
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 1279–1287,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

Clausal parsing helps data-driven dependency parsing: Experiments
with Hindi

Samar Husain*, Phani Gadde*, Joakim Nivre† and Rajeev Sangal*
* Language Technologies Research Centre, IIIT-Hyderabad, India.

† Department of Linguistics and Philology, Uppsala University, Sweden.
{samar, phani.gadde}@research.iiit.ac.in,

joakim.nivre@lingfil.uu.se, sangal@mail.iiit.ac.in

Abstract

This paper investigates clausal data-driven de-
pendency parsing. We first motivate a clause
as the minimal parsing unit by correlating in-
ter- and intra-clausal relations with relation
type, depth, arc length and non-projectivity.
This insight leads to a two-stage formulation
of parsing where intra-clausal relations are
identified in the 1st stage and inter-clausal rela-
tions are identified in the 2nd stage. We com-
pare two ways of implementing this idea, one
based on hard constraints (similar to the one
used in constraint-based parsing) and one
based on soft constraints (using a kind of pars-
er stacking). Our results show that the ap-
proach using hard constraints seems most
promising and performs significantly better
than single-stage parsing. Our best result gives
significant increase in LAS and UAS, respec-
tively, over the previous best result using sin-
gle-stage parsing.

1 Introduction

There has been a recent surge in addressing pars-
ing for morphologically rich free word order lan-
guages such as Czech, Turkish, Hindi, etc. These
languages pose various challenges for the task of
parsing mainly because the syntactic cues neces-
sary to identify various relations are complex and
distributed (Tsarfaty et al., 2010; Ambati et al.,
2010; Nivre and McDonald, 2008; Tsarfaty and
Sima'an, 2008; Seddah et al., 2009; Gadde et al.,
2010; Husain et al., 2009; Eryigit et al., 2008).
There has also been a lot of interest in building
ensemble systems (Zeman and Zabokrtsky, 2005;
Sagae and Lavie, 2006) and parser stacking (Ni-
vre and McDonald, 2008; Martins et al., 2009) to
improve the overall parsing accuracy by combin-
ing the strengths of multiple parsers.

In this paper, we formulate clausal parsing as a
two-stage setup where intra-clausal relations are

identified in the 1st stage and inter-clausal rela-
tions are identified in the 2nd stage. We attempt
to find out whether this two-stage parsing ap-
proach that has earlier been successful in con-
straint-based systems for parsing Hindi (Bharati
et al., 2009) can also benefit data-driven parsing
approaches (Nivre et al., 2006), and compare two
ways of implementing this idea, one based on
hard constraints (similar to the one used in con-
straint-based parsing), and one based on soft
constraints (using a kind of parser stacking; (Ni-
vre and McDonald, 2008). We show that one of
the ways in which clausal parsing helps is by
better learning of features that leads to improved
label accuracy for Hindi. In particular we show
that ambiguous case markers (or suffixes) that
appear with many relations can be disambiguated
successfully. We also show that the setup reduc-
es many of the traditional MaltParser (Nivre et
al., 2006) errors (McDonald and Nivre, 2007).
Our results show that the approach using hard
constraints seems most promising and performs
significantly better than single-stage parsing.

The paper is arranged as follows. In Section 2,
we introduce the clause as a basic parsing unit.
Section 3 gives a brief overview of two-stage
parsing. In Section 4 we discuss data-driven
parsing for Hindi and present two methods for
implementing two-stage parsing within this
framework. Section 5 explains the experimental
setup, and Section 6 discusses the results. We
conclude the paper in Section 7.

2 Clauses as minimal parsing units

We begin with the observation that certain de-
pendency relations are more likely to occur be-
tween the elements inside a clause and a different
set of relations are more likely in showing de-
pendencies across clauses. We also note that the
notion of clause can be correlated with short dis-
tance and long distance dependencies.

1279

Figure 1 shows the distribution of dependency
labels with respect to clause type (intra-clausal
vs. inter-clausal) in the Hyderabad dependency
treebank (Begum et al., 2008; Husain 2009). For
ease of exposition, Figure 1 only shows the la-
bels with considerable coverage, together
amounting to 93% of all dependency label occur-
rences. We can see clearly that many labels like
k1 1 , r6, etc. are overwhelmingly intra-clausal
relation, while others like nmod-relc, ccof, etc.
have an inter-clausal bias.

