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Abstract

Relational lassois a method that incor-
porates feature relations within machine
learning. By using automatically obtained
noisy relations among features, relational
lasso learns an additional penalty parame-
ter per feature, which is then incorporated
in terms of a regularizer within the target
optimization function.

Relational lasso has been tested on three
different tasks: text categorization, po-

larity estimation, and parsing, where it

was compared with conventional lasso and
adaptive lasso (Zou, 2006) when using

a multi-class logistic regression optimiza-

tion method. Relational lasso outper-

formed these other lasso methods in the
tests.

Introduction

kumiko@i.u-tokyo.ac.jp

the most widely used because of its mathematical
comprehensiveness.

This paper describes a method, which we call
relational lassg that improves upon the conven-
tional lasso method. We show that relational
lasso improves the overall performance of classi-
fication compared with that of other lasso meth-
ods. This study was motivated through a limitation
we observed in conventional lasso: that features
could be inter-related, but such dependences are
not incorporated within the current regularization.
Therefore, the conventional method tends to favor
correlated features, which can lead to the impor-
tance of non-correlated features being neglected.

Relational lasso overcomes this limitation of
conventional lasso by introducing an additional
penalty parameter for each feature; this parame-
ter is estimated automatically given the noisy re-
lations among features, where the relations are
also automatically generated. While the proposed
method does not add to the computational com-

As machine learning methods scale up and nowplexity of the conventional regularization method,
deal with millions of features, we ideally want to it improves the quality of classification. We ex-
add all possible features without having to man-plain the method and show empirical results from
ually verify or consider the effectiveness of eachtests based on three different text classification and
feature with respect to the performance. In otheparsing tasks.
words, we need an automatic way to exploit any Regularization was originally proposed as a
usable information that can be obtained from feaway to avoid over-fitting by favoring some small
tures. However, with current machine learningnumber of features. Our method presented in this
methods, adding noisy features could lower perarticle exploits this approach further and attempts
formance, so the user still has to decide which feato estimate the importance of each feature within
tures are worth adding. the relations it has with other features. As ex-
Regularization methods have recently receivegblained in more detail in the following section,
greater interest because of this need. Regulaattempts along the same line have been made to
ization is expressed as a constraint term withirincorporate underlying relations among features,
an optimization function, where the term is givensuch as byused lassohrough the ordering among
as a function regarding the importance weight offeatures (Tibshirani et al., 2005), or hyroup
each feature. Regularization provides a meankssothrough groups among features (Yuan and
of importance control embedded within the targetLin, 2006). However, fused lasso assumes prob-
optimization problem. Among the various regu-lems with features that can be ordered in some
larizers,lassq proposed by (Tibshirani, 1996) is meaningful way, and group lasso requires under-
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lying group information to be configured before a good overview is available in (Manning, 1999).
the method is applied. The closely related workThe representatives of the evaluation function for
to ours isadaptive lassg¢Zou, 2006), which intro- choosing good/bad features are chi-squares and
duces an additional parameter per feature. Howmutual information, and features having higher
ever, since adaptive lasso does not explicitly proscores for these functions are considered good fea-
cess relations among features, the estimation dfires. While filtering methods are effective and
this additional parameter is completely differenttherefore often used, these methods are indepen-
from our method. Moreover, as will be empirically dent of the learning method that they are used
shown, our method outperforms adaptive lassowith. Moreover, the performance is not guaran-
which in fact performed worse than even the conteed to improve even though feature selection is
ventional method. used.

Related work on regularization techniques has The last category is embedded methods, where
shown the potential of regularization not only to the feature selection is embedded within the over-
prevent over-fitting, but also to serve as a kindg|| classification problem. The decision tree is an
of feature selection. Relational lasso provides anexample of an embedded method, and machine
other step along this line. Here, we show that oulearning techniques using pruning steps have been
method outperforms other lasso methods in differstudied (Perkins et al., 2003).assg an acronym
ent classification tasks. Moreover, it works wellfor “least absolute shrinkage and selection oper-
even when noisy features are added, somethingtor”, using theL; norm (Tibshirani, 1996) is a
that degrades the performance of other lasso metlgomputationally efficient method for simultane-
ods. ously achieving the estimation and feature selec-

tion.

