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Abstract 

Event recognition and event type classifi-

cation are among the important areas in 

text mining. A state-of-the-art approach 

utilizing deep-level lexical semantics and 

syntactic dependencies suffers from a 

limitation of requiring too large feature 

space. In this paper, we propose a novel 

feature selection method using a semantic 

hierarchy of features based on WordNet 

relations and syntactic dependencies. 

Compared to the well-known feature se-

lection methods, our proposed method 

reduces the feature space significantly 

while keeping the same level of effec-

tiveness. For noun events, it improves ef-

fectiveness as well as efficiency. Moreo-

ver, we expect the proposed feature se-

lection can be applied to the other types 

of text classification using hierarchically 

organized semantic resources such as 

WordNet. 

1 Introduction 

Feature selection is an important issue in text-

based classification because features can be gen-

erated in a number of different ways from text. 

Selecting features affects not only efficiency 

when the space is big but also classification ef-

fectiveness by eliminating noise features 

(Manning, Raghavan, & Schütze, 2008). In this 

paper, we propose a new feature selection meth-

od that utilizes semantic aspects of word features 

and discuss its relative merits compared to other 

well-known feature selection methods. 

Among many text-based classification prob-

lems, this research focuses on event recognition 

(a kind of binary classification) and type classifi-

cation that have been studied extensively to im-

prove performance of applications such as auto-

matic summarization (Daniel, Radev, & Allison, 

2003) and question answering (Pustejovsky, 

2002). For event recognition and type classifica-

tion, TimeML has served as a representative an-

notation scheme of events (Pustejovsky, Castaño, 

et al., 2003), which are defined as situations that 

happen or occur and expressed by verbs, nomi-

nalizations, adjectives, predicative clauses or 

prepositional phrases. TimeML defines seven 

types of events, REPORTING, PERCEPTION, 

ASPECTUAL, I_ACTION, I_STATE, STATE, 

and OCCURRENCE (Pustejovsky, Knippen, 

Littman, & Saurí, 2007), to which a recognized 

event text is classified for event type classifica-

tion. 

Different approaches to recognize and classify 

TimeML events have been proposed, ranging 

from rule-based approaches (Saurí, Knippen, 

Verhagen, & Pustejovsky, 2005) to supervised 

machine learning techniques based on lexical 

semantic classes and morpho-syntactic infor-

mation around events (Bethard & Martin, 2006; 

Boguraev & Ando, 2007; Jeong & Myaeng, 

2013; Llorens, Saquete, & Navarro-Colorado, 

2010). Jeong & Myaeng (2013) recently showed 

that using the deeper-level of semantics in-

creased the performance. They obtained the best 

performance in their classification experiments 

when lexical semantic features using hypernyms 

at the maximum depth of eight in WordNet were 

used for the event candidates and the words hav-

ing syntactic dependency. While the approach 

showed a meaningful improvement, it has a 

problem of generating too many features. 

Semantic features that can be mapped to a 

structure like WordNet have hierarchical rela-

tionships. In this situation, when two features 
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have a hypernym-hyponym relationship, the 

higher-level feature encompasses the lower-level 

one (see Figure 1-(a)). If a conventional feature 

selection method were used, therefore, the se-

lected features would include both overly specif-

ic, low-level features and more general ancestors 

that cover the characteristics of the children (see 

Figure 1-(b)). When the general features are ac-

curate and specific enough to represent the class, 

their descendants are unnecessary and redundant. 

When redundant features of similar kind are 

used, they cause not only efficiency problems but 

also potential overfitting of the model because 

the resulting model may become biased towards 

the semantics covered by the sub-tree containing 

the features. 

 
Figure 1. Feature Selection in Hierarchical Fea-

ture Space 

It is important to select the features that are 

sufficiently general to encompass more specific 

features found in the training data but specific 

enough to utilize deep-level semantics available 

in the hierarchy (see Figure 1-(c)). The leftmost 

feature in (c) covers the semantics of the two 

features under it without having to keep them. 

Choosing the feature in the center and the right-

most feature has a similar effect and at the same 

time avoids using the overly general feature that 

encompasses both as well as the sibling of the 

rightmost one, which is not an appropriate one. 

