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Abstract completely cover all tokens, aims to address these

challenges. It requires that every segment ren-

Query segmentation is to split & query int0  gered s a phrase or a semantic unit. For exam-
a sequence of non-overlapping segments that yje given a query “download adobe writer”, four

completely cover all tokens in the query. The gitrerent ways of segmentation are possible. The

majority of methods are unsupervised, how- chajienge is to determine which one is correct.
ever, they are usually not as accurate as su-

pervised methods due to the lack of guidance
from labeled data. In this paper, we propose
a new paradigm ofearning a replacement
model with consistendy.RMC), to enable un-
supervised training with guidance from search
log data. In LRMC, we first assume the ex-
istence of a base segmenter (an implementa-
tion of any existing approach). Then, we uti-
lize a key observation that queries with a sim-
ilar intent tend to haveonsistentsegmenta-
tions, to automatically collect a set of labeled
data from the outputs of the base segmenter by
leveraging search log data. Finally, we employ
the auto-collected data to train a replacement ~LRMC first assumes the existence of a base seg-
model for selecting the correct segmentation mentation system (hereafter referred to base

of a new query from the outputs of the base Segmente) which can output top: segmenta-
segmenter. The results show LRMC can im- tions for any query. Then it tries to learmeplace-
prove state-of-the-art methods by an F-Score ment modektapable of selecting the correct seg-

The majority of QS methods are unsupervised,
however, they are not as accurate as supervised
methods due to lack of guidance from labeled
data. On the other hand, supervised models suf-
fer from the problems: (1) new phrases/words are
introduced on the web daily, which quickly inval-
idate static supervised models trained on a certain
manually labeled set; (2) it is not feasible to de-
velop a set of labeled data covering all domains
on the web. In this paper, we propose a paradigm
of learning a replacement model with consistency
(LRMC), to enable unsupervised training and it
improves various unsupervised QS systems.

of around 7%. mentation of a new query (if one exists) from the
_ output of the base segmenter. Our study on three
1 Introduction state-of-the-art systems (Section 5.2) shows that

Nowadayskeyword queriefiave been adopted as for more than 35% of queries the correct segmen-
the de-facto query interface by most search entations are not ranked as top-1 but included in the
gines. Query tokens are not independent or untop-5 results of the base segmenter, which implies
ordered symbols but rather ordered and structurethe potential of LRMC. The keys to our proposal
words and phrases with syntactic relationshipsinclude: (a) how taautomaticallyacquire labeled
Understanding the structure of a query is cruciadata (i.e., for a query in the labeled data, what its
for achieving better search performance. Sucl§Orrect segmentation is) and then (b) how to use
an understanding will also ease other search rdhe labeled data to learn the replacement model.
lated applications such as query suggestion and Our method for the automatic acquisition of
rewriting, where one is able to work on seman-the labeled data is motivated by the observation:
tic concepts instead of individual tokenQuery  Queries with a similar intent tend to have consis-
segmentatior{QS), a process of splitting a query tent segmentation resultsin this paper, we say
into a sequence of non-overlapping segments thahat a set of queries have similar intents if and
T *Wei Zhang did this work when he was an intern at mi- ONlY if they lead to the same set of web documents
crosoft Research Asia. (i.e., clicks). For example, when issuing to a web
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| queries | Rank-1 Segmentation Result] Rank-2 Segmentation Resul{

download adobe writer download adob¢writer download | adobe writer
free adobe writer download free | adobe writer | download | free| adobe| writer | download
free adobe writer free | adobe writer free adobe writer

