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Abstract

Phylogenetic methods are used to build
evolutionary trees of languages given
character data that may include lexical,
phonological, and morphological informa-
tion. Such data rarely admits a perfect
phylogeny. We explore the use of the
more permissive conservative Dollo phy-
logeny as an alternative or complementary
approach. We propose a heuristic search
algorithm based on the notion of chordal
graphs. We test this approach by generat-
ing phylogenetic trees from three datasets,
and comparing them to those produced by
other researchers.

1 Introduction

Reconstructing the histories of language families
is one of the principal tasks of historical linguis-
tics. A linguistic phylogenetic tree conveys the
evolution of a language family. The family tree
can be constructed on the basis of characteris-
tics that are common to sets of languages. which
include lexical, phonological, and morphologi-
cal affinities. Of particular importance are cog-
nates — words that originate from the same an-
cestral word, and are distinct from words that are
“borrowed”, i.e. transferred between languages
at some point in history. For example, English
brother is cognate with German bruder and Rus-
sian brat, all of which come from a Proto-Indo-
European word reconstructed as bhrāter, while
cousin is a borrowing from French.

The task of inferring phylogenetic trees of lan-
guages is complicated by the pervasiveness of bor-
rowings, which frequently occur when languages
are in close contact. For example, English is a
Germanic language but the majority of its vocab-
ulary is borrowed from other branches of Indo-
European. Several approaches have been proposed

to incorporate borrowings into the tree building
process (Minett and Wang, 2003). In particu-
lar, Nakhleh et al. (2005a) introduce the concept
of a phylogenetic network, which is obtained by
augmenting a putative tree with edges represent-
ing contact between languages. They present a
method to calculate the minimum number of bor-
rowings required to admit that tree. However, the
method does not actually construct a tree from the
data, and it may be computationally intractable
when the number of borrowings is large.

In this paper, we propose to apply a conservative
Dollo phylogeny (CDP) as a model of linguistic
phylogenetics. The approach was originally devel-
oped by Przytycka et al. (2006) in computational
biology. Since it is NP-Hard to compute the mini-
mum number of deletions required for a dataset to
conform to a CDP (Lewis and Yannakakis, 1980),
we propose a heuristic search algorithm based on
the notion of chordal graphs. Our algorithm pro-
duces an output tree that minimizes the number
of borrowings directly from the data. In addition,
it has the potential of being significantly faster to
compute than the more commonly known perfect
phylogeny. Our approach produces plausible phy-
logenetic trees on three different datasets.

This paper is structured as follows. In Sec-
tion 2, we outline the required background, includ-
ing several graph theoretic notions and alternative
phylogenies. In Section 3, we describe our heuris-
tic search algorithm to compute the minimum set
of data entries that are inconsistent with a CDP. We
also describe a number of preprocessing steps that
we take in order to make our problem more com-
putationally feasible. In Section 4, we describe
the experiments on three datasets, and compare the
resulting phylogenetic trees to those produced by
other researchers. In Section 5, we describe an ex-
tension to our heuristic search. We conclude with
future work and a summary in Sections 6 and 7.
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2 Background

In this section, we outline the notions of per-
fect and Dollo phylogenies, and several graph-
theoretic notions, including intersection graphs
and chordal graphs.

2.1 Perfect phylogeny

A character represents a property of languages.
In this paper, we consider only binary characters,
which have two possible states: 1 and 0. For ex-
ample, a presence or absence of a particular cog-
nate can be considered a character. The informa-
tion encoded by a set of characters is used for con-
structing phylogenetic trees. We say that a char-
acter back evolved if after evolving from 0 state to
1 state, it subsequently is lost and switches back
on the tree from 1 state to 0 state. We say that a
character has parallel evolution if it evolves twice
on the tree from state 0 to state 1 independently.
We say that a character is borrowed if it has been
transferred from one branch to another by contact
between linguistic groups.

Given a set of binary characters, we say that a
rooted tree with languages as the leaf nodes is a
perfect phylogeny if for each character there exists
a binary labeling such that the root node is labeled
with a zero, and all nodes sharing the same label
are connected. This implies that each character
evolves exactly once, and that there is no back-
mutation or borrowing. For example, the tree in
Figure 1 is not a perfect phylogeny because char-
acters one and two back-evolve. It is possible to
recognize whether a set of characters admits a per-
fect phylogeny in polynomial time (Felsenstein,
2004).