In other words, we should select as general a 

feature as possible as long as none of them are 

considered irrelevant for the class, thereby it can 

cover the semantics of the features underneath it, 

without which we can achieve better efficiency. 

In short, we propose a method for solving the 

problem of using features that are semantically 

redundant. Assuming that all the features can be 

organized in the form of a hierarchy, the method 

attempts to select the features that are as specific 

as possible as long as there are no semantically 

redundant features. 

2 Event Recognition and Type Classifi-

cation Task 

We first describe the task for recognition and 

type classification of TimeML events. For word-

based event recognition and type classification, 

we converted the phrase-based annotations into a 

form with BIO-tags. For each word in a docu-

ment, we assign a label indicating whether it is 

inside or out-side of an event (i.e., BIO21 label) 

as well as its type. For type classification, in ad-

dition, each word must be classified into one of 

the known event classes. Figure 2 illustrates an 

example of chunking and labeling components of 

an event in a sentence. 

Word Event Label 
Event Type 

Label 

All O O 

75 O O 

people O O 

on B-EVENT B-STATE 

board I-EVENT I-STATE 

the O O 

Aeroflot O O 

Airbus O O 

died B-EVENT 
B- 

OCCURRENCE 

. O O 

Figure 2. Event chunking for a sentence, “All 75 

people on board the Aeroflot Airbus died.” B-

EVENT, I-EVENT and O refer to the be-

ginning, inside and outside of an event. 

Our method consists of three parts: prepro-

cessing, feature extraction and selection, and 

classification. The preprocessing part analyzes 

raw text for tokenization, PoS tagging, and syn-

tactic parsing (dependency parsing). It is done by 

the Stanford CoreNLP package2, which is a suite 

of natural language processing tools. Then, the 

feature extraction part converts the preprocessed 

data into the feature space, followed by feature 

selection. Finally, the classification part deter-

mines whether the given word is an event or not 

and its type using a maximum entropy (ME) 

classifier. 

3 Feature Candidate Generation 

Because the goal of the proposed method is to 

automatically select the most valuable features, 

we generate feature sets based on the same crite-

ria of Jeong & Myaeng’s work (2013), which 

showed better performance for TimeML event 

than the state-of-the-art approach. The details are 

below: 

                                                 
1 IOB2 format: (B)egin, (I)nside, and (O)utside 
2 Stanford CoreNLP, 

http://nlp.stanford.edu/software/corenlp.shtml 
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Lexical Semantic Features (LSF). The set of 

target words’ lemmas and their all-depth Word-

Net semantic classes (i.e., hypernyms). For ex-

ample, a noun “drop” that is mapped to such a 

WordNet class is always an event regardless of 

its context in a sentence in the TimeBank corpus 

(Pustejovsky, Hanks, et al., 2003). 

Windows Features (WF). The lemma, hyper-

nyms, and PoS of the context defined by a five-

word window [-2, +2] around a target word. 

Dependency-based Features (DF). They are 

similar with WF, but the context is defined by 

syntactic dependencies. This feature type differs 

from WF because the context may go beyond the 

fixed size window and the features are not just 

words. Increasing the window size for WF in-

stead of using this feature type is not an option 

because it would end up including some noise by 

including too big a context. Four dependencies 

we consider are: subject (SUBJ), object (OBJ), 

complement (COMP), and modifier (MOD). 

 SUBJ type. A feature is formed with the 

governor or dependent word and its hy-

pernyms that has the SUBJect relation 

(nsubj and nsubjpass) with the target 

word. 

 OBJ type. It is the governor or dependent 

word and its hypernyms, which has the 

OBJect relation (dobj, iobj, and pobj) with 

the target word. In “… delayed the game 

…”, for instance, the verb “delay” can de-

scribe the temporal state of its object 

noun, “game”.  

 COMP type. It indicates the governor or 

dependent word and its hypernyms, which 

has the COMPlement relation (acomp and 

xcomp) with the target word. In “… called 

President Bush a liar …”, for example, the 

verb “called” makes the state of its object 

(“Bush”) into the complement noun, “li-

ar”. In this case, the word “liar” becomes 

a STATE event. 

 MOD type. It refers to the dependent 

words and their hypernyms in MODifier 

relation (amod, advmod, partmod, tmod 

and so on). This feature type is based on 

the intuition that some modifiers such as 

temporal expression reveal the word it 

modifies has a temporal state and there-

fore is likely to be an event. 