Table 1. Segmentation results for queries with a similaribh{Results in bold are considered correct.)
search engine any of the three queries in Table Inethod for automatically constructing a set of la-
we search for the same set of web pages whicbeled data with a base segmenter and a set of
can provide ‘free download of Adobe writer’. We query intent sets as inputs is effective, capable of
denote such a set of queries gsiery intent sét  discovering correct segmentations missed by the
For the queries in the sangeiery intent setnatu- evaluated base segmenters for more than 20% of
rally we wish to explain them in the same way andqueries (SeéM2 in terms of Acc?"Y in Table 3);
thus require that their segmentations be consistersind (b) our replacement model benefits existing
with each other. We say that and ¢, are in- QS approaches and boosts their performance sig-
consistent in segmentation if there exist more thamificantly (e.g. the improvement of 7% F-Score
one common subsequence of tokens having differen the data WQ10-Majority in Table 4).
ent segment boundaries. In Table 1, we also in- We summarize our contributions as follows: (1)
clude the top-2 segmentation results that can posn the basis of the observation that queries with
sibly be generated by any base segmenter. If wa similar intent tend to have consistent segmen-
check only the ‘rank-1’ results, we observe that thetations, we propose a method for automatically
segmentation ‘download adobevriter’ disagrees collecting from search log data a set of labeled
with the other two. This means that we interpretdata for QS. The method first groups queries in
the same sequence of tokens differently for differsearch log data into what we call a ‘query intent
ent queries with a same intent, which is not whatset’ and then select correct segmentations by ex-
we expect to have. Instead, we expect to have themining the consistency among segmentations for
bolded segmentations in which none of the indi- the queries in the same ‘query intent sets’. (2)
vidual segments for one query disagrees with th&Vith the automatically-collected data, we develop
segments for another query. In this paper, we proa ‘replacement model’ for the purpose of check-
pose two methods for selecting such correct segng whether or not a ‘rank-1' segmentation gener-
mentations from topr segmentation results that ated by a base segmenter should be replaced by a
are about the samguery intent sets With these ‘rank-k’ (K > 1) segmentation. (3) We conduct
methods, we can automatically build up a trainingextensive experiments with two publicly available
data set, which allows us to train a reliable modeldata sets and show that our proposal can effec-

The replacement model concerns abehether  tively boost the performance of state-of-the-art
or not a ‘rank-1’ segmentations® generated Systems (Hagen etal., 2010; Hagen et al., 2011).
by a base segmenter should be replaced by a
‘rank-k’ (k > 1) segmentations®. The deci- 2 Related Work

sion of the replacement can be made by collecgergsma and Wang (2007) considered the deci-
tively considering one or multiple local transfor- sjon to segment or not between each pair of ad-
mations in the form of w1 — wilwit1" OF  jacent words as a binary classification problem.
‘wilwipr = wiwigr’. fwwigr = wilwisl’  Guo et al. (2008), Yu and Shi (2009), and Kisel-
means thab does not include a segment bound-eya et al. (2010) used methods based on CRF. As
ary between tokens; andw;1 andS® does; Sim-  the cost of obtaining labeled data is high, they are
ilarly, ‘w;|wit1 — wiwi1’ means the reverse. ysyally not feasible to develop a set of labeled data
For example, for the first query in Table 1, we cancovering all the domains on the web and then train
have the local transformations ‘download adobe, scalable QS model for web search.
— download| adobe’ and ‘adobewriter — adobe  The work for web-scale QS are usually unsuper-
writer’. The proposed model estimates the sCOrgjsed and utilized various statistics such as mutual
of every local transformation using a binary clas-jnformation (MI) and frequency count collected
sifier and then aggregates the individual scores t§om various sources such as web data, query logs,
reach its final decision. and etc (Risvik et al., 2003; Jones et al., 2006;
We conduct extensive experiments using twoHuang et al.,, 2010; Zhang et al., 2009). Li et
public data sets. The results show that (a) ousl. (2011) also used the language model estimated

29



from click-through documents to backoff the gen-4 Our Proposal
erating process of QS. Tan and Peng (2008) useﬁi
n-gram frequencies from a large web corpus as’
well as Wikipedia. Hagen et al. (2010) showedFirst, the paradigm LRMC assumes the existence
that the raw n-gram could be exploited with an ap-0f a base segmenter that is able to output top-n seg-
propriate normalization scheme and achieved suinentations for any query. Then it tries to learn a
prisingly good accuracy. Later, they enriched the'eplacement modelapable of replacing the rank-
work by including the use of Wikipedia (Hagen 1 segmentation generated by this base segmenter
et al., 2011). In our evaluation, we compare outwith one rankk (k > 1) segmentation.
proposal with the last two work which represent LRMC can be illustrated by the following
state-of-the-art. flowchart. First, a query is fed into a base seg-
Our proposal is orthogonal to all the above apMenter. As aresult, a set of segmentatipfist;
proaches. LRMC assumes the existence of a baggdarding; are generated. Subscriptienotes the
segmenter (an implementation of any above aptank of the corresponding segmentation. Next,
proaches) and it focuses on how to leverage seardhi}i=: are fed into a replacement model. The re-
log data to learn a replacement model for improv-Placement model tries every possible replacement

ing the output of base segmenters. S; (1 > 1) for the ranki segmentatiort; (as in-
dicated by the curved arrows). The trial ends with

two possible results: (a) None of the replacements
is valid (S; cannot be replaced); and (b) one seg-
QS. Let ¢ = [wy,ws, -+ ,w,] denote a query mentationS; (i* > 1) is the most likely replace-
consisting ofn keywords. A segments = mentand thus chosen as the final segmentation for
[wi, -+ ,w;](1 < i < j < n)is a subsequence ¢ (€.9., the replacement of the solid curve).