Figure 2 shows that short-distance dependen-
cies are mostly intra-clausal, whereas long-
distance dependencies tend to be inter-clausal. It
is clear from Figure 1 and 2 that there is a clear
correlation between labels and relation type on
one hand and arc length and relation type on the
other. Further, there is a correlation between in-
ter- vs. intra-clausal relations with respect to
depth of relations as well. Figure 3 shows that
low depth dependencies are both inter-clausal (in

1 The dependency label k1 can be roughly translated
to ‘agent’, r6 is a dependency label for genitive rela-
tion, ccof is a relation signifying conjunction and
nmod-relc is used for relative clause modification. For
the complete description of the tagset and the depen-
dency scheme see (Begum et al., 2008).

case of complex sentences involving coordina-
tion, relative clauses, embeddings, etc.) and in-
tra-clausal (simple sentences). It also shows that
the percentage of inter-clausal relations decrease
with increase in depth.

Finally, there is a correlation between clause
and non-projectivity: 70% of the non-projective
relations are inter-clausal (Mannem et al., 2009).

Properties such as relation type, arc length,
depth, and non-projectivity are known to have
specific effect on errors in data-driven dependen-
cy parsing (McDonald and Nivre, 2007). There-
fore, it is worth exploring the effect of clause
(when treated as a minimal unit) on dependency
parsing accuracy. For all the experiment de-
scribed in this paper, the following definition of
clause is used: ‘A clause is a group of words con-
taining a single finite verb and its dependents’.
More precisely, let T be the complete dependen-
cy tree of a sentence, and let G be a clausal sub-
graph of T. Then an arc x → y in G is a valid arc,
if (a) x is a finite verb; (b) y is not a finite verb;
(c) there is no z such that y → z, where z is a
finite verb and y is a conjunct.

1280

3 Two-stage parsing

Two-stage parsing has been successfully used in
a constraint based system for Hindi (Bharati et
al., 2009, 2009b). This parser tries to analyze the
given input sentence, which has already been
POS tagged and chunked, in 2 stages; it first tries
to extract intra-clausal dependency relations. In
the 2nd stage it then tries to handle more complex
relations such as those involved in constructions
of coordination and subordination between
clauses.

(1) mai ghar gayaa kyomki mai
 ’I’ ’home’ ’went’ ’because’ ’I’

 bimaar thaa
 ’sick’ ‘was’

 ‘I went home because I was sick’

The 1st stage output for sentence (1) is shown in
Figure 4a. In Figure 4a, the parsed matrix clause
subtree mai ghar gayaa and the subordinate
clause are attached to _ROOT_. The subordinat-
ing conjunction kyomki is also seen attached to
the _ROOT_. The dependency tree thus obtained
in the 1st stage is partial, but linguistically sound.
By introducing _ROOT_ we are able to attach all
unprocessed nodes to it. _ROOT_ ensures that
the output we get after each stage is a tree. Later
in the 2nd stage the relationship between the two
clauses are identified. The 2nd stage parse for the
above sentence is shown in Figure 4b. The 2nd
stage does not modify the parse sub-trees ob-
tained from the 1st stage, it only establishes the
relations between the clauses.

4 Two-stage data-driven parsing

Since the availability of the Hyderabad Depen-
dency Treebank for Hindi (Begum et al., 2008) a
considerable amount of work has gone into ex-
ploring various data-driven approaches for Hindi
parsing (Bharati et al., 2008; Husain et al., 2009;
Mannem et al., 2009b; Gadde et al., 2010). The
ICON09 and ICON10 tools contests on Indian
language parsing (Husain, 2009; Husain et al.,
2010) have also showcased various parsing ef-
forts and established the state-of-the-art for Hindi
dependency parsing. During both these parsing
contest MaltParser was used to achieve the best
accuracy for Hindi.

Through the experiments described in this
paper, we aim to investigate the following
questions:
- What are the different ways in which one can

treat clauses as minimal unit during the pars-
ing process?

- Will this help improve parsing accuracy us-
ing MaltParser?

We now present two data-driven paradigms

that incorporate the notion of clause in different
ways. Both paradigms use two stages to parse a
sentence, but the way the two stages interact is
different.