2 Related Work Although lasso helps achieve an effective

As explained, feature selection is the key to oufM0del, theL, norm could cause biased estima-
method’s effectiveness, and here we summarizOn among features (Knight and Fu, 2000) by not

the related work done along this line. A substantiaP€ing able to distinguish between truly significant
number of studies have been done on feature sele@Nd NOisy features.
tion techniques, and these techniques can be clas- To cope with this problem, (Zou and Hastie,
sified into three categories according to (Guyor?005) proposed thelastic netmethod, which is
and Elisseeff , 2003): wrapper methods, filterexpressed as the conjunct bf and L, norms of
methods and embedded methods. the feature weights. They show that this method

The wrapper is the most hee way of select- works when the number of features substantially
ing a subset of features through predictive accuexceeds the number of learning data, and also
racy (Kohavi and John, 1997). The user searchedhen there is strong correlation between some fea-
the possible feature space greedily using an indudures. Another proposal fsised lasspwhich in-
tion algorithm and selects the best subset with th€orporates the order of features (as found in their
best predictive accuracy. Wrappers with greedyhumbers, such as found in the case when each
algorithms can be computationally expensive andmage pixel value forms a feature) (Tibshirani et
the stepwise selection is often trapped into a loal., 2005). Here, the target application is protein
cal optimal solution. Since the possible numbermass spectroscopy and gene expression data, and
of subsets for a set is exponential to the numbethe method is only applicable to a target where
of features in the original set, in practice the usethe order among features is explicit, as in the case
typically defines the subset arbitrarily dependingof gene or image pixels. (Yuan and Lin, 2006)
on the category of features, as was tested by (Scagroposedgrouped lasspwhich incorporates un-
and Matwin , 1999). This makes impossible anyderlying groups among features. The fused and
fine adjustment as to which individual features togrouped lasso methods require configuration of
use. the structure among features.

Filter methods, on the other hand, select good Recently, a new approach calleeighted lasso
features according to some criteria, thus providis proposed which calculates tlig norm on fea-
ing the means for selecting individual features.tures, each of which is weighted. As one method,
These methods have been extensively studied, arfdou, 2006) proposed a two-step approach called
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adaptive lassoThis paper proposes an alternativeminimization of the loss function
weighted lasso method, in which the estimation of
the weights is processed differently from that of L(w) = = log p(yi|zs; w),
adaptive lasso. Although the procedure of adap- i
tive lasso is closest to relational lasso, the learnin
of adaptive lasso does not explicitly handle the re-ti N
lations among features. 0 . i i i
: Regularization makes it possible to obtain a
All these methods are attempts to incorporate . -

. ood model for LR, without restricting the number

the relations, or structure, among features —sucﬂ

. : of features, by imposing appropriate restrictions
as dependence, ordering and groups— into ma- y Imp g approp

chine learning through the framework of regu_on weightw. Of the different ways of regulariza-

larization. Although such dependence is not al-tlon’ in this paper we adopt (Tibshirani, 1996)'s

ways given or tractable, we believe this informa—methOd of imposing arL,; norm on parameters
vays g ' . because of its mathematical simplicity, especially
tion can be learned from some automatically gen- . . ) :
erated noisy relation among features when applied with LR. This method is called lasso
y 9 ' and facilitates both estimation and automatic vari-
o ) able selection. When applying this lasso to logis-
3 L1-Regularization of Multi-Class tic regression, the MAP estimation of weights for
Logistic Regression each feature is given by the following formula, the

target function to be optimized:

93 equivalent to the maximum likelihood estima-

Before going on to the main points of relational
lasso, let us summarize the regularization frame- . _ .
work that we adopt. Regularization is the general wo= argwmmL(w) A Z foil, @)
method used in classification. The target func- '
tion has two terms, one for fitting and anotherwhere ) is the parameter defining the strength
for regularization. This second term penalizes thef the regularization term’s influence on the op-
weights acquired by each feature, typically by in-timization.
corporating the addition of their norms into a tar-  Although our proposal applies in general to var-
get function for the classifier. This prevents thejous types of target function, in this paper we ex-
target function becoming too over-fitted by favor- amine its effectiveness within this particular target
ing some specific sets of features. In this sensdunction. This target function was chosen because
the regularization term can be considered as serthe target function of LR-lasso is mathematically
ing for feature selection. comprehensive, so multi-class logistic regression

Of the various ways to define the target func-and lasso are widely applied. Further investiga-
tion, in this paper we focus on the multi-classtion to determine whether our method works well
logistic regression model and L1-regularization;for other target functions will be part of our future
namely, the lasso method. work.