of the query. A segmentatiofi = [s;|s2| - |sKk] ; ;
for queryq is then defined as a sequence of non- base segmenter S replacement model 523\
overlapping segments|’ ‘denotes a segmentation q 53 Sa
boundary. If we assume there is no order depen- Sn Sn”
dency ofs, we can then treaf as a se{s; } <.

Query Intent. There exist many definitions on
query intent. In this paper we introduce an op-
erational definition on query intent.

1 Overview of the Proposed Paradigm

3 Problem Settings

LRMC is motivated by the following observa-
tion: for most cases, the correct segmentation for
a query is included in its top- segmentation re-
sults already. Usually, there are not that many
Definition 1 The query intenfs) of a queryq is  likely segmentations for a query and thus correct
defined as the set of URL#{ls(¢)) which are  segmentations cannot be ranked too low by a base
clicked forq by users of a web search engine.  segmenter. For example, for any base segmenter

_ _ ; . . .
Because most queries are ambiguous or multit' O experiment, more than 93% of queries can

faceted (Clarke et al., 2009), we manage to restriclflave a segmentation th.at ?S agreed upon by at' least
the number of intents into one or a few by group-°"€ of the annotators in its top-5 results. Given

ing more queries together, which leads to the deﬁ'ghlstobservatlon, what we have totd(; IS nzt ttotgin;l
nition of ‘query intent set. erate or propose a new segmentation, but to te

o _ _ which segmentation is correct in the topesults.
Definition 2 A query intent seQQ’"" is a set of  Next, we detail how the replacement model is

queries satisfying the following conditions: learned. Specifically, we first introduce how we
a) ﬂqu INT Urls(q) # 0; automatically extract from search log data a set
b) Q7[> c of labeled data with ‘consistency’ as a guidance

where|Q'NT| denotes the number of elements inand then explain how a ‘replacement model’ can
Q'NT andc is a parameter to control how spe- pe learned from this data set.

cific a query intent is; a larger value far usually

means that the query intent is more specific andt.2 Consistency as Supervision

thus less ambiguous. Assume that we have guery intent se)/V7 =

Query intent sets used in our experiments will{g;}7*,. With a base segmenter, we generate the
be detailed in Section 5.1. top-n segmentation resultsS;; } (1 < j < n) for
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each queryy;, which forms the following matrix: Note thatcst(S;j,, Sij,) = |Sij,|. Given one se-
S, S Sus s, R lected segmentati_oﬁiji, the objective is to sum
Soivr = < Sa1  Saz  Sas -+ San ) - @ up the consistencies between itself and any of the
rest in matrix Sgivr. Thus, by this objective,
we choose the segmentations whose segments are
What we manage to achieve is to collect a Sehgreed with by most top-segmentations.
of ‘labeled’ data from{5;;}. In the ‘labeled Both strategies assume that correct segments are
data, each query; has only one segmentation g6 nopular than incorrect segments in the top-
Sig+ (Sij+ € {Si}-1), which we consider ‘cor- . 1t of one reasonably-performing base seg-
rect. We make use of two types of strategies Wnenter. Both strategies will fail if the assump-
choose the ‘correct’ segmentations @t g is not true. Our experiments in Section 5.2,
(e.g., those underlined ones Bgivr, namely j, \hich both strategies are able to find more cor-

S12, 522, >Sm_1)_' , rect segmentations than the base segmenters, can
Before explaining the two strategies, let USpe seen as a support for the assumption.
first introduce how we measure the consistency

between two segmentations. —Thensistency 43 Replacement Model
cst(S,S") between segmentatiosand S” is de-
fined as the number of segments they share, i.e.,