Combined Features (CF). They are a combina-

tion of LSF and DF (or WF). A certain DF may 

not be an absolute clue for an event by itself but 

only when it co-occurs with a certain lexical or 

semantic aspect of the target word. 

4 Feature Selection Based on Semantic 

Hierarchy 

Since a large number of features are generated 

with the aforementioned feature generation 

method, it is necessary to filter out those whose 

roles in classification are minimal. We first re-

move the feature candidates whose frequency in 

the training data is less than two. If a target word 

containing the feature candidate is determined 

not to be an event more than 50% in the training 

data, it is also eliminated. The remaining feature 

candidates are then organized into a meaning 

hierarchy so that we can apply the tree-based 

feature selection method. 

An entailment relationship between two fea-

tures, fi >> fj, is established by a hyper-

nym/hyponym relationship, syntactic dependen-

cy, or occurrence sequence as in Table 1. A and 

D represent an ancestor and a descendent in a 

feature hierarchy tree with A >> D. We call the 

LSF and DF (or WF) features in CF as target and 

context elements, respectively. LSF can be an 

ancestor of CF because LSF does not consider 

the surrounding context of a target word whereas 

CF includes the context. CFLD and CFLW mean 

CF of LSF and DF and CF of LSF and WF, re-

spectively. 

A D Condition 

LSF LSF A is hypernym of D. 

LSF CFLD 

or 

CFLW 

A is synset/hypernym of target in 

D. 

e.g.) processLSF >> (reportDF, 

processLSF) 

DF DF Same dependency type. A is the 

hypernym of D. 

DF CFLD Same dependency with the target. 

A is synset/hypernym of sur-

rounding in D. 

e.g.) reportDF >> (reportDF, pro-

cessLSF) 

WF WF Same position from target. A is 

the hypernym of D. 

WF CFLW Same position from target. A is 

the synset/hypernym of the con-

text in D. 

e.g.) beforeWF >> (beforeWF, 

launchLSF) 

CFLD CFLD Same dependency with target. 

The target and the context of A 
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A D Condition 

are the synset/hypernym of those 

of D, respectively.  

CFLW CFLW Same position from target. The 

target and the context of A are the 

synset or hypernym of those of D, 

respectively. 

A: Ancestor, D: Descendant (A >> D)  

Table 1. Entailment Relation of Features 

4.1 Feature Tree Generation 

Given that the entailment relationship >> can be 

established between two features, we can con-

struct a feature tree that becomes a basis for tree-

based feature selection. We begin with a tree that 

only has a root node R, a meta-feature that is the 

ancestor of all features. R entails and keeps add-

ing new features to the tree until all the features 

are added to the tree. We define a, d, and c for 

ancestor, descendent, and child features with the 

relationships a >> d and a > c where > means c 

is a child of a, restricting that there is no node 

between a and c with a >> c. Figure 3 illustrates 

the detail algorithm of feature tree generation. 

When a new feature f is added to the (sub-

)tree whose root is a and a >> f, f either becomes 

a child of a or is added to one of the sub-trees of 

a (line 9~28). If there is c such that c >> f, f is 

added to a subtree whose root is c (line 14~17). 

On the other hand, if f >> c, f replaces c, and c is 

entered to the sub-tree whose root is f (line 

19~25). Finally if f has no entailment relation 

with any of the children nodes of a, f is added as 

a child of a (line 26~27). 

1 program GenerateTree; 

2 F := feature candidates set; 

3 r := root of feature tree; 

4 begin 

5   for f in F do 

6      add_feature(r, f); 

7 end; 

8  

9 procedure add_feature (a, f) 

10 a : ascendant feature; 

11 f : new feature; 

12 begin 

13   for c of a’s children 

14      if f is descendant of c then 

15       begin 

15           add_feature (c, f); 

16         break; 

17       end 

18        else 

19       if c is descendant of f then 

20         begin 

21   
          remove c from a’s chil-

dren; 

22                     add f to a’s children; 

23           add_feature (f, c); 

24           break; 

25         end; 

26 
  if no child of a is ancestor or 

descendant of f then 

27     a's children <- f; 

28 end. 