The fitting function adopted in this paper is a .
multi-class logistic regression model, denoted ag Relational Lasso —The Proposed
LR in the following. LR is used to model the re-  Method
lationship between the input vectars= R™ and
labelsy € Y. The conditional probability for a
labely givenz is defined as

The limitation of conventional lasso is that rela-
tions among features cannot be incorporated. For
example, highly correlated features which lead to-
wards a higher performance could all acquire rel-

p(ylz;w) = Zl exp (w” ¢(z,y)) atively large weights. This would lead to favor-
() ing a single aspect that counts for the classifica-

Z(x) = Zexp (w(z,y)), tion and neglecting other minor but still impor-
Yy tant aspects which would enable better classifi-

cation. This happens when a high correlation is
where ¢(x,y) € R™ is the feature vector and found among features. Therefore, when one fea-
w € R™ is the weight vector. When the train- ture is favored, the other correlated features must
ing examples{(z;,y;)}(i = 1,---,1) are given, be heavily penalized, so that features which count
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for classification from a different aspect are more(1, - -- ,m). Unlike previous work such as fused
favored. (Tibshirani et al., 2005) and grouped lasso (Yuan
To express this, we adopt the weighted lasso apand Lin, 2006),R in our work is a noisy relation
proach, so an additional penalizing parameter which can be automatically obtained by scanning
for each feature is introduced in the second term through features.
of formula (1): Although there are various possibilities for ob-
taining R, one way is through thanclusionrela-
tion among features. Given a pair of featuped
q, the featurey includesp, if in every data of the
The solution found here, subject to the regular-  learning data, when the value of featurés non-
izer, is equivalent to the solution obtained from thezero, the value of featurg is always non-zero.

w

w”* = arg min L(w) + )\Zai\wi]. 2

constrained optimization problem: For example, for the case of the adjective “eco-
o nomic” and its stem “econom”, the latter includes
minimize  L(w), the former while also being a stem for other terms
such as “economy” and “economist”. In the final
s.t. a;lw;| <. L o .
ZZ,: ilwil <5 classification, it is unknown which of “econom”

and “economic” counts. For part-of-speech tag-
The parametey corresponds ta of formula (2).  ging, “econom” would not provide much infor-
Each parameten; determines the penalty far;  mation since it does not have a complete form,
and directly affects the importance of tite fea-  put for topic estimation, “econom” might provide
ture. sufficient information by representing the terms

Previous work on adaptive lasso (Zou, 2006)}‘economic”, “economy” and “economist”. In both

also introduces an additional parameter, such agases, when the two words appear as features, they
«a;, in addition to the weight parameter. Adap-share a tight relation and when one is given high
tive lasso focuses on the presence of oracle propmportance, the other will as well in conventional
ertied, and works in two stages of optimization. |asso. In relational lasso, if one representative is
First weightw; is learned with conventional lasso. selected, then other similar features in the same
Second,L; norm is re-weighted with the param- group will acquire less importance by having a
eterso; asa; = 1/|1f1i’5 being set from initial |arger pena|ty_
lasso estimatow using a parametex, and the 0p-  The overall procedure is shown in Procedure
timization problem is processed using There- 1 The procedure obtains three kinds of learning
fore, their way of learning this additional parame-qata input, a relation among features, and param-
ter does not explicitly concern the exploitation of gter values. Before optimizing the target func-
additional information different from the original tjon denoted in the second line from the bot-
weightw;. On the other hand, our is estimated  tom, the procedure calculatesdepending on the
given a noisy relation among features, thus it playgiven relationk among features. This procedure
a different role fromw. In this sense, the way js expressed in terms of a while-structure, which
to handle this additional parameter for relationalgnaples the adjustment of penalty parameters for
lasso is completely different from adaptive 1assopjghly correlated features. The processed feature