Sm1i Sm2  Smsz -+ Smn

— qm

The replacement model is to tell whether or not a
segmentation ranked as ta@y a base segmenter
est (S, S/) —= SN S/\ 1) should be replaced by another segmentation with
arank ofj (1 < j < n). For example, we have a
The first strategyNI1) that we use as ‘super- queryq whose topr segmentations args,; };;:1_
vision’ for the acquisition of the labeled data is Then, the input of the replacement model will be
as follows: The correct segmentations for the 4 possible replacemest; — S,; (j > 1) and the
queries in the sameguery intent setshould be output will be a label ‘1’ or ‘0. Label ‘1’ means
very consistent with or similar to each other aI-Sq1 should be replaced by,; and ‘0’ means ‘not’.
though the segmentations cannot be exactly the \yjith that in mind, we can then make use of

same. Thus, the correct segmentations can be Choéonsistendyto create a labeled data set. For ex-

sen with the objective function: ample, if queryg belongs to a query intent set
) Q'™ and its correct segmentation chosen by the
objective (2) or (3) isS,;+, we can generate the

_ (2 labeled instance(s) as follows:
wherej* denote the index (or rank) of the correct

R « 3k
(.717"' 7]m) = argmax E CSt(Si]'mSi’j,
1<j41, ,jm<n i
=715 Im S 1§i<i/§m

segmentation for queny;. C {(Sq = 84,0} =1
The other strategyM?2) is on the basis of the Dy {(Sq1 — Sgj=, 1)} otherwise
observation: Although at most only one tegseg- (4)

mentation can be correct for a query, most segBy combining all such data sets together, we then

mentations are not totally incorrect, i.e., they in-have the final labeled data sBt = UD,. Note
clude some correct segments while having SOme. ot queryq can come from multipl 1

) i A I Thus. th . e query intent

incorrect segments as well. Thus, those incorrect . (not just one single set).

segmentations also provide some clues about what Next. we explain how to use the above trainin

can be correct. In addition, as the choices for ‘in- ' P g
data to learn a replacement model.

correct segment’ are usually more than those for The decision of whether or not to do the r
correct segment, it is relatively hard for incorrect € decision 0 ether or not fo do the re
lacement ofS,; — S,; can be made by col-

segments to converge to a few. As a result, a corF ctivelv considering one or multiole local trans
rect segment should be more popular than any onfg Vel Iaering uitip

. . : . .__formations in the form of w,w; 1 — w;|w;y:1’
single incorrect segment. Given this discussion, 2 ations in the form ol w;wiy wi[wi 41

N . or ‘wilw;r1 — wywir1’. ‘wiwip1 — wilwisq’
we can have the second obijective function: iwis1 el - i[wit1
. . means thab,; does not include a segment bound-
(1, sJm) = argmax ( Z cst(Sij, Si’j/)

1<j1 e Gm<n ary between tokens; and w;+; and S,; does;

‘wilw;+1 — w;w;1+1’ Means the reverse.

- 1<;m cst(Sigi» Sisz)) LetT'(S, — Sy;) denote the set of all possible
T @) localtransformations fromy,; to S,;; andx denote

! !
1<i,i <m 1<5 <n
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one element from the set (i.e., one local transforness issue when used in various tasks (Bagga and
mation). If we know the likelihoodf (x) of every  Baldwin, 1998; Sriram et al., 2010). Fortunately,
individual transformatiorx being valid, the score the web-scale training data we collect frajery

of replacingS,1 by S,; can then be estimated as intent set{Section 4.2) enables us to have a good
D oxeT(Sy1—Sy;) 4 (%) coverage of lexical features.

The likelihood of a local transformatior be-  Contextual Features: POS Tag. Bergsma et
ing valid can be estimated with a binary classi-a|. (2007) show that part-of-speech (POS) tags are
fier. We employ SVM as the classifier. Given yseful in their segmentation classification. We also
an instancex, SVM assigns a score to it based onexploit the POS tag pair ab;, andw;, 4 as fea-
f(x) = w"x + b, wherew denotes a weight vec- tures. For example, intuitively, “NN NN= NN
tor andb denotes an intercept. Given a replace- NN” is more likely to occur than “JJ NN- JJ
ment(Sg1 — Sg;,y) Wherey € {0,1}, asetof | NN”. The POS tags that we consider include
labeled data for the binary classifier is preparedy|| types of POS tags. Note that this is different
as {X, ytxer(s,—5,,)- BY considering all the re-  from Bergsma et al. (2007). As their segmentation
placements iD, we will have a final training data model only takes care of noun phrase queries, their
set{(x;, ;) }iL, for SVM. POS tags are restricted to determiners, adjectives,