Figure 3. Feature Tree Generation Algorithm 

4.2 Tree-Based Feature Selection 

The key idea of the selection algorithm we de-

vised is to evaluate each of the paths in the tree 

and select the appropriate node (i.e. feature). A 

path is defined to be the list of nodes between the 

root and a leaf node. In essence, the problem of 

selecting nodes or features from a tree is con-

verted into smaller problems of selecting a node 

from individual paths. The process is illustrated 

with Figure 4 where each node of the tree except 

the root represents a feature. The tree has n paths 

corresponding to the number of leaf nodes. The 

algorithm selects the most representative node on 

a path, which is marked with a black node in 

Figure 4. 

 

Figure 4. Paths between the root and the leaf 

nodes in a feature tree 

To select the most representative feature on a 

path, we employed the notion of lift, which has 

been used widely in the area of association rule 

mining to compute the degree to which two items 

are associated (Tufféry, 2011). More specifically, 

it is defined as Equation (1) where P( f ) indicate 

the probability of a feature f in training data set. 

P( E | f ) is the conditional probability of events 

occurring given that f occurs. 

  
 
 

P E f
lift f

P f
  (1) 

While general feature selection methods such 

as χ2 are based on the degree of belief, our selec-

tion method considers the reliability and applica-

bility (or generality) of a feature. In other words, 

a feature we choose should have a high lift value 

(i.e., high reliability) and lie closest to the root on 

a path so that we can broaden its applicability. 
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These criteria would be particularly true when 

the amount of training data is not sufficient. 

However, selecting the feature at the highest 

level in the tree may not be the best choice. In 

Figure 4, for example, even if the node Fi in grey 

is determined to be the most representative one 

for the path 1, it may not be the best one. In this 

case, Fj may be a better one because it happens to 

be the representative node for the path between 

Fi and L1. However, there is a chance that the 

sub-tree of Fi may have important features (i.e., 

L3, L5) that end up elevating Fi’s weight unfairly. 

Instead of Fi, using Fj would be a better choice. 

In order to handle this problem, we developed 

an algorithm where the key idea works as in Fig-

ure 5. We first collect all the representative fea-

tures from the paths based on the reliability and 

generality criteria mentioned above (line 29~45). 

For each representative node, we check if any of 

the descendant nodes have been selected as a 

representative node of other paths (line 21). If 

the condition is met, the node is no longer con-

sidered as a representative node (line 23). The 

same process is applied to the sub-tree whose 

root is the node just deleted from the set of repre-

sentative nodes (line 25). Up to now, this process 

does not require manually checking the perfor-

mance for the selected features. 

1 program SelectFeatures; 

2 T := feature tree 

3 F := selected feature set 

4 begin 

5   F ← ∅; 
6   select_features(T); 

7 end; 

8  

9 procedure select_from_tree 

10 t := subtree of T 

11 begin 

12   r ← root of t 

13   L ← leaf features of t 

14   for l of L 

15     p ← path from r to l; 

16     f ← select_from_path (p); 

17     add f to F; 

18   end; 

19   for f of F 

20     D ← descendants of f; 

21     if {d | d ∈ D and d ∈ F} ≠ ∅ 
then 

22       begin 

23         remove f from F; 

24         tf ← subtree of t whose root 

is f 

25         select_from_tree (tf); 

26       end; 

27 end. 

28  

29 procedure select_from_path 

30 p := feature path 

31 begin 

32   cur ← front of p 

33   While 

34     next ← next of cur 

35     if next is null then 

36       begin 

37         add cur to F; 

38         return; 

39       end; 

40     if lift(cur) ≥ lift(next) then 
41       begin 

42         add cur to F; 

43         return; 

44       end; 

45 end. 

Figure 5. Tree-Based Feature Selection Algo-

rithm 

We select the final features among those ob-

tained through the above process by employing a 

widely used feature selection method (in our 

case, χ2). It is because the most representative 

feature in a path might not be effective one in the 

entire feature space. 

5 Experiment 

5.1 Experimental Setup 

The main goal of the experiment is to examine 

the efficacy of the proposed tree-based feature 

selection method in the context of event recogni-

tion and event type classification. For test collec-

tion, we use the TimeBank 1.2 corpus 

(Pustejovsky, Hanks, et al., 2003), which is the 

most recent version of TimeBank, annotated with 

the TimeML 1.2.1 specification. It contains 183 

news articles and more than 61,000 non-

punctuation tokens, among which 7,935 repre-

sent events. 