4.1 2-stage parsing with hard constraints
(2-Hard)

The basic idea behind this strategy is essentially
the same as constraint-based two-stage parsing.
The 2nd stage MaltParser takes as input partial
1st stage trees and establishes relationships be-

1281

tween clauses (and conjunctions). The 1st stage
predictions are mutually exclusive of the 2nd
stage predictions and cannot be overridden in the
2nd stage. However, they can be used as features
in the 2nd stage predictions.

We now define the input to the 2nd stage for 2-
Hard more precisely, Let T be the complete tree
that should be output by the 2nd stage parser and
let G be the subgraph of T that is input to the
second stage. Then G should satisfy the follow-
ing constraint: if the arc x → y is in G, then, for
every z such that y → z is in T, y → z is also in
G. In other words, if an arc is included in the 1st
stage partial parse, the complete subtree under
the dependent must also be included. Unless this
constraint is satisfied, there are trees that the
second-stage parser cannot construct. This means
that the 2nd stage MaltParser gets initialized with
only those nodes that are attached to the
ROOT in the first stage parse (cf. Figure 4(a)).
Figure 5 below shows the initial configuration of
2nd stage Malt for sentence 3, the input will be
the 1st stage parse shown in Figure 4(a).

Fig 5. 2nd stage initialization using the 1st

stage parse shown in Fig. 4(a)

The 1st stage and 2nd stage parser will cater to

different types of constructions. Note that, given
the above constraint on the 2nd stage input struc-
tures, a relative clause (though being subordinate
clause) cannot be handled in the 2nd stage and
will have to be handled in the 1st stage itself. We
explain the handling of relative clause using sen-
tence (2).

(2) vaha vahaan waba puhuchaa

 ‘He’ ‘there’ ‘when-COREL’ ‘reached’
 jaba sab jaa chuke the
 ‘when-REL’ ‘everyone’ ‘go’ ‘had’
 ‘He reached there when everyone had left’

Figure 6(a) shows the 1st stage output of a

relative clause construction in a standard 2-stage
setup. Both the relative clause and the matrix
clause are seen attached to the _ROOT_, the
analysis of these clauses is complete. In second
stage the relation between these two clauses is
established (Figure 6b). Recall that we initialize
the 2nd stage of 2-Hard with the children of

ROOT which in this case is the finite verbs of
the two clauses (Figure 6c). Now recall the con-
straint on the input of the 2nd stage in 2-Hard;
given this constraint the 2nd stage can only estab-
lish a relation between the two verbs and not, as
is correct, between the relative clause verb and a
noun dependent on the matrix verb. The noun
‘waba’ is not present in the input buffer and can
never be considered as a head of ‘jaa’. Because
of this reason, 2-Hard handles relative clauses
through a separate classifier after the 1st stage.
This parse is then fed into the 2nd stage. This sys-
tem is discussed in the next section.

4.1.1 Handling relative clauses

We add the relative clause relations to the 1st
stage parse, before they are fed into the 2nd stage.
This task comprises of two sub-tasks, a) relative
clause identification from the 1st stage output and
b) identifying the head of the relative clause from
the matrix clause.

Most of the time, relative clause sentences in
Hindi contain relative pronouns such as jo ‘who’,
jaba ‘when’, jisa ‘which’ in the relative clause,
which modifies an element (sometimes identi-
fied as a co-relative pronoun) in the matrix
clause. The matrix clause, on the other hand,
contains co-relative pronouns like waba ‘then’.
This can be seen in the example sentence (2) in
the previous section. However, both these ele-
ments can be dropped (though dropping relative
pronouns is rare). This information is used in
doing both the sub-tasks for the relative clause
relation identification.

The identification of relative clauses is rule
based and depends on the presence of an exhaus-
tive list of relative and co-relative pronouns.
Such a lexically driven approach is possible be-
cause of nature of relative clause constructions in
Hindi. This system has an accuracy of 94%. The
errors are mainly due to the dropping of the two
type of cues discussed earlier.

Having identified the relative clause in a sen-
tence, the remaining finite clauses are considered
as possible matrix clauses. The nodes in each of
these clauses are considered as possible heads for
the relative clause. We use a maximum entropy
(MaxEnt) based boolean classifier 2 to predict
whether a node is a head or not. If more than one
node is predicted as the head, we pick the node
with the highest classifier confidence.