On the basis of that, we can do the replaceand nouns. The POS tagger by (Roth and Zelenko,
ment as follows: |If for certainj (j > 1) 1998)is used in this paper.

erT(sququ)f(X) > 0, we will use the seg- 3] Information (MI).  Following previous

mentation Withag;gix 2 xeT(Sp5y;)  (X) 8 work (Section 2), we also adopt MI between,

its index to replace the top-1 segmentation; Other@Ndwi, 11 as our feature. The work (Bergsma and
wise, we will keep using the top-1 segmentation. Wang, 2007) also considered the case of a noun
phrase with multiple modifiers (e.g. “female bus
4.4 Learning Features driver”). To make the segmentation decision be-
tween ‘female’ and ‘bus’ M I(‘female’, ‘driver’)

In this section, we describe the features for rep- itab| he inf X ;
resenting a local transformatiox, which is in 'S more suitable to represent the information o

the form of either i, wi, 1 ~ wig|wi,+1’ OF not separating_ them that I(‘female’, ‘bus’).
“wiglwig o1 > wigwigsr'. We utilize four cate- Thus, we also mcorporatMI(wio_l,inH) and
gories of features which are possible indicators ofM I(wio, wio+2) INtO OUF feature set.

a transformation, representing a variety of infor- Most previous work on QS only can use word-
mation such as lexical, syntactic, semantic and etd®ased Ml as introduced above. However, in some
Contextual Features: Lexical. The left and cases, the Ml between tokens can not provide suf-
right tokens around the decision positian, and ficient information for a segmentation decision.
wi,+1, are a good signal of the transformation. InFor instance, assume that we have the following
the example of “google desktdpdownload”, the two queries with their correct segmentations: (1)
token ‘download’ is separated from its left neigh- “download| call of duty | free”; (2) “duty free|

bor. Such common query tokens in the trainingShops| sfo”. Only using the token-based mutual
data with the property of usually being separatednformation A/I(‘duty’, ‘free’) can not discrimi-
from or being connected to its left/right neighbor Nate the two queries from each other and thus can
can help predict new transformations (e.g. “adobdlot give different segmentations for ‘duty free’ in
writer download— adobe writet download”). On  the two queries. In our work, as the query has been
the basis of this observation, we adopt the left toSegmented by a base segmenter, we propose to
kenw;, and the right tokenu;, | as the features also use the segment-based MI. In the ‘duty free’
for representing a transformation Furthermore, ©xample,A/I('call of duty’, ‘free’) will be incor-
sometimes one word alone can not perfectly charPorated for the transformation decision related to
acterize a transformation. For example, to rejectdownload | call of duty free— download| call

the transformation “diet plan- diet | plan”, we  Of duty| free”, where the token-based I(‘duty’,
have to use the token bigrarndiet plan-. Thus, free’) does not work.

we include all the token bigrams in the formaf Semantic Features.We define the semantic fea-
wj, wi,+1 > as features as well. As we all know, tures on the basis of segments. For a transforma-
lexical features usually suffer from a data sparsetion ‘w;,w;,+1 — w;,|w;,+1" , let us denote the
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segment includingsy w1 (n the first seamen- [mank | 1 e SEEATRESEoTEar DAY
tation) ass; and denote the segments including [pirection T, T wywiet — wiwiss™, O, reverse.
wj, andw;, 41 separately (in the second segmenta-| Positiod*”> | Number of words from the decision pg-
tion) ass, andss, respectively. To obtain seman- Positiof*?"* | sition to the beginning/end of query.
tic labels for the above three segments, we make 1,102 The
use of a web-scale knowledge base of entities .
namely Freebase (Bollacker et al., 2008). First, We5 Experiments
map the three segments to the Freebase entities Byl Experimental Setup
string matching, and then use the names or aliasgspllowing Hagen et al. (2011), we evaluate a QS
of the associated categories of the mapped entitiesystem at three levelQuery Level:
as their semantic labels. Finally, the semantic la-
bels fors;, so and ss are used as features. Due AccTY =
to the ambiguity, a phrase in a query may be mis-
takenly linked to a certain entity in the knowledge Break Level. The decision of break is whether
base. Thus, the semantic features include somar not to insert a segment boundary between
noises. However, even with noises such featuresvo tokens in the query. The break-level accu-
can still contribute to QS. To illustrate how the se-racy (Acc”*) is defined as the proportion of the
mantic features work, consider the query with thecorrectly-made decisions out of all such decisions.
assigned semantic label as follows, Segment Level. Let Q°*® denote the set of
queries. S;¥° is the segmentation generated by a