The character data representing actual lan-
guages rarely admit a perfect phylogeny because
back mutation, parallel evolution, and borrowing
often occur in the course of linguistic evolution.
Instead, we are usually interested in establishing
for a given character data how far away it is from
admitting a perfect phylogeny. Maximum parsi-
mony attempts to minimize the overall number of
evolutionary events required on a tree to explain
the character data, where an evolutionary event
is a switch of a character from one state to an-
other (Felsenstein, 2004). Because maximum par-
simony is NP-Hard (Day et al., 1986), many ap-
proximate approaches have been proposed for this
task. Nakhleh et al. (2005b) provide an excellent
survey of linguistic phylogenetic methods.

{1, 1, 0 } {0, 1, 0 } {0, 0, 1 } {1, 0, 1 }

{1, 1, 0 }
{1, 1, 0 }

{0, 0, 0 }

{1, 0, 1 }

Figure 1: An example of a tree with three char-
acters that is a conservative Dollo phylogeny
(CDP), but not a perfect phylogeny.

Nakhleh et al. (2005a) propose perfect phy-
logeny networks as a way of simplifying the phy-
logeny problem. A perfect phylogeny network
is a graph (not necessarily a tree) such that ev-
ery character exhibits a perfect phylogeny on at
least one of the subtrees of that graph. This ap-
proach is particularly powerful in modeling bor-
rowing; however, it requires the underlying ge-
netic tree to be defined beforehand. The edges
added to the tree represent contact between lan-
guages. Unfortunately, even given a phylogenetic
tree and character data, determining the minimum
number of edges one must add to produce a per-
fect phylogeny network is NP-Hard (Day et al.,
1986). Nakhleh et al. (2005a) mention that ap-
plying the perfect phylogeny network approach to
their Indo-European language dataset is tractable
only because very few edges need to be added to
their tree to produce a perfect phylogeny network.

2.2 Dollo phylogenies

Given a set of binary characters, we say that a
rooted tree with languages as the leaf nodes is a
Dollo phylogeny if for each character there exists
a binary labeling such that the root node is labeled
with a zero, and all nodes sharing the label 1 are
connected (Farris, 1977). In essence, each char-
acter evolves exactly once, but, in contrast to a
perfect phylogeny, an arbitrary number of back-
mutations are allowed. Unfortunately, every set of
character data admits a Dollo phylogeny. Clearly,
the notion of Dollo phylogeny is too permissive to
be useful in linguistic phylogenetics.

Przytycka et al. (2006) propose the notion of
a conservative Dollo phylogeny (CDP), which is
a Dollo phylogeny satisfying an additional con-
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dition: any two characters that occur together in
their 1 states at an internal node must also occur
together in their 1 states at some leaf node. For
example, the tree in Figure 1 is a CDP.

In the context of language evolution, the CDP
condition implies that for any two characters in
some ancestral language, there exist correspond-
ing evidence in the form of a known language pos-
sessing both of those characters. This is a very
strong requirement for which numerous linguistic
counter-examples can be found, but it is much less
strong, and therefore more more likely to be satis-
fied, than the requirement for a perfect phylogeny.
We expect the CDP condition to guide our heuris-
tic search algorithm towards more realistic phylo-
genetic reconstructions, especially in cases where
a number of diverse languages share a relatively
small set of reliable characters.

Few non-trivial datasets representing language
families admit a CDP. This may be attributed ei-
ther to borrowing or to the violation of the CDP
condition. Since we have no way distinguish be-
tween the two explanations, in the remainder of
this paper we will simply refer to such events as
borrowings. In most cases, our objective is to es-
tablish the minimum number of those instances.

2.3 Chordal graphs

In this section we define the notions of chordal
and intersection graphs that underlie our heuristic
search algorithm.

Graph G = (V,E), where E is the set of edges,
and V is the set of vertices, is an intersection
graph of a family of setsR if there is a one-to-one
and onto function (bijection) F between V and R
such that

∀s, t ∈ R : (F (s), F (t)) ∈ E iff s ∩ t 6= ∅ (1)

Informally, each vertex in the intersection graph
represents a set, and two vertices are connected by
an edge if and only if the two corresponding sets
intersect. Figure 2 shows an example of an inter-
section graph. Given sets, we can compute their
intersection graph in linear time.

A chord of a cycle is an edge between two non-
consecutive vertices of a cycle. A chordless cycle
is a cycle with no chords. A chordal graph is a
graph with no chordless cycles of length greater
than three. Figure 3 shows an example of a chordal
graph. Rose et al. (1976) provide a linear-time
recognition algorithm for chordal graphs.

a b

c d

a = {1, 2}

d = {4, 5}

b = {1, 3}
c = {1, 5}

Figure 2: An example of a family of sets on the
right and an intersection graph of those sets on
the left.

