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Abstract

Word alignment is a fundamental step in
machine translation. Current statistical
machine translation systems suffer from a
major drawback: they only extract rules
from 1-best alignments, which adversely
affects the rule sets quality due to align-
ment mistakes. To alleviate this prob-
lem, we extract hierarchical rules from
weighted alignment matrix (Liu et al.,
2009). Since the sub-phrase pairs would
change the inside and outside areas in
the weighted alignment matrix of the hi-
erarchical rules, we propose a new algo-
rithm to calculate the relative frequencies
and lexical weights of hierarchical rules.
To achieve a balance between rule table
size and performance, we construct a scor-
ing measure that incorporates both fre-
quency and lexical weight to select the
best target phrase for each source phrase.
Experiments show that our approach im-
proves BLEU score by ranging from 1.4
to 1.9 points over baseline for hierarchi-
cal phrase-based, and 1.4 to 1.5 points for
tree-to-string model.

1 Introduction

Word alignment plays an important role in statis-
tical machine translation (SMT). Most SMT sys-
tems, not only phrase-based models (Och and
Ney, 2004; Koehn et al., 2003; Xiong et al., 2006),
but also syntax-based models (Chiang, 2005; Liu
et al., 2006; Galley et al., 2006; Huang et al., 2006;
Shen et al., 2008), usually extract rules from word
aligned corpora. However, these systems suffer
from a major drawback: they only extract rules
from 1-best alignments, which adversely affects
the rule sets quality due to alignment mistakes.

Typically, syntax-based models are more sensi-
tive to word alignments because they care about
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Figure 1: (a) One alignment of a sentence pair; (b)
another alignment of the same sentence pair. Here
coreless dots denote wrong links.

inside (i.e., subtracted phrases). Figure 1(a) shows
an alignment of a sentence pair. Since there is a
wrong link (de, of), we could not extract many
useful hierarchical rules such as (zhongguo X1

jingji, China X1 economy).To alleviate this prob-
lem, a natural solution is to extract rules fromn-
best alignments (Venugopal et al., 2008).

However, usingn-best alignments still face two
major challenges. First,n-best alignments have
to be processed individually although they share
many links, see (zhongguo, China) and (jingji,
economy) in Figure 1. Second, regardless of prob-
abilities of links in each alignment, numerous
wrong rule would be extracted fromn-best align-
ments. For example, a wrong rule (X1 de jingji,
of X1 ’s economy) would be extracted from the
alignment in Figure 1(a).

Since Liu et al. (2009) show that weighted
alignment matrix provides an elegant solution to
these two drawbacks, we apply it to the hierarchi-
cal phrase-based model (Chiang, 2005) and the
tree-to-string model (Liu et al., 2006; Huang et
al., 2006). While such an idea seems intuitive,
it is non-trivial to extract hierarchical rules from
weighted alignment matrices.

Our work faces two major challenges. The first
is how to calculate the relative frequencies and lex-
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Figure 2: (a) One alignment of a sentence pair; (b) another alignment of the same sentence pair; (c) the
resulting weighted alignment matrix that samples the two alignments, of which the initial probabilities
are 0.6 and 0.4 respectively.

ical weights of the rules with non-terminals (NTs).
The sub-phrase pairs that are replaced with NTs in
a rule, would change the inside and outside areas
in the weighted alignment matrix of the rule. In
addition, the sub-phrase pairs have their own prob-
abilities and we should incorporate them to better
estimate the probabilities of the hierarchical rules.
Therefore, the calculations of relative frequencies
and lexical weights for hierarchical rules are more
complicated.

Another challenge is how to achieve a balance
between performance and rule table size. Note that
given a source phrase, there would be plenty of
“potential” candidate target phrases in weighted
matrices (Liu et al., 2009). If we retain all of
them, these phrase pairs would produce even more
hierarchical rules. For computational tractability,
we need to design a measure to score the phrase
pairs and wipe out the low-quality ones.