We analyzed the corpus to investigate on the 

distribution of PoS (Part of Speech) for the to-

kens annotated as events. Most events are ex-

pressed in verbs and nouns. Sum of the two PoS 

types covers about 93% of all the event tokens, 

which is split into about 65% and 28% for verb 

and nouns, respectively. 

The experiment is designed to see the effect of 

the selection method by using the feature candi-

dates generated by the work of Jeong & Myaeng 

(2013), which showed the best performance in 

TimeML event recognition and classification in 

the literature. It generates feature sets based on 

the same criteria of the proposed method using 

syntactic dependencies and WordNet hypernyms. 

To find the concept (i.e., synset) of a target word, 

we applied the word sense disambiguation mod-

ule of BabelNet (Ponzetto & Navigli, 2010). We 

also used Stanford Parser (Klein & Manning, 
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2003) to get the syntactic dependency based fea-

tures. 

A maximum entropy (ME) classifier was used 

because it showed the best performance for the 

tasks at hand, according to the literature. We also 

considered SVM, another popular machine learn-

ing algorithm in natural language processing. 

The evaluation was done by 5-fold cross valida-

tion, and the data of each fold was randomly 

selected. For the classifier, we used the Mallet 

machine learning package (McCallum, 2002) and 

Weka (Witten, Frank, & Hall, 2011). 

5.2 Evaluation 

We first evaluated the proposed tree-based fea-

ture selection in comparison with two widely 

accepted feature selection methods: information 

gain (IG) and χ2. For each feature selection 

method, we chose the number of features that 

gave the best performance in F1. In Table 2, 

TSEL means the pure tree-based feature selec-

tion without the reselection process using χ2 

whereas TSEL+χ2 means the proposed method 

followed by χ2. 

Compared to χ23, TSEL dramatically reduced 

the feature space significantly by 73.93% and 

54.42% for event recognition and type classifica-

tion, respectively, but the decrease of effective-

ness was insignificant for the both tasks. The 

decrease was compensated by the reselection 

process (hence the TSEL+χ2 case) to the point of 

1.26% improvement over the χ2 case. For type 

classification, only 40.68% of the features re-

quired by χ2 were enough to achieve the same 

level of effectiveness achieved χ2. Due to the 

decrease of feature space, the running times of 

classification tasks (except preprocessing) were 

also quite reduced. The time-savings by TSEL 

were about 40% and 45% of χ2 in the recognition 

and the type classification. 

Event Recognition (ME) 

 
IG χ2 TSEL 

TSEL 

+χ2 

# 

features 
202,495 255,371 66,578 

(-73.93%) 
64,041 

(-74.92%) 

P 0.8878 0.8720 0.8664 0.8779 

R 0.8413 0.8531 0.8571 0.8687 

F1 0.8639 0.8624 0.8617 
(-0.08%) 

0.8733 
(+1.26%) 

T 4.12 s 4.14 s 2.52 s 
(-39.13%) 

2.51 s 
(-39.37%) 

 
 

                                                 
3 We use χ2 for discussion instead of IG because it showed 

the better performance than IG for the verb and noun event 

classification, which is the main focus of the research. 

Type Classification (ME) 

 
IG χ2 TSEL 

TSEL 

+χ2 

# 

features 
291,408 267,226 121,793 

(-54.42%) 
108,705 
(-59.32%) 

P 0.8050 0.8117 0.7847 0.8411 

R 0.6340 0.6199 0.6334 0.6026 

F1 0.7094 0.7029 0.7010 
(-0.28%) 

0.7021 
(-0.11%) 

T 9.73 s 9.69 s 5.31 s 
(-45.20%) 

5.28 s 
(-45.51%) 

P: Precision, R: Recall 

T: Running Time of Classification 

(at PC with 3.0 GHz Core 2 Duo CPU and 8 GB 

memory) 

Table 2. Comparisons in time and effectiveness 

for event recognition and type classification 

Event Recognition (SVM) 

