
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 705–713,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

Dynamic and Static Prototype Vectors for Semantic Composition

Siva Reddy
University of York, UK

siva@cs.york.ac.uk

Ioannis P. Klapaftis
University of York, UK

giannis@cs.york.ac.uk

Diana McCarthy
Lexical Computing Ltd, UK

diana@dianamccarthy.co.uk

Suresh Manandhar
University of York, UK

suresh@cs.york.ac.uk

Abstract

Compositional Distributional Semantic
methods model the distributional behav-
ior of a compound word by exploiting the
distributional behavior of its constituent
words. In this setting, a constituent word
is typically represented by a feature vec-
tor conflating all the senses of that word.
However, not all the senses of a constituent
word are relevant when composing the se-
mantics of the compound. In this paper,
we present two different methods for se-
lecting the relevant senses of constituent
words. The first one is based on Word
Sense Induction and creates a static multi
prototype vectors representing the senses
of a constituent word. The second creates
a single dynamic prototype vector for each
constituent word based on the distribu-
tional properties of the other constituents
in the compound. We use these proto-
type vectors for composing the seman-
tics of noun-noun compounds and evalu-
ate on a compositionality-based similar-
ity task. Our results show that: (1) se-
lecting relevant senses of the constituent
words leads to a better semantic compo-
sition of the compound, and (2) dynamic
prototypes perform better than static pro-
totypes.

1 Introduction

Vector Space Models of lexical semantics have
become a standard framework for representing
a word’s meaning. Typically these methods
(Schütze, 1998; Pado and Lapata, 2007; Erk
and Padó, 2008) utilize a bag-of-words model or

syntactic dependencies such as subject/verb, ob-
ject/verb relations, so as to extract the features
which serve as the dimensions of the vector space.
Each word is then represented as a vector of the
extracted features, where the frequency of co-
occurrence of the word with each feature is used
to calculate the vector component asociated with
that feature. Figure 1 provides an example of two
nouns assuming a bag-of-words model.

vector dimensions
animal buy apartment price rent kill

house 〈 30 60 90 55 45 10 〉
hunting 〈 90 15 12 20 33 90 〉

Figure 1: A hypothetical vector space model.

Compositional Distributional Semantic meth-
ods formalise the meaning of a phrase by ap-
plying a vector composition function on the
vectors associated with its constituent words
(Mitchell and Lapata, 2008; Widdows, 2008).
For example, the result of vector addition to
compose the semantics of house hunting from
the vectors house and hunting is the vector
〈120, 75, 102, 75, 78, 100〉.

As can be observed the resulting vector does
not reflect the correct meaning of the compound
house hunting due to the presence of irrelevant
co-occurrences such as animal or kill. These co-
occurrences are relevant to one sense of hunting,
i.e. (the activity of hunting animals), but not to the
sense of hunting meant in house hunting, i.e. the
activity of looking thoroughly. Given that hunting
has been associated with a single prototype (vec-
tor) by conflating all of its senses, the application
of a composition function ⊕ is likely to include
irrelevant co-occurrences in house⊕ hunting.

A potential solution to this problem would in-
volve the following steps:

705

1. build separate prototype vectors for each of
the senses of house and hunting

2. select the relevant prototype vectors of house
and hunting and then perform the semantic
composition.

In this paper we present two methods (section
3) for carrying out the above steps on noun-noun
compounds. The first one (section 3.1) applies
Word Sense Induction (WSI) to identity differ-
ent senses (also called static multi prototypes) of
the constituent words of a compound noun and
then applies composition by choosing the relevant
senses. The second method (section 3.2) does not
identify a fixed set of senses. Instead, it represents
each constituent by a prototype vector which is
built dynamically (also called as a dynamic proto-
type) by activating only those contexts considered
to be relevant to the constituent in the presence of
the other constituent, and then performs the com-
position on the dynamic prototypes. For perform-
ing composition, we use vector composition func-
tions.

Our evaluation (section 5) on a task for rat-
ing similarity between noun-noun compound pairs
shows: (1) sense disambiguation of constituents
improves semantic composition and (2) dynamic
prototypes are better than static multi prototypes
for semantic composition.