We propose a new algorithm to calculate the rel-
ative frequencies of rules, and construct a mea-
sure that incorporates both frequency and lexical
weight to score target phrases. Experiments (Sec-
tion 4) show that our approach improves BLEU
score by ranging from 1.4 to 1.9 points over base-
line for hierarchical phrase-based, and 1.4 to 1.8
points for tree-to-string model.

2 Weighted Alignment Matrix

A weighted alignment matrix (Liu et al., 2009)
m is a J × I matrix to encode the probabilities
of n-best alignments of the same sentence pair.
Each element in the matrix stores a link probabil-
ity pm(j, i), which is estimated from ann-best list

by calculating relative frequencies:

pm(j, i) =

∑
a∈N p(a)× δ(a, j, i)∑

a∈N p(a)
(1)

where

δ(a, j, i) =

{
1 (j, i) ∈ a
0 otherwise

(2)

HereN is ann-best list,p(a) is the probability of
an alignmenta in then-best list. The numbers in
the cells in Figure 2(c) are the correspondingpm.

Sincepm(j, i) is the probability thatfj andei
are aligned, the probability that the two words are
not aligned is

p̄m(j, i) = 1.0− pm(j, i) (3)

Figure 2 shows an example. The probability for
the two wordszhongguo andChina being aligned
is 1.0 and the probability that they are not aligned
is 0.0. In another way, the two words are definitely
aligned.

Given a phrase pair (f j2
j1

, ei2i1), Liu et al. (2009)
calculate relative frequencies following Och and
Ney (2004):

φ(ẽ|f̃) =
count(f j2

j1
, ei2i1)∑

e
i′
2
i′
1

count(f j2
j1
, e

i′2
i′1
)

(4)

The key point to calculate the relative frequency
of the phrase pair is to obtain its fractional count.
Liu et al. (2009) use the product of inside and
outside probabilities as the fractional count of a
phrase pair. Liu et al. (2009) define that inside
probability indicates the probability that at least
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Figure 3: A weighted alignment matrix of a phrase
pair. The light shading area is the outside area of
phrase pair, and the area inside the pane with bold
lines is the inside area.

one word in source phrase is aligned to a word in
target phrase, and outside probability indicates the
chance that no words in one phrase are aligned to
a word outside the other phrase. The fractional
count is calculated:

count(f j2
j1
, ei2i1) = α(f j2

j1
, ei2i1)× β(f j2

j1
, ei2i1) (5)

whereα(·) andβ(·) denote the inside and outside
probabilities respectively, which can be calculated
as

α(·) = 1−
∏

(j,i)∈in(·)
p̄m(j, i) (6)

β(·) =
∏

(j,i)∈out(·)
p̄m(j, i) (7)

Here in(·) denotes the inside area, which in-
cludes elements that fall inside the phrase pair,
while out(·) denotes the outside area including el-
ements that fall outside the phrase pair while fall
in the same row or the same column. Figure 3
shows an example. The light shading area is the
outside area of phrase pair and the area inside the
pane with bold lines is the inside area.

To calculate the lexical weights, Liu et al.
(2009) adaptpm(j, i) as the fractional count
count(fj, ei). The fractional counts of NULL
words can be calculated as:

count(fj, e0) =

I∏

i=1

p̄m(j, i)

For example, in Figure 2,count(de,′ s) is 0.4 and
count(de,NULL) is 0.24.

Then the lexical weight can be calculated as:

pw(ẽ|f̃ ,m) =

|ẽ|∏

i=1

((
1

{j|pm(j, i) > 0} ×

∑

∀j:pm(j,i)>0

p(ei|fj)× pm(j, i)

)
+

p(ei|f0)×
|f̃ |∏

j=1

p̄m(j, i)

)
(8)

where

p(ei|fj) =
count(fj, ei)∑
e′i
count(fj, e′i)

(9)

We apply weighted alignment matrix to the hier-
archical phrase-based model (Chiang, 2007) and
the tree-to-string model (Liu et al., 2006; Huang
et al., 2006).