 
IG χ2 TSEL 

TSEL 

+χ2 

# 

features 
202,495 255,371 66,578 

(-73.93%) 
64,041 

(-74.92%) 

P 0.8277 0.8048 0.7338 0.8128 

R 0.8406 0.8592 0.8806 0.8576 

F1 0.8341 0.8311 0.8005 0.8346 
 

Type Classification (SVM) 

 
IG χ2 TSEL 

TSEL 

+χ2 

# 

features 
291,408 267,226 121,793 

(-54.42%) 
108,705 
(-59.32%) 

P 0.6189 0.6179 0.6633 0.6833 

R 0.6931 0.6531 0.6790 0.6700 

F1 0.6539 0.6350 0.6711 0.6766 
 

Table 3. Comparisons in effectiveness for event 

recognition and type classification using SVM 

classifier 

Looking at the performance of different PoS 

types, we found that the performance of noun 

events was more meaningfully improved with a 

significantly reduced feature set. With the feature 

set reduction ratios of 81.66% and 81.50% for 

recognition and type classification, respectively, 

we achieved 6.85% and 3.94% of increase in F14. 

For verbs, the numbers of features used for class 

recognition were also reduced significantly, but 

the F1 scores were slightly decreased. Our analy-

sis shows that the increase in effectiveness for 

nouns is mainly attributed to the fact that the 

synsets of most nouns are located at a deep level 

of WordNet hierarchy. On the contrary, the hier-

archy for verbs is not as deep as that of nouns. 

Note that the tree-based selection method is most 

helpful when heavy redundancy of features with 

a deep hierarchy causes a problem. 

                                                 
4 The results are statistically significant with p < 0.05. 
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Recognition (ME) 

 

Verb Noun 

# 

features 
F1 

# 

features 
F1 

χ2 90,792 0.9393 123,480 0.7138 

TSEL 40,189 
(-55.74%) 

0.9385 
(-0.09%) 

25,169 
(-79.62%) 

0.7273 
(+1.89%) 

TSEL

+ χ2 
40,180 

(-55.74%) 
0.9386 

(-0.07%) 
22,644 

(-81.66%) 
0.7627 

(+6.85%) 
 

Classification (ME) 

 

Verb Noun 

# 

features 
F1 

# 

features 
F1 

χ2 217,287 0.7406 47,080 0.6288 

TSEL 
99,100 

(-54.39%) 
0.7220 

(-2.51%) 
21,722 

(-53.86%) 
0.6149 

(-2.21%) 

TSEL

+χ2 
49,550 

(-77.20%) 
0.7223 

(-2.47%) 
8,708 

(-81.50%) 
0.6536 

(+3.94%) 

Table 4. Feature space sizes and effectiveness 

values for noun and verb events in event recogni-

tion and type classification 

Figure 6 and 7 show the performance changes 

incurred by reducing the feature sets for different 

feature selection methods. The lines start from 

the point where all the selected features were 

used in each method and continue with a decre-

ment of 10% of the feature set all the way to the 

minimum of 10% of the originally selected fea-

ture set. The starting points of TSEL+χ2 indicate 

the results of pure TSEL. Despite the elimination 

of many features, the pure TSEL does not much 

harm the F1 compared to the best cases of IG and 

X2. It clearly shows that reducing the size of 

feature sets is less detrimental with the proposed 

method in almost all the cases than the other 

selection methods. TSEL also shows the possi-

bility to select valuable features without manual 

check of performance for the feature space size. 

For event type classification, the manual selec-

tion process (TSEL+χ2) is still needed in order to 

find the best features but it guarantees the more 

effectiveness. 

 
(a) Verb Event Recognition 

 
(b) Noun Event Recognition 

Figure 6. Performance change with feature set 

reduction in event recognition in each of the fea-

ture selection methods 

 
(a) Verb Event Type Classification 

 
(b) Noun Event Type Classification 

Figure 7. Performance change with feature set 

reduction in event type classification in each of 

the feature selection methods 

For the type classification task, Table 5 shows 

detailed scores for all the event types separately. 