Figure 3: An example chordal graph on the left,
and a graph that is not chordal on the right.

We can consider a character in phylogeny data
as a set composed of the individuals or languages
that possess that character. For example, the set for
a cognate is the set of languages that contain that
cognate. Przytycka et al. (2006) prove that a set of
characters admits a CDP if and only if their inter-
section graph is chordal. Therefore, it is possible
to determine whether a set of characters admits a
CDP in linear time. We employ this result in order
to infer phylogenetic trees of languages.

3 Heuristic search

Our search algorithm takes the intersection graph
of the character data as input, and finds the mini-
mum number of vertices (characters, in this case)
that must be removed to produce a chordal graph.
We take advantage of the fact that a character
dataset admits a CDP if and only if the intersec-
tion graph of the character data is chordal. Our
heuristic breadth-first search is guaranteed to find
the minimum number of the inconsistent vertices.

One key observation allows this search to exe-
cute in reasonable time:

Observation 1. Let G = (V,E) be a graph. Let
C be a chordless cycle of G. Let V ′ be a set of
vertices such that removing V ′ from G results in a
chordal graph. Then V ′ must include at least one
vertex on C.
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Algorithm 1 Our main heuristic search algorithm.
search(Graph G = (V,E), List currentSolution)

1: Vertex v← isChordal(G);
2: if v = null then
3: Print currentSolution
4: return
5: end if
6: Vector candidates← getCandidates(G, v)
7: for all Vertex u in candidates do
8: Add u to currentSolution
9: Graph G′ ← G[V \{u}]

10: search(G′, currentSolution)
11: Remove u from currentSolution
12: end for

Proof. Assume that V ′ contains none of the ver-
tices in C. Then all vertices of C are in V \V ′.
Therefore C is present in the graph obtained by
removing V ′ from G, which is chordal by defini-
tion of V ′, a contradiction.

By applying the above observation inductively,
at each stage of our search, we need only consider
as successor states the states produced by remov-
ing a vertex in a chordless cycle of our graph.

The pseudo-code of our heuristic search is
shown in Algorithm 1. Subroutine isChordal takes
a graph as a parameter, and returns a vertex that
belongs to a chordless cycle, or null if G is
chordal. The subroutine implements the algorithm
based on lexicographic breadth-first search pro-
posed by Rose et al. (1976). The subroutine get-
Candidates for selecting the candidate nodes to be
considered in the search is formalized in Algo-
rithm 2. It gets all vertices on a chordless cycle,
and identifies them as candidates for removal. In
order to guarantee optimality, we need to recur-
sively consider removing each of these vertices.
Observation 1 makes this search computationally
feasible in experimental data. In the worst case,
the algorithm has exponential running time in the
size of the input data, which is what we expect in
the case of an exact algorithm applied to an NP-
complete problem.

3.1 Language grouping

In order to make our experiments computationally
tractable, we follow Nakhleh et al. (2005a) in com-
bining sets of languages into single units. For ex-
ample, we consider the Germanic languages as a

Algorithm 2 Candidate generator.
getCandidates(Graph G = (V,E), Vertex v)

1: Cycle C ← the vertices of the shortest chord-
less cycle of length ≥ 4 containing v

2: if |C| > 4 then
3: Cycle C4← a chordless cycle of length 4 if

one exists in G
4: if C4 is not null then
5: return C4

6: end if
7: end if
8: return C

single group because we are confident that their
most recent common ancestor is not an ancestor
of any other language. The operation of language
grouping is performed as a preprocessing step to
the construction of the intersection graph of the
characters.

Beyond achieving the goal of decreasing com-
putation time, we expect that the application of
language grouping will actually make our data
closer to admitting a CDP in a way consistent with
true evolutionary history. Consider two characters
s and t that intersect in the context of language
grouping L, but not without. Then s and t are not
present in any of the same languages, but there are
two languages li, lj ∈ L such that li has character
s but not t, and language lj has character t but not
s. If s and t are only present within the language
grouping, they are not informative when language
family grouping is used. However, if both s and
t are present at an internal node ancestral to lan-
guage grouping L, then this will make the data
closer to admitting a CDP by decreasing the num-
ber of borrowings that we need to posit.