3 Rule Extraction

In hierarchical rules, both source and target sides
are strings with NTs. In tree-to-string rules, the
source side is a tree with NTs, while the target
side is a string with NTs. Since the tree structure
of source side has no effect on the calculations of
relative frequencies and lexical weights, we can
represent both tree-to-string and hierarchical rules
as below:

X → 〈γ, α,∼〉
where X is a nonterminal,γ andα are source and
target strings (consist of terminals and NTs), and
∼ represents word alignments between NTs inγ
andα.

The bulk of syntax grammars consists of two
parts:phrase pairs andvariable rules. The differ-
ence between them is containing NTs or not. Since
we can calculate relative frequencies and lexical
weights of phrase pairs as in Liu et al. (2009), we
only focus on the calculation of variable rules.

3.1 Extraction Algorithm

Following Chiang (2007) and Liu et al. (2006),
our extraction algorithm involves two steps. First,
we extract phrase pairs from weighted alignment
matrices. Then, we obtain variable rules by re-
placing sub-phrase pairs with NTs.

Figure 4 shows the algorithm of extracting
phrase pairs from a weighted matrix for the hier-
archical phrase-based model. The input of the al-
gorithm is a sentence pair (fJ

1 , eI1) that are both
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1: procedure PHRASEEXTRACTION(fJ
1 , eI1, m, l)

2: R ← ∅
3: for j1 ← 1 . . . J do
4: j2 ← j1
5: while j2 < J ∧ j2 − j1 < l do
6: T ← {i|∃j : j1 ≤ j ≤ j2 ∧ pm(j, i) > 0}
7: il ← MIN(T )
8: iu ← MAX (T )
9: r ← NULL

10: s(r)← −1
11: for n← 1 . . . l do
12: for i1 ← il − n+ 1 . . . iu do
13: i2 ← i1 + n− 1
14: if s(f j2

j1
, ei2i1) > s(r) then

15: r ← (f j2
j1
, ei2i1)

16: s(r)← s(f j2
j1
, ei2i1)

17: R ← R∪ {r}
18: j2 ← j2 + 1

19: returnR

Figure 4: Algorithm of extracting phrase pairs
from a sentence pair〈fJ

1 , e
I
1〉 annotated with a

weighted alignment matrixm. We just retain the
best target phrase for each source phrase. Here
s(·) denotes the selection criteria in Section 3.2

target phrase α β count

China ’s economy 1.0 0.4 0.4
of China ’s economy 1.0 0.6 0.6

China ’s 1.0 0.0 0.0
of China ’s 1.0 0.0 0.0

Table 1: Some candidate target phrases of the
source phrasezhongguo de jingji in Figure 3 (sup-
pose the structure ofzhongguo de jingji is a com-
plete sub-tree). Hereα is inside probability,β is
outside probability, andcount is fractional count.

strings, a weighted alignment matrixm, and a
phrase length limitl. Note that we just retain
the target phrase of highest score for each source
phrase (lines 13-16). We describe these in Sec-
tion 3.2. After we extract phrase pairs, we can ob-
tain variable rules by replacing sub-phrase pairs
with NTs.

We can also extend this algorithm to tree-to-
string model. The difference is that the source
sentence should be a tree instead of a string and
additional syntactic constraints operate.

3.2 Selection Criteria

(Liu et al., 2009) show that given a source phrase,
there would be multiple “potential” candidate tar-
get phrases in weighted matrices. Table 1 lists
some candidate target phrases of the source phrase
zhongguo de jingji in Figure 3. If we retain all of

them, it will lead to an exponentially increasing
rule table. To achieve balance between rule table
size and performance, we just select the best can-
didate target phrase.

An interesting finding is that a target phrase
with the largest fractional count is not always the
best one. For example in Table 1, the target phrase
of China ’s economy has a larger fractional count
thanChina ’s economy. However, we can see that
(zhongguo de jingji, China ’s economy) is better.

