,029 

matched strings, which contributed 7,658 posi-

tive and 5,439 negative samples. Since the 

matched strings are adjacent in some places, the 

total number of positives is not exactly twice the 

summation of the three frequencies. However 

this does not apply to the negatives samples be-

cause there is no commonality of location. 

 

Highest-

frequency 

words 

Top-10 

high-

frequency 

words 

Dictionary-

based group 

bi-gram 1 10 2678 

tri-gram 1 10 2227 

four-gram 1 10 2404 

Total 

words 
3 30 7,309 

Total pos-

itives 
7658 35,199 150,441 

Total 

negatives 
5439 23,677 105,035 

Table 3. Learning sample comparison of three 

training sets 

 

Besides setting a different size of the training 

data, we set different context distances, character 

extensions in context, of samples. The more the 

context characters are extended, the more is the 

contextual information involved in the feature 

vector model. Hence, a two-character extension 

in context means catching 2 characters on both 

sides of the joint points to make a 4-gram context 

learning sample. Table 4 shows the CWS results 

for the highest-frequency training set, Table 5 

shows the results of the top-10 high-frequency 

training set, and Table 6 shows the results of the 

dictionary-based training set. Every group was 

segmented in three different context distances.  

Sample 

length 
Four-gram Six-gram Eight-gram 

Context 

extension 
2 characters 3 characters 4 characters 

Precision 51.1% 51.2% 49.5% 

Recall 94.5% 94.2% 96.3% 
F-measure 66.3% 66.3% 65.3% 

Table 4. CWS results of the highest frequency 

words 

In the tables, the dictionary-based results (Table 

6) exhibit stable performances; the results grow-

ing with context distances. Although the perfor-

mance of the set of the highest-frequency words 

is not as good as that of the dictionary-based 

ones, it is still competitive, and most importantly, 

it used no assistant sources outside of the corpus. 
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We believe that this shows the potential of the 

non-dictionary CWS method proposed in this 

paper. 

Sample 

length 
Four-gram Six-gram Eight-gram 

Context 

extension 
2 characters 3 characters 4 characters 

Precision 56.6% 56.7% 57.0% 

Recall 83.4% 82.1% 81.7% 
F-measure 67.4% 67.1% 67.2% 

Table 5. CWS results of the top 10 high frequen-

cy words 

Sample 

length 
Four-gram Six-gram Eight-gram 

Context 

extension 
2 characters 3 characters 4 characters 

Precision 57.9% 58.6% 59.1% 

Recall 79.5% 80.4% 81.2% 
F-measure 67.0% 67.8% 68.4% 

Table 6. CWS results of the known words from 

the index book 

4.4 Feature selection analysis 

This section analyzes the importance of features 

used in the SVM classifier. A total of 56 features, 

in the highest frequency word dataset with 6-

gram learning samples, were calculated and sort-

ed by the f-score algorithm proposed by Chen 

and Lin’s SVM feature-selected research (Y.-W. 

Chen & Lin, 2006).  

Table 7, the top 10 features of the training da-

taset, shows that the contextual dependency 

measures around joint points have a significant 

influence on the SVM classifier. 

4.5 Iterative CWS strategy 

Because the learning samples can be collected 

systematically and generated from very few 

words in the proposed CWS method, we provide 

an iterative training process to improve the CWS 

results. In the iterative CWS strategy, we select 

training samples for the next SVM CWS iterative 

round from the previous SVM CWS results.  

Libsvm provides a probability measure for 

every joint point in the predicting phase, and in 

the Libsvm default setting, joint points will be 

classified in to the break point class when their 

predicting probability is greater than 50%, which 

is also the SVM classifier predicting threshold in 

our experiments. 

Based on the probability measure, in the itera-

tive experiment, points whose probability was 

greater than 90% were taken as positives and 

points whose probability was less than 10% were 

taken as the negatives for the next round. In this 

way, the size of positives and negatives is imbal-

anced, so we set a stricter threshold on the side 

having bigger numbers to make both sides have 

the same number of learning samples.  

Table 8 shows a three-round iterative CWS result 

using the highest-frequency words training set 

with the context extension of three characters, 

the Six-gram learning samples, which led to bet-

ter performance in the earlier experiment. Based 

on the performance evaluation over all rounds, 

the precision in the second round increased by 

approximately 10%, but other CWS results did 

not improve as expected. 