In other words, the originality of our method lies i held in setF to avoid any duplicate processing
in usinga to express the relations between underys featyres.

lying features. In the while-structure, features are selected one

The relations between features are denoted 3% a time in the order of larger values gg(w)
R, which is provided to the proposed algorithm, i, .\, heing the zero vectdr The number of the

and used to estimate. 1t denotes a pairwise de- selected feature is denoted/ds Then, for allks

pendence relation between features. That is, l\];vhich are related té* in R, thea is enlarged by a
there arem features in totalR C (1,---,m) X ’

'Oracle property (Fan and Li, 2001) is satisfied if the op- 2There are other possibilities for this order of process-
timization problem can correctly select the nonzero weightdng features, such as randomizing the order. In the Graft-
with probability converging to one and the estimators of theing method (Perkins et al., 2003), the processed feature is se-
nonzero weights are asymptotically normal with the samdected by calculating?%“’) every time in the while-structure,
means and covariance that they would have if the zero cowhich is also possible with relational lasso. This however re-
efficients were known in advance. mains as future work.
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Procedure 1Relational Lasso Therefore, the interest lies in whether the perfor-

Input: mance is better when we have the additional fea-

o (ziy)(i=1,---,n) tures than it is when we have only the standard
features.

e Parameters, aq, as .
T We consider three methods:

¢ Relation amongn features

Rc(l,---,m)x(1,---,m) e Conventional lasso (Tibshirani, 1996)
a= ;,Zu): 0,F={} e Adaptive lasso (Zou, 2006)
_ OL(w
while !%| <m do ¢ Relational lasso (proposed method)

k* = arg max[vy| We are interested in whether relational lasso per-

kgF
forall k ¢ F and (k*, k) € R do forms better than the other methods. In practice
= o + ag we can select the beatparameter used for lasso
end for methods, using cross-validation, although we ex-
forall k € F and (k, k*) € R do amined multiplexs, which determine the strength
Q= ap + as of the regularizers’ influence as shown in formulas

end for (1) and (2) of Sections 3 and 4.

F=FUk* The other parameters introduced in Section 4
end while are set as follows. Adaptive lasso has the param-
w = arg min L(w) + A Y, ag|wg| etero = 1, which is set as the common choice in

w (Kramer et al., 2009) and the parametgris de-
return w : I . . _
fined from initial estimatokw as follows:
certain constant; andas, depending on whether a; = max {1’ 1} )
the featurek is included ork* is included. When |w;]

the while procedure endg; includes all the fea-
tures. Finallyw is estimated in terms of LR-lasso,
where the second term is weighted further wit
the thus estimated. When some specifiey, be-
comes zero, this means that the weight is consi

For relational lasso, parametersandas were
heach set to 1. Foi; regularized LR, a coor-
dinate descent method is implemented by mod-
4fying LIBLINEAR °. Coordinate descent meth-

ered as not selected for the classification task. °dS have been widely applied elsewhere because
One further improvement that might be IOOSSi_of their suitability for application to higher-order

ble for the above procedure is to repeat the Wh”eproblems (Yugm etal., 2010).

structure and the estimation af so thatn andw | OF €ach pair of a feature and a method, we con-
perform co-training; this also remains for our fu- Sidered the following three problems of text clas-
ture work. Moreover, the procedure presented herélflcatlon, polarity estlma.tlon, and s_tat|st|cal pars-
remains an ad hoc modification of conventional"d: The next three sections explain the standard
lasso based on our motivation. A more proper"’md additional feature sets, the relation among fea-

mathematical reformulation of this method will be turesk, and the evaluation scores.
part of our future work. Task 1: Text Classification

Twenty Newsgroups (20N&)were used as the
dataset for text classification. This collection con-
5.1 Experimental Settings tains 18,846 English documents partitioned across
20 different news groups.