To alleviate this problem, we incorporate lexi-
cal weight to distinguish good target phrases from
bad ones. While frequency indicates how of-
ten the source phrase and target phrase occur to-
gether, lexical weight models the correspondence
between them. Therefore, we can construct a scor-
ing measure that incorporates both frequency and
lexical weight. The scoring equation below mod-
els this effect:

s(f̃ , ẽ) = ω · count(f̃ , ẽ) + (1− ω) · pw(ẽ|f̃ ,m) (10)

whereω is the interpolation weight,count(f̃ , ẽ)
is calculated by Equation 5, andpw(ẽ|f̃ ,m) by
Equation 8. In practice, we setω = 0.5.1 Suppose
pw(China ’s economy | zhongguo de jingji) is 0.7
andpw(of China ’s economy | zhongguo de jingji)
is 0.4, then we should choose the target phrase
China ’s economy althoughof China ’s economy
has a larger fractional count.

Note that we select the best target phrase for
each source phrase for just one sentence. It means
there could still be many target phrases for each
source phrase during decoding.

3.3 Calculating Relative Frequencies

Figure 5 shows an example of the matrix of a hier-
archical rule, which is generated from the phrase
pair in Figure 3. Due to the existence of sub-
phrase pairs, the inside and outside areas changes
(see the difference between Figure 3 and Figure 5).
Therefore, we can not simply calculate the outside
probability of the hierarchical rule using the prod-
uct of outside probabilities of phrase pair and sub-
phrase pairs.

We follow Liu et al. (2009) to calculate relative
frequencies using the product of inside and outside
probabilities. We now extend the definitions of in-
side and outside probabilities to hierarchical rules
that contain NTs.

1We tried a few other settings and found them to be less
effective.
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rule α β count

X1 de jingji, X1 ’s economy 1.0 0.4 0.4
zhongguo X1, China X1 1.0 0.4 0.4

zhongguo de X1, China ’s X1 1.0 0.24 0.24
X1 de X2, X1 ’s X2 1.0 0.24 0.24

Table 2: Some hierarchical rules generated from the phrase pair (zhongguo de jingji, China’s economy) in
Figure 3 (suppose the structure ofzhongguo de jingji is a complete sub-tree). Hereα is inside probability,
β is outside probability, andcount is fractional count.
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Figure 5: A weighted alignment matrix of a vari-
able rule, which is obtained by replacing (zhong-
guo,China) with X in (zhongguo de jingji,China ’s
economy). The diagonal area is the inside area of
the sub-phrase pair. The shading area is the out-
side area of the variable rule, and heavy shading
area is the duplicate outside area. The no shading
area inside the pane with bold lines is the inside
area.

Given a variable rule (f ′, e′), which is generated
from the phrase pair (f j2

j1
, ei2i1) by replacing sub-

phrase pairs withX. We denoteR as the variable
rule, P as the phrase pair (f j2

j1
, ei2i1), andXk as

the kth sub-phrase pair that is replaced withX.
Therefore, the inside probability of a variable rule
is calculated as:

α(R) =
∏

k

α(Xk) (11)

We tried to follow the constraints of Chiang
(2007): (1) unaligned words are not allowed at the
edges of phrases; (2) a rule must have at least one
pair of aligned words. This would take into ac-
count the terminals in the variable rule, but make
the calculation more complicated (especially con-
straint (1)). However, it didn’t work well. There-
fore, we only constraint that the rule should re-
spect the word alignment, which means one ter-
minal in a phrase could not align to another word
outside the phrase (using outside probability).

Accordingly, the outside probability is calcu-
lated as:

β(R) =
∏

(j,i)∈out(R)

p̄m(j, i) (12)

where

out(R) = out(P )
⋃(⋃

k

out(Xk)
)

For example, the inside probability of (X1 de
jingji, X1 ’s economy) in Figure 5 is 1.0, and its
outside probability is 0.4.