2 Related work

Any distributional model that aims to describe lan-
guage adequately needs to address the issue of
compositionality. Many distributional composi-
tion functions have been proposed in order to es-
timate the semantics of compound words from
the semantics of the constituent words. Mitchell
and Lapata (2008) discussed and evaluated vari-
ous composition functions for phrases consisting
of two words. Among these, the simple additive
(ADD) and simple multiplicative (MULT) func-
tions are easy to implement and competitive with
respect to existing sophisticated methods (Wid-
dows, 2008; Vecchi et al., 2011).

Let us assume a target compound noun N that
consists of two nouns n and n′. Bold letters repre-
sent their corresponding distributional vectors ob-
tained from corpora. ⊕(N) denotes the vector of
N obtained by applying the composition function
⊕ on n and n′. Real number vi denote the ith co-
occurrence in v. The functions ADD and MULT

following Mitchell and Lapata (2008) are defined
as follows:

ADD: ⊕(N) = α n + β n′

i.e. ⊕(N)i = α ni + β n′i

MULT: ⊕(N) = nn′

i.e. ⊕(N)i = ni . n′i

(1)

where α and β are real numbers.
Relevant to our work is the work of Erk and

Padó (2008) who utilize a structured vector space
model. The prototype vector of a constituent word
is initially built, and later refined by removing ir-
relevant co-occurrences with the help of the selec-
tional preferences of other constituents. The re-
fined vectors are then used for the semantic com-
position of the compound noun. The results are
encouraging showing that polysemy is a problem
in vector space models. Our approach differs to
theirs in the way we represent meaning - we ex-
periment with static multi prototypes and dynamic
prototypes. Our vector space model is based on
simple bag-of-words which does not require se-
lectional preferences for sense disambiguation and
can be applied to resource-poor languages.

There are several other researchers who tried to
address polysemy for improving the performance
of different tasks but not particularly to the task of
semantic composition. Some of them are Navigli
and Crisafulli (2010) for web search results clus-
tering, Klapaftis and Manandhar (2010b) for tax-
onomy learning, Reisinger and Mooney (2010) for
word similarity and Korkontzelos and Manandhar
(2009) for compositionality detection. In all cases,
the reported results demonstrate that handling pol-
ysemy lead to improved performance of the cor-
responding tasks. This motivates our research for
handling polysemy for the task of semantic com-
position using two different methods described in
the next section.

3 Sense Prototype Vectors for Semantic
Composition

In this section we describe two approaches for
building sense specific prototype vectors of con-
stituent words in a noun-noun compound. The first
approach performs WSI to build static multi pro-
totype vectors. The other builds a single dynamic
prototype vector for each constituent by activat-
ing only the relevant exemplars of the constituent

706

with respect to the other constituent. An exemplar
is defined as a corpus instance of a target word.

These sense specific prototype vectors are then
used for semantic composition. LetN be the com-
pound noun with constituents n and n′. Our aim
is to select the relevant senses of n and n′.

3.1 Static Multi Prototypes Based Sense
Selection

In the first stage (section 3.1.1), a WSI method is
applied to both n and n′. The outcome of this stage
is a set of clusters (senses). Each of these clus-
ters is associated with a prototype vector taking
the centroid of the cluster. Following Reisinger
and Mooney (2010) we use the terminology multi
prototype vectors in the meaning of sense clus-
ters. Let S(n) (resp. S(n′)) be the set of pro-
totypes of n, where each sni ∈ S(n) denotes the
ith sense of the noun n. Since these prototypes of
constituents are static and do not change when the
compound changes we refer to them as static multi
prototypes.

In the next stage (section 3.1.2), we calculate all
the pairwise similarities between the clusters of n
and n′, so as to select a pair of clusters with the
highest similarity. The selected clusters are then
combined using a composition function, to pro-
duce a single vector representing the semantics of
the target compound noun N .

3.1.1 Graph-based WSI

Word Sense Induction is the task of identifying the
senses of a target word in a given text. We ap-
ply a graph-based sense induction method, which
creates a graph of target word instances and then
clusters that graph to induce the senses. We fol-
low the work of Klapaftis and Manandhar (2010a)
for creating the graph and apply Chinese Whispers
(CW) (Biemann, 2006), a linear graph clustering
method that automatically identifies the number of
clusters.

Figure 2 provides a running example of the dif-
ferent stages of the WSI method. In the example,
the target word mouse appears with the electronic
device sense in the contexts A, C, and with the an-
imal sense in the contexts B and D.
Corpus preprocessing: Let bc denote the base
corpus consisting of the contexts containing the
target word tw. In our work, a context is defined
by a set of words in a window of size 100 around
the target.