The data was sorted by date, with the first 60%
e Standard features used as a training set and the remaining 40% used
as a test set. A simple bag of words was used

5 Evaluation

We will consider the following two feature sets.

e Standard and additional features ttp:/www.csie.ntu.edu.tw/ ~cjlin

dditi I .. d d h liblinear/
Here, an additional feature setis introduced so that 4, qided by Jason Rennie,http://people.

it can be noisy with respect to the classification.csail.mit.edu/jrennie/20Newsgroups/
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Table 1: Features used for dependency parsing

unigram for w in wi—1, wi, wj, Wjt1, Wir2, wire  POSw), lex(w)

for w in w;_1, w;, wj, posq'e’?), lex(w'ef*)

for w in wi—y, w;, pos(u; ™), lex@w, "), pos(ule®d),lex(w!*?)
bigram for (v, w) in (w;, w;), (wi—1, w;) posE)posw),post)lex(w),lexw)postw),lex(w)lex(w)
add bigram for(v, w) in (wi, wjt1), (Wi, wjt1) pos@)posw),posp)lex(w),lex()postw),lex(v)lex(w)
add preposition  fotw in wji1, wjt2, wjts3 lex(w;)lex(w;)posw), postw;)lex(w;)lex(w)

(if w; is a preposition)

as the standard feature sets, whereas all stems of The standard features used are listed in Table
all words were used as additional featur&was 1. Here, pog() indicates the part of speech of
defined as the relation between each word and ithe wordw, wherew; indicates theith word of
stems. a given sentence, andﬁeft indicates the already

A multi-class classification task is typically parsed dependent word of placed to its farthest
evaluated by macro and micro F1 values, so wdeft side. The additional feature set included all

also provided these values. dependent words involving; andw;, and all bi-
grams concerning words used as features in the
Task 2: Polarity Estimation standard set. In our dependency parsing task, we

Polarity dataset v290was used as the second dataMeasured the word accuracy which was defined as
the ratio of words assigned correct heads divided

set. The content of each data was a movie re-
view in text, tagged with the sentiment of positive PY the total of all words.
or negative. The data consisted of 1,000 positive
and 1,000 negative reviews. Since the data set was
small, the average accuracy was obtained through
10-fold cross validation.
Feature sets were basically the same as for Task
1, where the standard was a bag of words, the ad-
ditional set consisted of word stems, and relation
R was the relation among words and their stems. //W |
The evaluation was based on the accuracy of the
binary classification of positive/negative. o 200 o000 coom e0ooo 100000 120000 140000

number of non-zero features

—e— relational
--e-- conventional
© adaptive

micro F-value
70% 75% 80% 85% 90% 95%
1
T

M,

Task 3: Parsing
) Figure 1: Task 1: Micro F1 values for the number
We also tested the methods on a parsing taslaf non-zero features

which was a task drastically different from tasks
1 and 2. We used CoNLL-X formatted sentences
from the Wall Street Journal section of the Penn
Tree-bank. Sections 2-21 were used as training
data (39,832 sentences), and section 23 was used | [« caon |
as test data (2,416 sentences). < e
The parsing algorithm we tested is the standard

shift-reduce parsing proposed by (Nivre, 2003),
where the parsing proceeds by successive determi-
nation of the relation between two words (denoted
asw; andw;). Such a determination is consid-

macro F-value
70% 75% 80% 85% 90% 95%
1
T

|

T T T T T T T T T T T T T T 1
0 20000 40000 60000 80000 100000 120000 140000

ered a 4-class classification problem that is mod- number of non-zero features
eled and learned by LR, augmented by the three
lasso methods being evaluated. Figure 2: Task 1: Macro F1 values for the number

®provided by Bo Panghttp://www.cs.cornell. of non-zero features

edu/people/pabo/movie-review-data/
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5.2 Results