We also use Equation 5 to calculate the frac-
tional counts of hierarchical rules. We follow Liu
et al. (2009) to prune rule table using a thresh-
old of frequency. Table 2 lists some hierarchical
rules generated from the phrase pair (zhongguo de
jingji, China’s economy) in Figure 3. If the thresh-
old is 0.2, we retain all the rules in Table 2.

3.4 Calculating Lexical Weights

We denoteSR as all words in source side of the
inside area of variable ruleR, andTR as the words
in target side. For the rule (X1 de jingji, X1 ’s
economy) in Figure 5,SR is {de, jingji} andTR is
{’s, economy}. Then, we can calculate the lexical
weight as:

pw(ẽ|f̃ ,m) =
∏

i∈TR

((
1

|{j|pm(j, i) > 0|} ×

∑

∀j:pm(j,i)>0

p(ei|fj)× pm(j, i)

)
+

p(ei|f0)×
∏

j∈SR

p̄m(j, i)

)
(13)

Note that we only consider each word pair (fj,
ei) in the inside area of the variable rule. For ex-
ample, the lexical weight of (X1 de jingji, X1 ’s
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economy) is

(1
2
×
(
p(′s|de)× 0.4 + p(′s|jingji) × 0.4

)
+

p(′s|NULL)× 0.36
)
×

(
p(economy|jingji) × 1.0

)

Here the probability thateconomy translates a
source NULL token is 0.0.

4 Experiments

4.1 Data Preparation

Our experiments are on Chinese-English transla-
tion based on replications of hierarchical phrase-
based system (Chiang, 2007) and tree-to-string
system (Liu et al., 2006). We train a 4-gram
language model on the Xinhua portion of GIGA-
WORD corpus using the SRI Language Model-
ing Toolkit (Stolcke, 2002) with modified Kneser-
Ney smoothing (Kneser and Ney, 1995). We opti-
mize feature weights using the minimum error rate
training algorithm (Och and Ney, 2002) on the
NIST 2002 test set. We evaluate the translation
quality using case-insensitive BLEU metric (Pa-
pineni et al., 2002) on the NIST 2003/2004/2005
test sets.

To obtain weighted alignment matrices, we fol-
low Venugopal et al. (2008) to producen-best
lists via GIZA++. We produce 20-best lists in two
translation directions, then used “grow-diag-final-
and” (Koehn et al., 2003) to all20 × 20 bidi-
rectional alignment pairs. We follow Liu et al.
(2009) to useps2t × pt2s as the probabilities of an
alignment pair. Analogously, we abandon dupli-
cate alignments that are produced from different
alignment pairs. After these steps, there are 110
candidate alignments on average for each sentence
pair. We obtainedn-best lists by selecting the top
n alignments from 110-best lists. We re-estimated
the probability of each alignment in then-best list
using re-normalization (Venugopal et al., 2008).
Finally, we construct weighted alignment matrices
from thesen-best alignments.

We will first report results trained on a small-
scaled corpus, and then scale to a larger one.
When extracting tree-to-string rules, we limit the
maximal height of rules to 3. We use the pruning
threshold:t = 0.5.

4.2 Results on Small Data

To test the effect of our approach, we firstly car-
ried out experiments on FBIS corpus, which con-
tains 230K sentence pairs. Table 3 shows the rule
table size and translation quality. Usingn-best
alignments slightly improved the BLEU score, but
at the cost of much slower extraction, since each
of top-n alignments has to be processed individu-
ally although they share many align links. Matrix-
based extraction, by contrast, is much faster due
to packing and produces consistently better BLEU
scores. The absolute improvements of ranging
from +1.6 to +1.8 BLEU points and +1.4 to +1.8
BLEU points over 1-best alignments for hierarchi-
cal phrase-based and tree-to-string models respec-
tively, are statistically significant atp < 0.01 by
usingsign-test (Collins et al., 2005).