Figure 2: Running example of WSI

The aim of this stage is to capture words con-
textually related to tw. In the first step, the target
word is removed from bc and part-of-speech tag-
ging is applied to each context. Only nouns and
verbs are kept and lemmatised. In the next step,
the distribution of each word in the base corpus
is compared to the distribution of the same noun
in a reference corpus using the log-likelihood ra-
tio (G2) (Dunning, 1993). Words that have a G2

below a pre-specified threshold (parameter p1) are
removed from each context of the base corpus.
The result of this stage is shown in the upper left
part of Figure 2.
Graph creation & clustering: Each context ci ∈
bc is represented as a vertex in a graph G. Edges
between the vertices of the graph are drawn based
on their similarity, defined in Equation 2, where
smcl(ci, cj) is the collocational weight of con-
texts ci, cj and smwd(ci, cj) is their bag-of-words
weight. If the edge weight W (ci, cj) is above
a prespecified threshold (parameter p3), then an
edge is drawn between the corresponding vertices
in the graph.

W (ci, cj) =
1

2
(smcl(ci, cj) + smwd(ci, cj)) (2)

Collocational weight: The limited polysemy of
collocations is exploited to compute the similar-
ity between contexts ci and cj . In this setting, a
collocation is a juxtaposition of two words within
the same context. Given a context ci, a total of(
N
2

)
collocations are generated by combining each

word with any other word in the context. Each col-
location is weighted using the log-likelihood ratio
(G2) (Dunning, 1993) and is filtered out if the G2

707

is below a prespecified threshold (parameter p2).
At the end of this process, each context ci of tw is
associated with a set of collocations (gi) as shown
in the upper right part of Figure 2 . Given two con-
texts ci and cj , the Jaccard coefficient is used to
calculate the similarity between the collocational
sets, i.e. smcl(ci, cj) =

|gi∩gj |
|gi∪gj | .

Bag-of-words weight: Estimating context simi-
larity using collocations may provide reliable es-
timates regarding the existence of an edge in the
graph, however, it also suffers from data sparsity.
For this reason, a bag-of-words model is also em-
ployed. Specifically, each context ci is associated
with a set of words (gi) selected in the corpus
preprocessing stage. The upper left part of Fig-
ure 2 shows the words associated with each con-
text of our example. Given two contexts ci and
cj , the bag-of-words weight is defined to be the
Jaccard coefficient of the corresponding word sets,
i.e. smwd(ci, cj) =

|gi∩gj |
|gi∪gj | .

Finally, the collocational weight and bag-of-
words weight are averaged to derive the edge
weight between two contexts as defined in Equa-
tion 2. The resulting graph of our running exam-
ple is shown on the bottom of Figure 2. This graph
is the input to CW clustering algorithm. Initially,
CW assigns all vertices to different classes. Each
vertex i is processed for an x number of iterations
and inherits the strongest class in its local neigh-
borhood LN in an update step. LN is defined as
the set of vertices which share a direct connection
with vertex i. During the update step for a vertex
i: each class Ck receives a score equal to the sum
of the weights of edges (i, j), where j has been as-
signed class Ck. The maximum score determines
the strongest class. In case of multiple strongest
classes, one is chosen randomly. Classes are up-
dated immediately, which means that a node can
inherit classes from its LN that were introduced in
the same iteration.
Experimental setting The parameters of the WSI
method were fine-tuned on the nouns of the
SemEval-2007 word sense induction task (Agirre
and Soroa, 2007) under the second evaluation set-
ting of that task, i.e. supervised (WSD) evaluation.
We tried various parameter combinations shown in
Table 1. Specifically, we selected the parameter
combination p1=15, p2=10, p3= 0.05 that maxi-
mized the performance in this evaluation. We use
ukWaC (Ferraresi et al., 2008) corpus to retrieve
all the instances of the target words.

Parameter Range
G2 word threshold (p1) 15,25,35,45
G2 collocation threshold (p2) 10,15,20
Edge similarity threshold (p3) 0.05,0.09,0.13

Table 1: WSI parameter values.