3.2 Tree extraction

Once our search has found a minimum set of ver-
tices to remove from our graph in order to make
it chordal, we extract a phylogenetic tree from the
resulting graph. Gavril (1974) shows that chordal
graphs are the intersection graphs of subtrees of
a tree, and gives a polynomial-time algorithm to
build a corresponding family of subtrees. Follow-
ing Przytycka et al. (2006), we use the union of
those subtrees as a phylogenetic tree for our lan-
guages.
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Figure 4: The tree given by our algorithm for
Chinese dialect cognate data.

Yue

Xiang

Gan

Hakka

Min

Wu

Mandarin

4 Experiments

In order to assess the suitability of the CDP ap-
proach to linguistic phylogeny we performed ex-
periments on three datasets.

4.1 Chinese dialects
The data consist of 15 cognates across seven
Chinese dialects compiled by Minett and Wang
(2003). The set can be characterized as relatively
small and clean.

The tree produced by our algorithm (Figure 4,
which is non-binary, is completely consistent with
one of the five binary trees (Type III) of Minett and
Wang (2003). Also, our tree shares the grouping
of Hakka and Min with all five of their proposed
trees.

Minett and Wang (2003) show that in order to
explain their data, at least seven borrowings must
have occurred. Our algorithm gives the same num-
ber.

The experiment confirms that our method is
sound, and produces results that are open to fur-
ther elucidation.

4.2 CPHL subset
The dataset consists of 22 phonological char-
acters and 13 morphological characters for 24
Indo-European languages from the Computational
Phylogenetics in Historical Linguistics (CPHL)
project1. We decided to exclude the lexical char-
acters which are the most likely to be borrowed.

For example, one phonological character iden-
tifies languages that underwent the loss of initial y

1http://www.cs.rice.edu/˜nakhleh/CPHL/

when it was followed by e. Three languages (Hit-
tite, Luvian, and Lycian) which exhibit that sound
change are encoded as character 1, while the re-
maining Indo-European languages are encoded as
character 2.

Figure 5 shows the tree produced by our method
on the CPHL subset. No characters needed to be
removed from the intersection graph of the char-
acters to yield a chordal graph, which can be inter-
preted that our CDP assumption is reasonable.

There are several differences between the tree
in Figure 5 and the tree presented on the website
of the CPHL project. First, Albanian is grouped
with the Armenian and Greek languages rather
than with the Germanic languages. Second, there
is a node of high degree linking four language sub-
families. This result implies that the character set
is not sufficiently large to establish a more detailed
relationship between those subfamilies.

Nakhleh et al. (2005a) use the CPHL dataset
to build perfect phylogenetic networks. However,
their approach requires a phylogenetic tree as in-
put, and minimizes borrowing events over only
that tree. In contrast, our approach minimizes bor-
rowing events over all possible phylogenetic trees
without enumerating them.

4.3 Comparative Indo-European Data
Corpus

The dataset consists of 84 Swadesh 200-word
lists representing contemporary Indo-European
languages (Dyen et al., 1992). We used only
the most reliable cognate sets numbered between
002 and 099, which contain forms that are cog-
nate with each other and not cognate with the
forms belonging to other sets. Each cognate set is
treated as a separate character. For grouping pur-
poses, we divided the languages into the following
ten groups: Celtic, Romance, Germanic, Baltic,
Slavic, Indic, Greek, Armenian, Iranian, and Al-
banian.

As a further simplifying step, we identified
all cases where the same language group con-
tains multiple cognate sets representing the same
Swadesh meaning. For example, consider the
words for ‘neck’: Nepali manto is cognate with
Irish muineal, while Gujarati gerden is cognate
with Macedonian vrat. In such cases, we removed
all but one of the cognate sets involved, provided
they are found in only two language families. In
our example, we therefore remove the cognate set
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Figure 5: The tree given by our algorithm for the
CPHL dataset, morphological and phonological
characters only, with no language grouping.
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shared between the Celtic and Indic families. This
does not affect the total number of required bor-
rowings.

Figure 6 shows the tree obtained when we ran
our search on the Comparative Indo-European
Data Corpus with language grouping. To construct
this tree, our search found a minimum set of eight
inconsistent cognates. We have analyzed these
cognates, and while a few are inherited, most are
either borrowings or annotation errors (e.g., Slove-
nian jagat ‘to hunt’ or Albanian tuti ’all’).