Basically, in the matrix case of the hierarchi-
cal phrase-based model, we can use about twice
as many rules as in the 1-best case, or 1.3 times of
10-best extraction. However, in tree-to-string sce-
nario, matrix-based extraction produces less rules
thank-best extraction. We contribute this to the
extra complete sub-tree constraint.

4.3 Results on Large Data

We also conducted experiments on a larger train-
ing data, which contains 1.5M sentence pairs com-
ing from LDC dataset.2

The ruletable size and BLEU score are shown
in Table 4. An interesting finding is that BLEU
scores decline when usingk-best extraction in
some cases. We conjecture that some low-quality
rules that harm the performance of decoder, are
extracted fromk-best alignments. Using weighted
matrices on larger corpus also achieved signifi-
cant and consistent improvements over using 1-
best andn-best lists. These results confirm that
our approach is a promising direction for syntax-
based machine translation.

4.4 Comparison of Parameter Estimation

In this section we investigated the question of how
many rules are shared byn-best and matrix-based
extractions on small data (FBIS corpus). Our mo-
tivation is that weighted alignment matrices have
been reported to be beneficial for better estimation
of rule translation probabilities and lexical weights

2The corpus includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.
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Rules from. . . Extraction Total Rules
NIST03 NIST04 NIST05

Rules BLEU Rules BLEU Rules BLEU

hierarchical phrase-based model
1-best 17 39.7M 2.5M 30.14 4.2M 33.82 3.0M 30.33
10-best 155 62.7M 4.2M 30.59 7.0M 34.30 5.0M 30.73
m(10) 89 86.7M 5.7M 31.81 9.5M 35.67 6.6M 31.94

tree-to-string model
1-best 21 9.3M 532K 27.39 762K 30.30 614K 27.06
10-best 231 19.6M 890K 27.57 1.13M 30.65 1.02M 27.07
m(10) 44 9.2M 590K 28.92 836K 31.77 677K 28.87

Table 3: Results with different rule extraction methods on small data. Here 1-best, 10-best andm(10)
denote 1-best alignments, 10-best lists and weighted matrices estimated from 10-best lists respectively.
The rules are filtered on the corresponding test set. “Extraction” denotes extraction time in millsecs per
sentence pair. We evaluate the translation quality using 4-grams case-insensitive BLEU metric.

Rules from. . . Total Rules
NIST03 NIST04 NIST05

Rules BLEU Rules BLEU Rules BLEU

hierarchical phrase-based model
1-best 204M 10.3M 33.40 16.1M 34.65 11.7M 32.88
10-best 288M 16.5M 33.18 25.2M 34.75 18.6M 32.47
m(10) 524M 26.1M 35.10 40.7M 36.56 29.5M 34.31

tree-to-string model
1-best 30.7M 1.99M 30.76 2.68M 32.69 2.21M 30.36
10-best 71.4M 3.53M 31.54 4.63M 33.47 3.89M 31.09
m(10) 30.7M 2.24M 32.23 2.99M 34.24 2.48M 31.88

Table 4: Results with different rule extraction methods on large data. We usem(10) for the weighted
matrices estimated from 10-best lists.

(Liu et al., 2009). The experiments are tested on
NIST 2005 dataset.

Table 5 gives some statistics. We usem(10)
for the weighted matrices estimated from 10-best
lists. “All” denotes the full rule table, “Shared”
denotes the intersection of two tables, and “Non-
shared” denotes the complement. There were
18.8% of rules learned from weighted matrices in-
cluded by both tables in hierarchical phrase-based
case, while36.5% for tree-to-string rules, indicat-
ing that complete sub-tree constraint played an im-
portant role in matrix-based tree-to-string rule ex-
traction. Note that the probabilities of “Shared”
rules are different for the two approaches. Liu et
al. (2009) shows that using matrices outperformed
usingn-best lists even with the same rules. Our
experiments confirmed these findings.

4.5 Best Rule or More Rules

Someone would argue that using more rules could
improve the performance, especially for the tree-

to-string model. Therefore, we carried out exper-
iments on small data for tree-to-string model to
investigate which one is better. Note that even
though we retain the best target side for each
source side for each sentence, there could still be
many target sides for each source side when de-
coding.