3.1.2 Cluster selection
The application of WSI on the nouns n ∈ N and
n′ ∈ N results in two sets of clusters (senses)
S(n) and S(n′). Cluster S(n) is a set of contexts
of the word n. Each context is represented as
an exemplar e, a vector specific to the context.
Only the 10000 most frequent words in the
ukWaC (along with their part-of-speech category)
are treated as the valid co-occurrences i.e. the
dimensionality of the vector space is 10000. For
example, the exemplar of hunting in the context
“the-x purpose-n of-i autumn-n hunting-n be-v
in-i part-n to-x cull-v the-x number-n of-i young-j
autumn-n fox-n” is 〈 purpose-n:1, autumn-n:2,
part-n:1, cull-v, number-n:1, young-j:1, fox-n:1 〉

For every cluster sni in S(n) we construct a pro-
totype vector vsni by taking the centroid of all the
exemplars in the cluster. Following Mitchell and
Lapata (2008), the context words in the prototype
vector are set to the ratio of probability of the con-
text word given the target word to the overall prob-
ability of the context word1.

The next step is to choose the relevant sense of
each constituent for a given compound. We as-
sume that the meaning of a compound noun can
be approximated by identifying the most similar
senses of each of its constituent nouns. Accord-
ingly all the pairwise similarities between the vsni

and vsn
′

i are calculated using cosine similarity and
the pair with maximum similarity is chosen for
composition.

3.2 Dynamic Prototype Based Sense Selection

Kilgarriff (1997) argues that representing a word
with a fixed set of senses is not a good way of mod-
elling word senses. Instead word senses should be
defined according to a given context. We propose a
dynamic way of building word senses for the con-
stituents of a given compound.

We use an exemplar-based approach to build the
dynamic sense of a constituent with the help of
other constituent. In exemplar-based modelling

1This is similar to pointwise mutual information without
logarithm

708

followed by huge tarpon that like to use the light of your torch to help them hunt. At the
the Christmas trade this year or the lights will be off, probably for ever. The Merrymen

embrace better health - but doing so in the light of real and trusted information about the
present your organisation in a professional light and in a way our all our clients value.

continues to be significant, together with other light industries such as electrical engineering
and near-infrared light, along with red light emitted by hydrogen atoms and green light

Figure 3: Six random sentences of light from ukWaC

(Erk and Padó, 2010; Smith and Medin, 1981),
each word is represented by all its exemplars with-
out conflating them into a single vector. De-
pending upon the purpose, only relevant exem-
plars of the target word are activated. Exemplar-
based models are more powerful than just proto-
type based ones because they retain specific in-
stance information. As described in the previous
section, an exemplar is a vector that represents a
single instance of a given word in the corpus.

Let En be the set of exemplars of the word n.
Given a compound N with constituents n and n′,
we remove irrelevant exemplars in En creating a
refined set En′

n ⊂ En with the help of the other
constituent word n′. The prototype vector nn′

of
n is then built from the centroid of the refined ex-
emplar set En′

n . The vector nn′
represents the rel-

evant prototype vector (sense) of n in the presence
of the other constituent word n′. Unlike the static
prototypes defined in the previous section, the pro-
totype vectors of n and n′ are built dynamically
based on the given compound. Therefore, we re-
fer to them as dynamic prototype vectors.

3.2.1 Building Dynamic Prototypes

We demonstrate our method of building dynamic
prototypes with an example. Let us take the
compound traffic light. Let Traffic, Light and
TrafficLight denote the prototype vectors of
traffic, light and traffic light respectively. Word
light occurs in many contexts such as quantum the-
ory, optics, lamps and spiritual theory. In ukWaC,
light occurs with 316,126 exemplars. Figure 3
displays 6 random sentences of light from ukWaC.
None of these exemplars are related to the target
compound traffic light. When a prototype vec-
tor of light is built from all its exemplars, irrel-
evant exemplars add noise increasing the seman-
tic differences between traffic light and light and
thereby increasing the semantic differences be-
tween TrafficLight and Traffic⊕ Light. This
is not desirable. The cosine similarity sim(Light,
TrafficLight) is found to be 0.27.

We aim to remove irrelevant exemplars of light

with the help of the other constituent word traffic
and then build a prototype vector of light which
is related to the compound traffic light. Our intu-
ition and motivation for exemplar removal is that
it is beneficiary to choose only the exemplars of
light which have context words related to traffic
since the exemplars of traffic light will have con-
text words related to both traffic and light. For ex-
ample car, road, transport will generally be found
within the contexts of all the words traffic, light
and traffic light.