Although the consensus about the exact form of
the Indo-European language phylogeny is yet to be
reached in spite of many decades of research, our
tree conforms to several well-established facts, in-
cluding the affinity betwen Baltic and Slavic, Indic
and Iranian, and the Satem core. However, there
are some differences in comparison with the tree
proposed by the CPHL project.

In Figure 6, the Albanian and Germanic lan-
guages are more closely grouped with the Celtic
and Romance languages than the Baltic, Slavic,
Indic, Greek and Armenian Languages. The op-
posite is true in the tree proposed by Nakhleh et
al. (2005a). However, they note that the Germanic
languages seem to have exhibited a large amount
of borrowing compared to the other languages they
considered, and mention that on their trees the po-
sition of Albanian is uncertain. If Germanic has
undergone a substantial amount of non-tree-like
evolution, then it is unsurprising that it is the ma-
jor source of disagreement between our and their
trees.

Our tree in Figure 6 also differs from our tree
in Figure 5, in which a single vertex branches to
many groups of languages. Another difference is
the placement of Albanian.

Gray and Atkinson (2003) also built a phylo-
genetic tree for the Indo-European languages us-
ing the Comparative Indo-European Data Corpus.
Their tree differs significantly from that proposed
by Nakhleh et al. (2005a). The tree produced by
Gray and Atkinson (2003) does not group Balto-
Slavic with Indo-Iranian, while both our tree and
the tree in (Nakhleh et al., 2005a) do. Gray and
Atkinson (2003) instead groups Balto-Slavic with
the Germanic, Romance, and Celtic language fam-
ilies. The placement of Albanian is different in
all three trees. All three trees group Baltic with
Slavic, Armenian with Greek, and Indic with Ira-
nian.

550



Figure 6: The tree given by our algorithm for the
Comparative Indo-European Data Corpus with
language grouping.
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5 Tiered search

We noticed when running experiments that char-
acters that are thought in the literature to be bor-
rowed are often present in few language families,
whereas characters that are thought to be ances-
trally inherited are often present in a larger num-
ber of language families. We therefore devised a
tiered version of our heuristic search. In this ver-
sion, we first run the search on only the characters
that are present at more than two language fami-
lies. We find the minimum number of these char-
acters that must be removed to result in a chordal
graph, remove that minimum set from the overall
dataset, and run a subsequent search on this set
in which the only vertices that are allowed to be
removed are present at exactly two language fam-
ilies. We finally concatenate the minimum set of
vertices that this search finds with the minimum
set found in the earlier search to produce our over-
all minimal set of borrowing events.

We tested tiered search on the Comparative
Indo-European Data Corpus. Our results were
negative. In particular, the resulting tree fails to
group Baltic and Slavic together, which is univer-
sally accepted in historical linguistics. This sug-
gests that the observation is not sufficiently gen-
eral to improve the proposed method.

6 Future work

We plan to extend our research on several direc-
tions.

First, our heuristic search could likely be made
more efficient, though not asymptotically. Apart
from the careful selection of nodes to evaluate
as noted in Observation 1, we perform no search
tree pruning. There are likely choices of nodes to
be evaluated that are strictly dominated by other
nodes. For example, consider two vertices u, v in
a chordless cycle C of length greater than three
such that the only neighbors of u are in C, but v is
also in other chordless cycles, and has neighbors
outside C. Then the choice to remove v strictly
dominates the choice to remove u.

Second, we plan to modify our search procedure
to minimize the total number of borrowings. rather
than the total number of borrowed characters. We
have found that in our experiments that minimiz-
ing the later has always minimized the former, but
this may not be the case in all datasets.

Finally, we intend to improve the speed of the
heuristic search, which would enable us to run
tests on larger and more inconsistent datasets.

7 Conclusion

We have proposed conservative Dollo-phylogeny
as a model for linguistic phylogenetics. We
devised and tested an algorithm for calculating
the minimum number of inconsistent characters
within a dataset over all possible phylogenetic
trees without enumerating those trees. We tested
this approach on three datasets with positive re-
sults.

The main advantage of this approach is its
speed. All computations took very little time - on
the order of seconds. Previous approaches have
been much slower. The trees produced by our
method are therefore useful not only in their own
right, but also as a very rapid initial stage of a
computation. One possible approach would be to
quickly generate trees with our method, and then
use them as input to a more exhaustive algorithm.

Our approach calculates the minimum number
of characters that are inconsistent with CDP across
all possible phylogenetic trees without actually
considering these trees individually. The CDP
model and our heuristic algorithm may be partic-
ularly useful in cases where the number of lan-
guages is large, or where not even a partial tree
is known.
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