Table 6 shows the results of different criteri-
ons. The first column “Criteria” indicates how
many target phrases are preserved: the best one or
all phrases that reach pruning threshold. We can
see that “More Rules” could not outperform “Best
Rule” even using almost 2.5 times rules. One pos-
sible reason is that it might introduce some low-
quality target phrase such asof China ’s economy
in Table 1, which will generate more substandard
variable rules.

5 Related Works

Recent works have shown that machine translation
can benefit when offered more alternatives. Mi
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Rules from. . .
Shared Non-shared All

Rules BLEU Rules BLEU Rules BLEU

hierarchical phrase-based model
10-best 1.56M 28.42 4.66M 18.60 6.22M 30.73
m(10) 1.56M 29.07 6.89M 22.90 8.45M 31.94

tree-to-string model
10-best 311K 23.00 707K 10.94 1018K 27.07
m(10) 311K 23.55 366K 11.92 677K 28.87

Table 5: Comparison of rule tables learned fromn-best lists and weighted matrices. The rules are filtered
on both development and test sets. “All” denotes the full rule table, “Shared” denotes the intersection of
two tables, and “Non-shared” denotes the complement. Note that the probabilities of “Shared” rules are
different for the two approaches.

Criteria Total Rules
NIST03 NIST04 NIST05

Rules BLEU Rules BLEU Rules BLEU
Best Rule 9.2M 590K 28.92 836K 31.77 677K 28.87

More Rules 21.4M 1.54M 29.07 1.97M 31.66 1.72M 29.02

Table 6: Comparison of rule tables learned from weighted matrices using different criterions. “Best
Rule” denotes the rule table using the criteria described inSection 3.2, “More Rules” denotes the rule
table using the criteria that retains all candidate target phrases that reach pruning threshold.

and Huang (2008) and Tu et al. (2010) use forests
instead of 1-best trees; Venugopal et al. (2003)
and Deng et al. (2008) soft the alignment consis-
tency constraint to extract more rules; Dyer et al.
(2008) use word lattices instead of 1-best segmen-
tations to generate more alignments for a sentence
pair; Venugopal et al. (2008) usen-best align-
ments directly for rule extraction.

To generate larger rule sets, de Gispert et al.
(2010) extract hierarchical rules from alignment
posterior probabilities. They concern how to ex-
tract larger rule sets using simple yet powerful hi-
erarchical grammar, while we focus on whether
weighted alignment matrix could overcome the
alignment errors for different translation models
(e.g. phrase-based, hierarchical phrase-based and
tree-based models). They use phrase posteriors
as the fractional count, while we use the product
of inside and outside probabilities. Besides, they
filter rules after extracting all rules from corpus,
while we prune rules when extracting.

6 Conclusion and Future Works

Liu et al. (2009) proposed a new structure named
weighted alignment matrix that make a better use
of noisy alignments. Since weighted matrices
proves effective for phrase-based model, we ap-
ply it to syntax-based models, which are more

sensitive to word alignments. Due to the differ-
ence in structure between phrases and hierarchi-
cal rule, we develop new algorithms to calculate
relative frequencies and lexical weights of hierar-
chical rules. To achieve a balance between rule
table size and performance, we develop a scor-
ing measure that incorporates both frequency and
lexical weight to select the best target phrase for
each source phrase. Our experiments show that
our approach improves BLEU score significantly,
with reasonable extraction speed, indicating that
weighted alignment matrix also works for syntax-
based models.

Besides the hierarchical phrase-based model
and tree-to-string model, our method is also ap-
plicable to other paradigms such as the string-to-
tree models (Galley et al., 2006) and the string-to-
dependency models (Shen et al., 2008). Another
interesting direction is to use a simpler alignment
model that can compute alignment point posteriors
directly, such as word-based ITG model (Zhang
and Gildea, 2005; Haghighi et al., 2009).
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