We rank each exemplar of light with the help of
collocations of traffic. Collocations of traffic are
defined as the context words which frequently oc-
cur with traffic, e.g. car, road etc. The exemplar of
light representing the sentence “Cameras capture
cars running red lights . . .” will be ranked higher
than the one which does not have context words re-
lated to traffic. We use Sketch Engine2 (Kilgarriff
et al., 2004) to retrieve the collocations of traffic
from ukWaC. Sketch Engine computes the collo-
cations using Dice metric (Dice, 1945). We build
a collocation vector Trafficcolloc from the colloca-
tions of traffic.

We also rank each exemplar of light using the
distributionally similar words to traffic i.e. words
which are similar to traffic e.g. transport, flow etc.
These distributionally similar words helps to re-
duce the impact of data sparseness and helps pri-
oritize the contexts of light which are semanti-
cally related to traffic. Sketch Engine is again used
to retrieve distributionally similar words of traffic
from ukWaC. Sketch Engine ranks similar words
using the method of Rychlý and Kilgarriff (2007).
We build the vector Trafficsimilar which consists of
the similar words of traffic.

Every exemplar e from the exemplar set Elight
3

is finally ranked by

sim(e,Trafficcolloc) + sim(e,Trafficsimilar)

2Sketch Engine http://www.sketchengine.co.
uk

3In Elight, we do not include the sentences which have the
compound noun traffic light occurring in them.

709

We choose the top n% of the ranked exemplars
in Elight to construct a refined exemplar set Etraffic

light .
A prototype vector LightTraffic is then built by
taking the centroid of Etraffic

light . LightTraffic de-
notes the sense of light in the presence of traf-
fic. Since sense of light is built dynamically based
on the given compound (here traffic light), we de-
fine LightTraffic as the dynamic prototype vector.
The similarity sim(LightTraffic, TrafficLight)
is found to be 0.47 which is higher than the ini-
tial similarity 0.27 of Light and TrafficLight.
This shows that our new prototype vector of light
is closer to the meaning of traffic light.

Similarly we build the dynamic prototype vec-
tor TrafficLight of traffic with the help of
light. The dynamic prototypes TrafficLight and
LightTraffic are used for semantic composition to
construct TrafficLight ⊕ LightTraffic

4 Composition functions

Given a compound, we perform composition using
the sense based prototypes selected in the above
section. We use the composition functions ADD
and MULT described in Equation 1.

For the function ADD, we use equal weights for
both constituent words i.e. α = β = 1. For the
function MULT there are no parameters.

5 Evaluation

Mitchell and Lapata (2010) introduced an evalua-
tion scheme for semantic composition models. We
evaluate on their dataset, describe the evaluation
scheme, and present the results of various models.

5.1 Dataset

Mitchell and Lapata (2010) prepared a dataset4

which contains pairs of compound nouns and their
similarity judgments. The dataset consists of 108
compound noun pairs with each pair having 7 an-
notations from different annotators who judge the
pair for similarity. A sample of 5 compound pairs
is displayed in Table 2.

5.2 Evaluation Scheme

For each pair of the compound nouns, the mean
value of all its annotations is taken to be the final
similarity judgment of the compound.

4We would like to thank Jeff Mitchell and Mirella Lapata
for sharing the dataset.

Annotator N N’ rating
4 phone call committee meeting 2
25 phone call committee meeting 7
11 football club league match 6
11 health service bus company 1
14 company director assistant manager 7

Table 2: Evaluation dataset of Mitchell and Lapata
(2010)

LetN andN ′ be a pair. To evaluate a model, we
calculate the cosine similarity between the com-
posed vectors⊕(N) and⊕(N′) obtained from the
composition on sense based prototypes generated
by the model. These similarity scores are corre-
lated with human mean scores to judge the perfor-
mance of the model.

5.3 Models Evaluated

We evaluate all the models w.r.t. the composition
functions ADD and MULT.

Static Single Prototypes: This model does not
perform any sense disambiguation and is similar
to the method described in (Mitchell and Lapata,
2008). The prototype vector of each constituent
formed by conflating all its instances is used to
compose the vector of the compound.

Static Multi Prototypes: In the method described
in section 3.1, word sense induction produces a
large number of clusters i.e. static multi proto-
types. We tried various parameters like choosing
the target prototype of a constituent only from the
top 5 or 10 large clusters.

Dynamic Prototypes: In the method described
in section 3.2, the dynamic prototype of a con-
stituent is produced from the top n% exemplars
of the ranked exemplar set of the constituent. We
tried various percent activation (n%) values - 2%,
5%, 10%, 20%, 50%, 80%.