2http://homepages.inf.ed.ac.uk/lzhang10/maxent_tool
kit.html

1282

The Part-Of-Speech (POS) tag of a node, its di-
rection and distance from the relative clause are
some of the important features to identify the
modified noun. Note that identification of the
head noun in the absence of the co-relative pro-
noun can be very subjective. Table 1 shows the
features that are used to train the classifier.

Feature Description Values
Lex Lexical item the lexical item
POS POS tag NN, RB etc..
Dir Direction of node -1, 1
Dist Distance of node 4,8,12, 16, 20, 24
Cue Relative pronoun jaba, jo etc..

Table 1: Features used in maxent based node
classification

Dir is given 1 if a node is to the left of the rel-

ative clause and -1 if it is on the right. The dis-
tance of the node from the relative clause, Dist,
is actually the modulus of the distance as direc-
tion is already taken care of. Further, it is norma-
lized to the above mentioned values to reduce the
sparsity. Cue is given “None” if there is no rela-
tive pronoun (if it is dropped) modifying the
node.

We note that when compared to Husain et al.
(2009) (who also do 2 stage parsing and use
clauses as hard constraint) our method differs in
two significant ways. The first one is obvious;
they don’t handle constructions such as relative

clauses etc in their setup. But more importantly,
unlike Husain et al. (2009), the novel thing here
is the combination of data-driven parsing and
hard constraints, made possible by the new ver-
sion of MaltParser that accepts partial dependen-
cy graphs as input (both during training and pars-
ing) (cf. Figure 5).

4.2 2-stage parsing with soft constraints
(2-Soft)

We can, instead of treating the output of the first-
stage parser as hard constraints for the second-
stage parser, treat them as soft constraints by
simply defining features over the arcs produced
in the first stage and making a complete parse in
the second stage. Technically, this is the same
technique that (Nivre and McDonald, 2008) used
to integrate Malt and MST, called guided parsing
or parser stacking. In this setup we ‘guide’ Malt
with a 1st stage parse by Malt. The additional
features added to the 2nd stage parser during 2-
Soft parsing encode the decisions by the 1st stage
parser concerning potential arcs and labels con-
sidered by the 2nd stage parser, in particular, arcs
involving the word currently on top of the stack
and the word currently at the head of the input
buffer. For more details on the guide features for
MaltParser, see (Nivre and McDonald, 2008).
Note again that, unlike the standard two-stage
setup the 1st stage relations can now be overrid-
den during the 2nd stage (because we are guid-
ing), and unlike the standard guided parsing se-
tup a parser guides with only 1st stage relations.

1283

Unlike the 2-stage parsing, guided parsing parses
complete sentences twice. The results from one
parser are used to extract features that guide the
second parser. In 2-stage parsing, different com-
ponents of a sentence are parsed in two stages.
Interestingly, Gadde et al. (2010) have proposed
an alternative way of incorporating clauses as
soft constraint by using clause boundary and
clausal head/non-head features during parsing.
Of course, theirs is not a 2-stage setup.

5 Experimental setup

All the results are reported for Hindi. We use the
Hindi data set that was released as part of
ICON10 parsing contest (Husain et al., 2010).
The training set had 2972 sentences, the devel-
opment and test set had 543 and 321 sentences
respectively. The parser models were trained us-
ing 5-fold cross validation; all the results are also
reported for the cross-validation data. The setup
used by (Ambati et al., 2010) for MaltParser3 is
used as our baseline.

Recall that the 1st stage and 2nd stage parser of
2-Hard will cater to different types of construc-
tions. This is sometimes also reflected in the fea-
tures that get selected for each stage when com-
pared to the Baseline settings. One such case was
the absence of morphological features of lexical
items in the 2nd stage for 2-Hard. The morpho-
logical properties such as suffix, category, case,
etc. are crucial in establishing relations between
verbs and its arguments. This in 2-Hard will be
handled in the 1st stage. The relations in the 2nd
stage do not require such features. On the other
hand, the POS category and the lexical item of
the elements in Stack and Input buffer are more
crucial for 2nd stage relations than for the 1st
stage specific relations. This is reflected in the
selection of ‘lemma’ of the word under consider-
ation in 2nd stage and not in baseline.