An improvement is observed for most of the 

event types except for OCCURRENCE. Our 

analysis shows that this is related to the size of 

the training data. Since the ratio of 

OCCURRENCE events is about 53% of all the 

events in the TimeBank corpus, the training data 

for the OCCURRENCE type is much bigger than 

the others. It indicates that the feature redundan-

cy is problematic when the training data is rela-

tively small and that careful selection of features 

is particularly important to avoid overfitting. 
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χ2 TSEL+χ2 

REPORTING 0.9111 
0.9201 

(+0.99%) 

PERCEPTION 0.6186 
0.6292 

(+1.71%) 

ASPECTUAL 0.6444 
0.6771 

(+5.07%) 

I_ACTION 0.6173 
0.6346 

(+2.80%) 

I_STATE 0.6251 
0.6866 

(+9.84%)* 

OCCURRENCE 0.7219 
0.6980 

(-3.31%)* 

STATE 0.5246 
0.5534 

(+5.49%)* 

Table 5. Performance for different event types 

(unit: F1). * indicates that the percent increase or 

decrease is statistically significant with p < 0.05. 

6 Related Work 

EVITA (Saurí et al., 2005) is the first event 

recognition tool for TimeML specification. It 

recognizes events by using both linguistic and 

statistical techniques. It uses manually encoded 

rules based on linguistic information as main 

features to recognize events. It also uses World-

Net classes to those rules for nominal event 

recognition, and checks whether the head word 

of noun phrase is included in the WordNet event 

classes. For sense disambiguation of nouns, it 

utilizes a Bayesian classifier trained on the Sem-

Cor corpus. 

Boguraev & Ando (2007) analyzed the Time-

Bank corpus and presented a machine-learning 

based approach for automatic TimeML events 

annotation. They set out the task as a classifica-

tion problem, and used a robust risk minimiza-

tion (RRM) classifier to solve it. They used lexi-

cal and morphological attributes and syntactic 

chunk types in bi- and tri-gram windows as fea-

tures. 

Bethard & Martin (2006) developed a system, 

STEP, for TimeML event recognition and type 

classification. They adopted syntactic and se-

mantic features, and formulated the event recog-

nition task as classification in the word-chunking 

paradigm. They used a rich set of features: textu-

al, morphological, syntactic dependency and 

some selected WordNet classes. They imple-

mented a Support Vector Machine (SVM) model 

based on those features. 

Llorens et al. (2010) presented an evaluation 

on event recognition and type classification. 

They added semantic roles to features, and built 

the Conditional Random Field (CRF) model to 

recognize events. They conducted experiments 

about the contribution of semantic roles and CRF 

and reported that the CRF model improved the 

performance but the effects of semantic role fea-

tures were not significant. 

Jeong & Myaeng (2013) argued and demon-

strated that unit feature dependency information 

and deep-level WordNet hypernyms are useful 

for event recognition and type classification. 

Their proposed method utilizes various features 

including lexical se-mantic and dependency-

based combined features. In the TimeBank 1.2 

corpus, the approach achieved 0.8601 and 0.7058 

in F1 in event recognition and type classification, 

respectively. 

7 Conclusion 

In this paper, we proposed a novel feature selec-

tion method for event recognition and event type 

classification, which utilizes a semantic hierar-

chy of features. While our current work is based 

on the WordNet hierarchy and syntactic dpend-

encies, the proposed method can be applied as 

long as it is possible to utilize a feature hierar-

chy, and shows the possibility to select valuable 

features without manual check of performance 

for the feature space size. 

Our experimental results show that the pro-

posed method is significantly effective in reduc-

ing the feature space compared to the well-

known feature selection methods, and yet the 

overall effectiveness is similar to or sometimes 

better than a state-of-the-art approach depending 

on the PoS of the events. In particular, the effec-

tiveness for noun events was improved quite 

meaningfully when the feature space was re-

duced significantly. 

Although the proposed method showed the 

encouraging results, it still has some limitations. 

One issue is on the depth of the features in hier-

archy. For verb, most features are located at shal-

low levels so the feature space reduction ratio is 

lower than those of noun. It implies that we need 

other approaches for verbs. Another one is on the 

recall. The proposed method showed high preci-

sion but relative lower recall. We conjecture that 

one reason is the lack of lexical information due 

to small size of TimeBank corpus. 

Not only to improve recall but also for exten-

sibility of the proposed method, we need to uti-

lize other larger-scale resources for this tasks and 

even apply the proposed method for other types 

of text classification. 
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