l . .
[history of thelyy, [search engingbmputer sofware genre system andbg"* is given by a human. Then,

rank’, ‘direction’ and ‘position’ features

#correctly segmented queries
#queries in the evaluation data set

(®)

sYs eval
P9 = Z |qu qu ‘

As pointed out by (Tan et al., 2008), QS ap- A Bl
proaches which are only based on statistical in- gous (y geval N )
formation (e.g. M I and frequencies of n-grams) R = Z 157 N Sg™ | oo = 2P RY

(0] g q g - ‘Sg'ual| Pseg +ng
collected from the Web, cannot guarantee that the a€Q

resulting segments are meaningful ones. For the \we use two data sets as introduced in (Bergsma
query ‘history of the search engine’, a possiblegngd wang, 2007) and (Hagen et al., 2010), denoted
segmentation is ‘history of thesearch engine’, 35 ‘Bergsma-Wang-07' BW07) and ‘Webis-

as both ‘history of the’ and ‘search engine’ 0CCUrQSeC-10° WQ10). BWO7 includes 500 test
on the web frequently. In contrast, semantic infor—queries which all were noun phrase queries. Each
mation can distinguish ‘search engine’ from ‘his-query was segmented manually by three annota-
tory of the’, as ‘history of the' is labeled as NULL tgrg (denoted as annotator A, B, and C) respec-
and ‘search engine’ is labeled as ‘computer softtively, For 44% of the queries, all three annota-
ware genre’. Moreover, the learning algorithm canyors agree on the segmentations. Such an agree-
also learn some implicit relations between transment between annotators cannot be considered as
formations and semantic labels, e.g. some partiostrongv1 which to some extent implies that hu-
ular combination of labels fos;, s andss may  man annotations may not be so reliable when used
often trigger or prevent a transformation. for training a segmentation model capable of con-
Rank, Direction and Position Features.Table 2  sistently working over different queries. WQ10
shows the values of these features. The rank feancludes 4,850 queries. Each query can be any
ture is designed to distinguish among the differentype of query, not necessarily a noun phrase query.
segmentation rankings of a base segmenter. Fdtach query was annotated by ten annotators.
example, this feature can capture the intuition that We made use of the mining method in (Hu et
for a good base segmenter, top ranked segmentat., 2011) for collecting thguery intent setswith
tions should have more of a chance to be selectedhe search log data and clicks (Apr 1, 2009-Mar
The direction feature is used to distinguish the twa31, 2010) as input, we finally obtained 9,412,308
kinds of transformations: w;w;11 — w;|w;+1’ query intent sets, which totally include 30,902,284
and ‘w;|w;+1 — w;w;+1’. The position feature unique queries. The similar queries in each set
considers decision positions, as transformations ishare more than 10 clicks. Each set include$2
different positions may have different chances. queries. We denote this data set@Set Note
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that this data set does not have any annotationsults of the base segmenter. Note tlafcle is
Thus, we also tried to construct another data sean upper-bound result obtained by directly match-
(denoted ag)Set™™) by intersectingQSet with  ing with human’s annotation and cannot be applied
WQ10. QSet™ includes 1,554 queries. Every to query intent set€Set for collecting labeled
query inQSet™” is then associated with the hu- data. Table 3 provides the results, where top-
man annotations from WQ10 and linked to at leas(1 < k£ < 5) means that the input td1 /M2 is the
one query intent set iQSet top-k results of the corresponding base segmenter.
As each query has more than one segmentatiolyote that the top- results are the performance of
due to different annotators, we select segmentatiothe base segmenters.
as our reference under two schemedstajority ’ By checking the results ddracle, we can find
where the segmentations agreed upon by a majothat for every base segmenter, more than 35%
ity of the annotators are chosen as the referencef the correct segmentations in the topesults
and Best where the annotated segmentations thatare not covered by the topresults (in terms of
maximize the break accuracyec™* of the evalu-  Acc?™Y). In addition, around 90% correct segmen-
ated segmenter are chosen as the reference. tation boundaries4cc*) are included in the top-
We mainly utilized three unsupervised systems results of the base segmenters. These findings
as base segmenters. They are described in (H#dicate the feasibility of our replacement model,
gen et al., 2010) , (Hagen et al., 2011) and (Risvikvhich tries to replace a ranksegmentation by a
et al., 2003), denoted aBase’!l, Basé™2 and rank# (k > 1) segmentation.
BaséN respectively. They can represent the state- From the table, we also see that bo#ii and
of-the-art QS performance. For exam@asé™? M2 are able to significantly perform better than
on on data BWO7(A) achieve8).2%F*9 which  the base segmenters do &€ 0.05, t-test). This
slightly outperforms the recent unsupervised sysean be observed through all the measures. For ex-
tem (Li et al., 2011) €9.0% F'*9). ample, usingAcc?? as the evaluation metric, the
As we focus on web QS, we did not comparepercentage of the correct segmentations Mat
LRMC with supervised methods which are only discovers more than the base segmenters do ranges
designed for one particular domain. For examplefrom 20.2% to 24.6%. These improvements prove
Yu et al. (2009)'s method is for queries of rela- the underlying assumption that queries with a sim-
tional databases. The work (Bergsma and Wanglar intent tend to have consistent segmentation.
2007) and the supervised stage of (Bendersky @desides, we can see thd can reach a satisfied