Both 2-Soft and 2-Hard 1st stage parsers are
trained on a modified treebank. The original trees
are transformed into 1st stage trees. This is done
by using the clause definition described in Sec-
tion 2. For example, the 1st stage tree for sen-
tence 3 is shown in Figure 4 (a). On the other
hand, a normal single stage parser (our baseline
parser) is trained on the full tree that looks like
Figure 4 (b).

3 MaltParser (version 1.3.1)

6 Results and discussion

Table 2 shows the performance of the different
parsers with 5-fold cross-validation. In all tables
statistical significance with respect to baseline is
marked with *. Significance is calculated using
McNemar’s test (p <= 0.05). These tests were
made with MaltEval (Nilsson and Nivre, 2008).

 LAS UAS LA
Baseline 75.02 88.82 77.80
2-Soft 75.24 88.92 78.00
2-Hard 75.65* 89.1* 78.73*

Table 2: Overall parsing accuracy
 (5-fold cross-validation)

We see that both 2-Soft and 2-Hard outper-

form the Baseline result. However, only 2-Hard
is statistically significant with that of Baseline
for LAS, UAS as well as LS. 2-Soft, though giv-
ing a minimal improvement in the accuracies, is
not statistically significant with the baseline.
However, on analyzing the output parses of all
the three setups, we found clear and similar im-
provement patterns (listed below) in case of both
2-Hard and 2-Soft. This led us to look at the sen-
tences having at least two clauses, where the ef-
fect of the proposed approaches is more promi-
nent. These constitute 50.4% of the total sen-
tences in the data. Table 3 below shows the pars-
ing accuracies of all the setups on these complex
sentences.

 LAS UAS LA
Baseline 74.87 88.82 77.44
2-Soft 75.25* 89.03 77.78*
2-Hard 75.83* 89.36* 78.85*

Table 3: Parsing accuracy on complex sen-
tences (sentences having >1 finite clauses)

(5-fold cross-validation)

Interestingly, the improvements in both 2-Soft
and 2-Hard are better than those shown in Table
2. Also, 2-Soft is now statistically significant
compared to the Baseline w.r.t. LAS and LS.
Overall, both the approaches seem to perform
better for labels over attachments. To analyze the
results further, we breakdown the overall accura-
cy (shown in Table 2) into inter-clausal and in-
tra-clausal accuracies. Table 4 below shows
these results.

1284

 LAS UAS LA
 Intra Inter Intra Inter Intra Inter
Baseline 72.18 85.43 89.05 87.98 75.26 87.13
2-Soft 72.44 85.54 89.13 88.16 75.49 87.17
2-Hard 72.36 87.71 88.87 90.10 75.47 90.68

Table 4: Overall accuracy for intra- and inter-
clausal dependency relations

Table 4 shows some interesting facts. 2-Hard

performs far better than Baseline and 2-Soft in
case of inter-clausal relations, where as its effect
is less for intra-clausal relations. 2-Soft, on the
other hand, gives the best accuracies for intra-
clausal relations over all the metrics. Note that
the 2nd stage in 2-Soft approach has the flexibili-
ty to modify the dependencies given by the 1st
stage parse. This could be the possible reason for
2-Soft performing better than 2-Hard for the in-
tra-clausal relations, which are large in number
as well as consisting of more deviant patterns
compared to the inter-clausal relations.

These experiments show us that there is a
clear pattern in cases where parsing benefits
from 2-Soft and 2-Hard. These benefits are
spread over both 1st stage and 2nd stage. These
cases are:

1. Better identification of some relations with

deviant/ambiguous postpositions in the 1st
stage. For example, when ‘se’ appears for
beneficiary/cause, instead of its default usage
for instrument. Table 5 shows the label iden-
tification for some frequent postpositions.

2. Better handling of non-finite verbs in the 1st
stage

3. Better handling of NULL nodes in the 2nd
stage. Most NULL nodes are cases of el-
lipses where a syntactic heads such as finite
verb or a conjunct is missing. Most of these
cases fall into 2nd stage and are being better
handled there.