No. Features of  six-character context 

sample “ABCDEF” 

f-score 

1 RCD of “CD” 0.4420 

2 LCD of “CD” 0.3304 

3 LCD of “DE” 0.3281 

4 RCD of “BC” 0.3144 

5 
Number of distinct characters to 

the left of “CD” 
0.2284 

6 
Number of distinct characters to 

the right of “CD” 
0.2199 

7 AEc of “CD” 0.2108 

8 
Number of distinct characters to 

the left of “DE” 
0.1598 

9 LCD of “BC” 0.1513 

10 
Number of breaking symbols to 

the left of “CD” 
0.1480 

Table 7. Top 10 features of training dataset 

 

 Iteration 1 Iteration 2 Iteration 3 

Positives 7658 39520 163849 

Negatives 5439 39520 163849 

Total learning 

samples 
13097 79040 327698 

Precision 51.2% 62.3% 61.6% 

Recall 94.2% 66.2% 65.3% 

F-measure 66.3% 64.2% 63.4% 

Table 8. CWS results of the iterative experiment 

4.6 Comparison 

Table 9 compares four different CWS results: the 

highest-frequency words, top-10 high-frequency 

words, the dictionary group, and the results from 

CKIP. The best results of each method are shown 

in this table. CKIP is the segmentation tool by 

Sinica, which enhances the segmentation using a 

large-scale term database having approximately 

5-million, cross-field Chinese words (Group; Ma 

& Chen, 2003b). The comparison table shows 
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that the control group has higher recall, the dic-

tionary-based group has higher precision and the 

CKIP exhibits a more balanced result. 

 Highest 

frequency 

words 

Top10 

high-

frequency 

words 

Diction-

ary 

CKIP 

Precision 51.2% 57.0% 59.1% 57.4% 

Recall 94.2% 81.7% 81.2% 88.3% 
F-measure 66.3% 67.2% 68.4% 69.6% 

Table 9. Performance comparison 

5 Conclusion and Discussion 

In this paper, we proposed a novel corpus ma-

chine-learning CWS approach that identified 

break points from joint points. The proposed ap-

proach is different from existing researches, 

which tended to create a generating model or 

formula of Chinese words. In this study, we pro-

vided a long-distance context model of joint 

points and defined the model by non-linguistic 

contextual features. The experimental results 

suggested that break points among Chinese texts 

could be identified on the basis of their non-

linguistic contextual features in our chosen cor-

pus. 

According to the experimental results, the 

proposed approach can achieve precision 51.2% 

and recall 94.2% with only 3 learning words sys-

tematically selected from the experiment corpus. 

It is a very competitive result comparing with the 

CKIP system, which achieves precision 57.4% 

and recall 88.3%, and it is supported by an ap-

proximately 5-million Chinese-word database. 

Therefore, this study met the need of carrying 

out CWS in a novel corpus without appropriate 

dictionaries. 

Further, the proposed approach can systemati-

cally select balanced positive and negative learn-

ing samples staring from a very small number of 

learning words. Hence, we chunked long-

distance context samples into short-distance 

strings, uni-grams and bi-grams, for feature vec-

tor extraction. Thus, we could collect long-

distance context information without dealing 

with the probability sparsity problem.  

Since the CWS rules can be trained from con-

text without linguistic information, the proposed 

CWS method might also work for Chinese texts 

from different ages. However, there are some 

issues and problems that require further investi-

gation. 

First, the selection of learning words can af-

fect the final performances. Different learning 

words may cause the different results, and this 

affection needs to be further studied. For instance, 

if we took learning words by their parts-of-

speech instead of frequency, the proposed ap-

proach might change its behavior. 

Further, the detection of combination words 

and the overlapping problem needs to be ad-

dressed. The Libsvm classifier can assign a pre-

dicting probability measure to every joint point. 

Instead of setting a threshold to filter out break 

points via these probabilities, these probability 

measures can be used for identifying the combi-

nation words and detecting overlapping problems, 

as well.  

Finally, the effect of iterative process needs to 

be further studied. Currently, the iterative results 

can led to better precision in the second round. 

However, it performs worse in recall and f-

measure. Besides, other iteration parameters 

need to be decided, such as the number of itera-

tion, the optimal predicting threshold, and the 

saturation condition for stopping the iterative 

process properly. 
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