al., 2009) are only for noun-phrases. performance to collect the labeled data. For exam-
ple, break-level accuracycc”* can reach 80%.
5.2 Consistency as Weak Supervision Table 3 also shows that M1 and M2 perform

best by using top 3 or 4 results from base seg-
menter. This finding indicates that our framework
§hould work with a reasonable base segmenter.

LRMC relies on a training data which is automat-
ically collected with the help of query intent sets.
Thus, in this section, we evaluate the training se B ing th it ted M q
collected byM1 andM2 (Section 4.2). y comparing the resuils generate ¥ an
. . . M2 with all three measures, we see thé2 con-
In the experiments, we first applied a base S®Y3istently performs better thavi1, and the differ-
menter to the queries @Setand then managed to yp ’

: nce is statistical significanp (< 0.05, t-test).
choose one segmentation as correct from the ou This tells us that consistency should be calculated
put for each query with eitheml1l or M2. Last, y

. with all the topn segmentations rather than with
we evaluated the new output by checking only the P71 S€9

segmentations for the queries in subQ8et"". only the selected segmentations.
Some queries ||QSetm" may belong to dlﬁerept 5.3 Query Segmentation
intent-sets and in each intent-set may have differ-
ent segmentation labels as ‘correct’. In our evaldn this section, we investigate the effectiveness of
uation, we randomly selected one of them as theur LRMC which is a combination of data collect-
final label. Besides, we also included an idealing method and replacement model.

method Oracle by which the correct segmenta- In the experiments, we first made use £
tion can always be identified and used as the newo automatically collect the training data from the
output if the segmentation exists in the topge-  query intent setQSet During the process of col-
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Segmenter | Rank Oracle | M1 | M2
| Acci™ | Acc®F | F?s9 | Accd™ | Acc®F | F®9 | Acci?™ | Acc®F | F?s9 |
Top-1 38.7 67.9 51.7 38.7 67.9 51.7 38.7 67.9 51.7
Top-2 46.1 76.1 60.8 42.4 70.0 55.6 47.0 76.4 56.3
BaséN Top-3 67.3 85.6 74.9 58.8 81.3 68.3 58.8 81.0 68.1
Top-4 73.3 88.5 79.9 58.3 79.6 67.6 58.9 81.4 68.3
Top-5 75.2 89.5 81.5 44.6 72.1 57.6 59.6 61.0 60.2
Top-1 42.9 69.7 53.8 429 69.7 53.8 429 69.7 53.8
Top-2 59.0 81.7 68.9 46.0 75.9 60.6 47.2 77.2 61.7
Basé'! Top-3 72.5 87.8 78.5 63.2 83.0 70.8 65.3 82.5 72.0
Top-4 75.2 89.4 81.2 64.3 83.3 71.6 64.3 83.5 71.8
Top-5 77.9 90.6 83.2 59.0 81.7 68.7 63.0 82.1 70.0
Top-1 39.6 68.3 52.2 39.6 68.3 52.2 39.6 68.3 52.2
Top-2 51.6 78.5 64.2 45.6 74.0 59.4 45.4 735 59.2
Basé'? Top-3 69.4 86.4 76.3 61.0 80.1 69.4 64.2 83.4 71.2
Top-4 74.1 88.9 80.5 59.2 78.9 69.0 63.1 82.2 70.0
Top-5 76.7 90.1 82.5 59.8 78.0 67.2 67.1 66.3 66.5