4. Better handling of some 2nd stage specific
constructions, e.g. clausal complements.

Closely related to the above four points is the

performance of the clausal setups with respect to
arc length, depth and non-projectivity. It is
known that Malt suffers on the dependencies
closer to the root (less depth) due to error-
propagation. Also, Malt suffers at long distance
dependencies because of local feature optimiza-
tion (McDonald and Nivre, 2007). In other
words, for Malt, depth and errors are negatively

correlated while arc-distance and errors are posi-
tively correlated.

Figure 7 shows the LAS of relations at various
arc-lengths for the Baseline and clausal setups.
Figure 8 shows the performance of relations at
different depths. The 2nd stage of 2-Hard consid-
ers the heads of the partial trees produced by the
1st stage as the nodes (minimal parsing unit),
which reduces the arc-length of the inter-clausal
dependencies. Hence, as the arc-length increases,
the advantage of 2-Hard becomes more pro-
nounced.

Postposition Baseline 2-Hard/

2-Soft
0

meM

para
GEN

ko
se

Table 5: Label identification comparison be-
tween Baseline and the clausal approaches for

ambiguous postpositions. signifies better per-
formance. 0 and GEN signify null postposition

and genitive postpositions respectively

By distinguishing intra-clausal structures from

inter-clausal structures, the 2-Hard setup is using
shallower trees and is able to take better global
decisions by using more contextual information.
It is expected to reduce the error propagation for
the low-depth dependency relations. This effect
is clearly seen in Figure 8, where for less depth
2-Hard outperforms Baseline. Cases (3) and (4)
above reflect this.

Cases (1) and (2) on the other hand show that
the clausal setups also effects 1st stage perfor-
mance by learning verbal arguments (both com-
plements and adjuncts) better. It is known that
MaltParser has a rich feature representation but
with increase in sentence length its performance
gets affected due error propagation. By treating a
clause as a parsing unit we reduce this error
propagation as the features are being exploited
properly.

It was found that both the clausal setups did
not help in reducing the non-projective relations.
As all the setups use the Arc-Eager parsing algo-
rithm, they fare equally badly in handling non-
projectivity. There were some sentences where
non-projectivity got removed in the 1st stage,

1285

Fig. 7. LAS at arc-length (1-10) for Baseline,

2-Soft and 2-Hard. The numbers above the bars
represent the % of relations at respective arc

lengths.

however the non-projective arc reappeared in the
2nd stage, this happened in the case of paired
connective constructions (cf., Mannem et al.,
2009). We are yet to investigate if pseudo-
projective parsing in the 2nd stage might prove
beneficial in such cases.

Fig. 8. LAS at depth (1-7) for Baseline, 2-Soft

and 2-Hard. The numbers above the bars
represent the % of relations at respective depths.

7 Conclusion

This paper investigated clausal data-driven de-
pendency parsing. We implemented this idea
using two methods, one based on hard con-
straints (similar to the one used in constraint-
based parsing), and one based on soft constraints
(using a kind of parser stacking). Our results
showed that the approach using hard constraints
seems most promising and performs significantly
better than single-stage parsing. We showed that
2-Hard benefits from parsing shallower trees,
and shorter arc lengths when compared to the
Baseline. We also showed that by better learning
of features many case markers that appear with
more than one relation can be disambiguated
successfully using both 2-Hard and 2-Soft. 2-
Hard seems to perform better than 2-Soft in case

of inter-clausal relations w.r.t. all the evaluation
metrics, whereas 2-Soft is doing good in intra-
clausal relations. This gives us a future direction
to explore a combination of 2-Hard and 2-Soft
for inter and intra-clausal relations respectively,
to see if one can benefit from the other.

Since the improvement in LS and LAS in both
2-Hard and 2-Soft seems to be more than in the
UAS, it would be interesting to see the effect of
clausal parsing on label identification and at-
tachments separately. To do this, we plan to ex-
plore sequential parsing by using different fea-
ture models for transitions and labels, as the cur-
rent parsing schemes do both attachments and
labels at the same time.

References
B.R. Ambati, S. Husain, J. Nivre, R. Sangal. 2010. On

the Role of Morphosyntactic Features in Hindi De-
pendency Parsing. In NAACL-HLT 2010 workshop
on SPMRL, Los Angeles, CA.

R. Begum, S. Husain, A. Dhwaj, D. Sharma, L. Bai,
R. Sangal. 2008. Dependency annotation scheme
for Indian languages. In IJCNLP08.