Compound Prototype: We directly use the cor-
pus instances of a compound to build the proto-
type vector of the compound. This method does
not involve any composition. Ideally, one expects
this model to give the best performance.

Static Multi Prototypes with Guided Selection:
This is similar to Static Multi Prototypes model
except in the way we choose the relevant proto-
type for each constituent. In section 3.1.2 we de-
scribed an unsupervised way of prototype selec-
tion from multi prototypes. Unlike there, here we
choose the constituent prototype (sense) which has
the highest similarity to the prototype vector of the

710

Parameter Description ADD MULT
Static Single Prototypes

0.5173 0.6104
Static Multi Prototypes

Top 5 clusters 0.1171 0.4150
Top 10 clusters 0.0663 0.2655

Dynamic Prototypes
Top 2 % exemplars 0.6261 0.6552
Top 5 % exemplars 0.6326 0.6478
Top 10 % exemplars 0.6402 0.6515
Top 20 % exemplars 0.6273 0.6359
Top 50 % exemplars 0.5948 0.6340
Top 80 % exemplars 0.5612 0.6355

Static Multi Prototypes with Guided Selection
Top 5 clusters 0.2290 0.4187
Top 10 clusters 0.2710 0.4140

Compound Prototype
0.4152

Table 3: Spearman Correlations of Model predictions with Human Predictions

compound. This is a guided way of sense selec-
tion since we are using the compound prototype
vector which is built from the compound’s corpus
instances. The performance of this model gives us
an idea of the upper boundary of multi prototype
models for semantic composition.

5.4 Results and Discussion

All the above models are evaluated on the dataset
described in section 5.1. Table 3 displays the
Spearman correlations of all these models with the
human annotations (mean values).

The results of Static Single Prototypes model
are consistent with the previous findings of
Mitchell and Lapata (2010), in which MULT per-
formed better than ADD.

All the parameter settings of Dynamic Proto-
types outperformed Static Single Prototypes. This
shows that selecting the relevant sense prototypes
of the constituents improve semantic composition.
We also observe that the highest correlation is
achieved by including just the top 2% exemplars
for each constituent. It seems that as the sample of
exemplars increases, noise increases as well, and
this results in a worse performance.

The comparison between Static Single Proto-
types and Static Multi Prototypes shows that the
former performs significantly better than the lat-
ter. This is not according to our expectation. The

possible reason for poor performance could be be-
cause of the sense selection process (section 3.1.2)
which might have failed to choose the relevant
sense of each constituent word.

However, Static Multi Prototypes with Guided
Sense Selection still fail to perform better than
Static Single Prototypes. Therefore, we can con-
clude that the lower performance of Static Multi
Prototypes cannot be attributed to the sense selec-
tion process only. Despite that, the applied graph
clustering method results in the generation of a
very large number of clusters, some of which re-
fer to the same word usage with subtle differences.
Hence, our future work focuses on a selection pro-
cess that chooses multiple relevant clusters of a
constituent word. Additionally, our ongoing work
suggests that the use of verbs as features in the
graph creation process (section 3.1.1) causes the
inclusion of noisy edges and results in worse clus-
tering.

Our evaluation also shows that Dynamic Proto-
types provide a better semantic composition than
Static Multi Prototypes. The main reason for this
result stems from the fact that Dynamic Prototypes
explicitly identify the relevant usages of a con-
stituent word with respect to the other constituent
and vice versa, without having to deal with a set of
issues that affect the performance of Static Multi
Prototypes such as the clustering and the sense se-

711

lection process.
The performance of Compound Prototype is

lower than the compositional models. The reason
could be due to the data sparsity. Data sparsity is
known to be a major problem for modelling the
meaning of compounds. In a way, the results are
encouraging for compositional models.

In all these models, the composition function
MULT gave a better performance than ADD.

6 Conclusions

This paper presented two methods for dealing with
polysemy when modeling the semantics of a noun-
noun compound. The first one represents senses
by creating static multi prototype vectors, while
the second represents context-specific sense of a
word by generating a dynamic prototype vector.
Our experimental results show that: (1) sense dis-
ambiguation improves semantic composition, and
(2) dynamic prototypes are a better representation
of senses than static multi prototypes for the task
of semantic composition.