Table 3: Consistency as weak supervisior@®et'"" (Majority)

i Basé™ Basé” Bas€' 2
lecting the data, we took only the tapsegmenta- | patse e R | B LI | B i

tions as input. The training data set collected by AccTV] 534 563 | 562 567 | 538 554

i ilion i i BWO7 | Acc’*| 79.3 814 | 802 819 | 795 8L7
M2 contalqs around 45 mllllqn instances (pglrs of @) 55 | eos ese | 675 702 | can  eos
segmentations). Then, all this labeled data is use| AccT77374 402 |7398 411 | 378 398
to train the replacement model as introduced in @ | 75 | L35 fas | tee tas | ere cai
Section 4.3. We made use of LIBSVM (Chang an Accl'V] 416 442 | 438 467 | 420 469
. . . . BWO7 Acc’" 74.1 75.2 75.0 78.6 74.2 78.6
Lin, 2011) and a linear kernel in our experiment.| Fo9 569 604 | 580 623 | 571 624
Finally, we applied the learned replacement modf Accl'V] 622 672 [ 646 662 | 656  66.8

i BWO7 | Acc®™®| 851 90.0 | 86.1 87.3 | 87.6 88.7

els to the evaluation data sets BW07 and WQ10. | (Best | F*9 745 796 | 758 784 | 786 795

l.}l Il . Acc?V] 30.0 385 31.8 40.1 30.3 39.8

Table 4 reports the QS resuitsollowing pre- WQ10 | Acc’™| 653 721 | 662 740 | 655 73.1

i . (Majority)) F59 475 551 | 485 558 | 47.7 556

vious work (Bergsma and Wang, 2007, Hagen e e RN R

al., 2011), we report four groups of results with the| wqio | Acc*| so5 847 | 835 896 | 844 895

. sg

data BWO7. In each of the first three groups, only—&) | £ 678 727 |72 790 | 721 788

the reference segmentations from annotator A, B Table 4: Performance on query segmentation
or C are used. The fourth group Bést of BWO7.

We also report two groups of resultsvijority ’

and Best) with the data WQ10. Comparing ang then learns how to select correct segmenta-
each pair of ‘Base’ and 'LRMC’, we can see thatyjo s from the output of the base segmenter. The
LRMC proposed in this paper can be successfullyo |, coment model is trained by a labeled data set
spliced onto different base segmenters and S'gn'fxivhich can be automatically collected froquery
icantly improves them. over diff_erent data sets UNintent setsinstead of relying on any human anno-
der the three evaluation metrickec®?, Acc”® 4 yion “There exist two interesting directions for

and F*9. (p < 0.05, t'te;_t} Especéiﬁlzly, the  future work: (1) we observe that there is still a big
state-of-the-art systentiase”” andBase€™ have ., in herformance between the proposed meth-

been significantly improved by LRMC. The im- o4¢ andoracle. According to our analysis, most

provements prove thqt the automatically—collectedof the gap is caused by that the incorrect segmenta-
labeled data can guide QS and our replacemenfy g for some similar queries also happen to have
model can take advantage of the data. a high consistency when measured by either pro-
posed strategy. Thus, it is worth studying other

] methods that can address such performance gap.
We have proposed a paradigm LRMC for QS.(2y we would like to further explore the concept

LRMC assumes the existence of a base segmentgf o ery intent sets. In this paper, we assume that

!Note that the results for the base segmerBasé™ and ~ Similar intent queries tend to have similar segmen-

-2 : . .
Basé" are not exactly same as those reported in (Hagen gations. A reasonable next step is to explore the

al., 2011) although they are very close. For exa ¢ . S . .
andBasé)FZ on nglo aychieve 73:;.4%35, and 74;:2,{3?;; in Idea that similar intent queries tend to have similar

the original paper. Ours are 71.2% and 72.1%. The reason@bels, which can be useful for the task of tagging

are as follows: For BW07, they used a cleaned version of th i ;
data set; for WQ10, they released just a subset of the da?éuery segments with semantic labels.

used in their experiments.

Measure%

[@]

6 Conclusions and Future Work
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