A. Bharati, S. Husain, D. Misra, R. Sangal 2009. Two
stage constraint based hybrid approach to free word
order language dependency parsing. In the 11th
IWPT09. Paris.

A. Bharati, S. Husain, B. Ambati, S. Jain, D. Sharma,
R. Sangal. 2008. Two semantic features make all
the difference in parsing accuracy. In ICON08.

G. Eryigit, J. Nivre, K. Oflazer. 2008. Dependency
Parsing of Turkish. Computational Linguistics
34(3), 357-389.

P. Gadde, K. Jindal, S. Husain, D. Sharma, R. Sangal.
2010. Improving Data Driven Dependency Parsing
using Clausal Information. In NAACL-HLT 2010,
Los Angeles, CA.

Y. Goldberg, M. Elhadad. 2009. Hebrew Dependency
Parsing: Initial Results. In the 11th IWPT09. Paris.

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi,
M. Nilsson M. Saers. 2007. Single Malt or
Blended? A Study in Multilingual Parser Optimiza-
tion. In EMNLP-CoNLL shared task.

S. Husain, P. Mannem, B. Ambati, P. Gadde. 2010.
The ICON-2010 Tools Contest on Indian Language
Dependency Parsing. 2010. In ICON10 NLP Tools
Contest on Indian Language Dependency Parsing.
Kharagpur, India.

S. Husain. 2009. Dependency Parsers for Indian Lan-
guages. In Proceedings of ICON09 NLP Tools
Contest: Indian Language Dependency Parsing.
Hyderabad, India.

1286

S. Husain, P. Gadde, B. Ambati, D. Sharma, R. San-
gal. 2009. A modular cascaded approach to com-
plete parsing. In the COLIPS International Confe-
rence on Asian Language Processing (IALP) Sin-
gapore.

P. Mannem, H. Chaudhry, A. Bharati. 2009. Insights
into non-projectivity in Hindi. In ACL-IJCNLP
Student Research Workshop.

P. Mannem, A. Abhilash, A. Bharati. 2009b. LTAG-
spinal Treebank and Parser for Hindi. In ICON09.

A. F. Martins, D. Das, N. A. Smith, E. P. Xing. 2009.
Stacking dependency parsers. In EMNLP.

R. McDonald, F. Pereira, K. Ribarov, J. Hajic. 2005.
Non-projective dependency parsing using spanning
tree algorithms. In HLT/EMNLP.

R. McDonald, J. Nivre. 2007. Characterizing the Er-
rors of Data-Driven Dependency Parsing Models.
In EMNLP/CONLL.

J. Nilsson and J. Nivre. 2008. Malteval:An evaluation
and visualization tool for dependency parsing. In
the Sixth LREC, Marrakech, Morocco.

J. Nivre. 2009. Non-Projective Dependency Parsing in
Expected Linear Time. In ACL-IJCNLP.

J. Nivre, R. McDonald. 2008. Integrating graph-based
and transition-based dependency parsers. In ACL-
HLT.

J. Nivre, J. Hall, J. Nilsson. 2006. MaltParser: A Da-
ta-Driven Parser-Generator for Dependency Pars-
ing. In LREC.

J. Nivre. 2003. An efficient algorithm for projective
dependency parsing. In the 8th International Work-
shop on Parsing Technologies (IWPT).

D. Seddah, M. Candito, B. Crabbé. 2009. Cross parser
evaluation : a French Treebanks study. In the 11th
IWPT09. Paris.

K. Sagae, A. Lavie. 2006. Parser combination by re-
parsing. In the human Language Technology Con-
ference of the NAACL.

R. Tsarfaty, K. Sima'an. 2008. Relational-
Realizational Parsing. In the 22nd COLING. Man-
chester, UK.

R. Tsarfaty, D. Seddah, Y. Goldberg, S. Kuebler, Y.
Versley, M. Candito, J. Foster, I. Rehbein, L,
Tounsi. 2010. What, How and Wither. In NAACL-
HLT 2010 workshop on SPMRL.

D. Zeman, Z. Zabokrtsky. 2005. Improving parsing
accuracy by combining diverse dependency pars-
ers. In the 9th IWPT.

1287