In future, we would like to explore other
static multi prototype approaches of Reisinger
and Mooney (2010) and Klapaftis and Manandhar
(2010a) in comparison with dynamic prototypes.
Dynamic prototypes are found to be particularly
encouraging since they present a different mech-
anism for sense representation unlike traditional
methods.

Acknowledgements

The authors are grateful to Lexical Computing
Ltd for providing a free installation of Sketch En-
gine at University of York. The authors would
like to thank anonymous reviewers for their ex-
cellent feedback. This work is supported by the
European Commission via the EU FP7 INDECT
project, Grant No.218086, Research area: SEC-
2007-1.2-01 Intelligent Urban Environment Ob-
servation System.

References

Eneko Agirre and Aitor Soroa. 2007. Semeval-2007
task 02: Evaluating word sense induction and dis-
crimination systems. In Proceedings of the Fourth
International Workshop on Semantic Evaluations
(SemEval-2007), pages 7–12, Prague, Czech Repub-
lic, June. Association for Computational Linguis-
tics.

Chris Biemann. 2006. Chinese Whispers - An Ef-
ficient Graph Clustering Algorithm and its Appli-
cation to Natural Language Processing Problems.
In Proceedings of TextGraphs, pages 73–80, New
York, USA.

Lee R. Dice. 1945. Measures of the amount of
ecologic association between species. Ecology,
26(3):pp. 297–302.

Ted Dunning. 1993. Accurate Methods for the Statis-
tics of Surprise and Coincidence. Computational
Linguistics, 19(1):61–74.

Katrin Erk and Sebastian Padó. 2008. A structured
vector space model for word meaning in context. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’08,
pages 897–906, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Katrin Erk and Sebastian Padó. 2010. Exemplar-
based models for word meaning in context. In Pro-
ceedings of the ACL 2010 Conference Short Papers,
ACLShort ’10, pages 92–97, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evalu-
ating ukWaC, a very large web-derived corpus of
english. In Proceedings of the WAC4 Workshop at
LREC 2008, Marrakesh, Morocco.

Adam Kilgarriff, Pavel Rychly, Pavel Smrz, and David
Tugwell. 2004. The sketch engine. In Proceedings
of EURALEX 2004.

Adam Kilgarriff. 1997. I don’t believe in word senses.
In Computers and the Humanities, 31(2):91-113.

Ioannis Klapaftis and Suresh Manandhar. 2010a.
Word sense induction & disambiguation using hier-
archical random graphs. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 745–755, Cambridge, MA,
October. Association for Computational Linguistics.

Ioannis P. Klapaftis and Suresh Manandhar. 2010b.
Taxonomy Learning Using Word Sense Induction.
In Proceedings of NAACL-HLT-2010, pages 82–90,
Los Angeles, California, June. ACL.

Ioannis Korkontzelos and Suresh Manandhar. 2009.
Detecting compositionality in multi-word expres-
sions. In Proceedings of the ACL-IJCNLP 2009
Conference Short Papers, ACLShort ’09, pages 65–
68, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
ACL-08: HLT, pages 236–244, Columbus, Ohio.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive Sci-
ence.

712

Roberto Navigli and Giuseppe Crisafulli. 2010. Induc-
ing word senses to improve web search result clus-
tering. In EMNLP, pages 116–126.

Sebastian Pado and Mirella Lapata. 2007.
Dependency-based construction of semantic space
models. Computational Linguistics, 33(2):161–199.

Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In HLT-NAACL, pages 109–117.

Pavel Rychlý and Adam Kilgarriff. 2007. An ef-
ficient algorithm for building a distributional the-
saurus (and other sketch engine developments). In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL ’07, pages 41–44, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Hinrich Schütze. 1998. Automatic Word Sense Dis-
crimination. Computational Linguistics, 24(1):97–
123.

Edward E. Smith and Douglas L. Medin. 1981. Cate-
gories and concepts / Edward E. Smith and Douglas
L. Medin. Harvard University Press, Cambridge,
Mass. :.

Eva Maria Vecchi, Marco Baroni, and Roberto Zam-
parelli. 2011. (linear) maps of the impossible: Cap-
turing semantic anomalies in distributional space. In
Proceedings of the Workshop on Distributional Se-
mantics and Compositionality, pages 1–9, Portland,
Oregon, USA, June. Association for Computational
Linguistics.

Dominic Widdows. 2008. Semantic vector products:
Some initial investigations. In Second AAAI Sympo-
sium on Quantum Interaction, Oxford, March.

713