Figures 1 and 2 show the results for Task 1, Fig-
ure 3 those for Task 2, and Figure 4 those for Task
3. Horizontal axes show the number of features
and vertical axes show accuracy. Each graph has
three lines, indicating the conventional, adaptive
and relational lasso methods applied to the stan-
dard and additional features all together. Each line ] L
has five points, each corresponding to a different 00 05 10 15 20 25 30 35 40 45 50
value of \. The horizontal coordinate was deter- e e F
mined by counting how many features remained
non-zero for each value of Figure 4: Task 3: Word accuracy for the number
Overall, all figures, except for Figure 3 show ©f non-zero features
that relational lasso outperformed the adaptive and
conventional lasso methods. This was to be ex- Qverall, the last column presents the highest
pected, since relational lasso has the relafioas  performance in each row, thus suggesting the ef-
input, unlike the conventional lasso method. ThiSfectiveness of relational lasso.
confirms that information from the underlying For Task 2, when features of standard and ad-
does improve lasso performance. Curiously, thgjitional sets were used, the performance of the
performance of adaptive lasso for some figuregonyentional method decreased compared to that
was lower than that of the conventional method,ynen only the standard set was used. This could
The reason for this will be given later in this sec-pappen if the additional feature setis noisy and the
tion. _ regularizer cannot exploit the useful information
As Figure 3 and Figure 4 show, the performance,om the additional set of features. On the other
was competitive among the three lasso methodggng, the performance of relational and adaptive
when the number of features were small. How-4550 for the same task was improved by extract-
ever, with a large number of features, relationalg the useful information; that is, the performance
lasso generally outperforms the other lassos. a5 higher than when using only the standard fea-
tures. This shows that the use of underlying infor-
mation among features enhances the overall per-
— r formance.
iy - For Tasks 1 and 3, adding features led to bet-
- ter performance than when using only the standard
- set. Note, though, that the performance increase
MM - was greatest for relational lasso. Thus, relational
- lasso is the best among the three lasso methods at
N exploiting information, and thus performs better in
terms of accuracy.

In this table, too, we see that for Task 2, the
performance of adaptive lasso is below that of the
conventional lasso. We consider the reason for this
to be as follows. Since the optimization for adap-

It is difficult to compare the performance sincetive lasso is done in two stages, some of the fea-
different \ values lead to different levels of per- tures are dropped within the first stage. In the sec-
formance, so the maximum performance obtaine@nd stage, these features will never re-acquire any
by changing the\ value is shown in Table 2. importance. In other words, the feature selection
Columns are for different lasso methods with stanmust be done at the very end in order to preserve
dard and additional feature sets, whereas rows rejphe possibility of some features to re-acqure the
resent different tasks. Note that the best valuegnportance through learning.
of \ differ depending on the pairs of methods and Before ending, we must note the impact of re-
features. lational lasso on the speed of overall processing.

—e— relational
--o-- conventional

— ©  adaptive =

F—

accuracy
I

82% 84% 86% 88% 90%  92%

accuracy
80% 82% 84% 86% 88% 90% 92%
1 1

o 4

Figure 3: Task 2: Accuracy for the number of non-
zero features
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Table 2: Maximum Performance among Various Values @r Three Lasso Methods

Lasso Methods Conventional Adaptive Relational
Feature Sets Std Std+Add| Std Std+Add| Std Std+Add
Task 1 (micro)|| 79.67%| 81.03% | 76.78%| 77.16% | 78.87%| 81.8%%
Task 1 (macro)|| 79.43%| 80.69% | 76.53% | 77.67% | 78.52% | 81.72%6
Task 2 85.81%| 84.95% | 85.56%| 86.1% | 84.82%| 86.4%%
Task 3 75.87%| 88.81% | 74.64%| 87.71% | 75.97%| 89.23%

The pre-processing to obtainis very fast, since proved.

it only scans the number of features once. The As part of our future work, we plan to inves-
bottleneck of the procedure lies in the estimationtigate whether our method works for other tasks
of w since this requires convergence through auch as tagging, and with other target functions.
repetitive procedure. Therefore, the computationaMoreover, there are many directions we can take
complexity of relational lasso will not change evento further improve the method, such as through co-
with o within the regularizer, and the overall speedtraining. Last, it will be interesting to see how our
of relational lasso is almost the same as that of thenethod can be mathematically reformulated.
conventional method. In contrast, adaptive lasso

requires twice as much time since the bottleneck

part is done twice. In this sense, our method outReferences
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